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Incompressible Euler

and Navier-Stokes eqns.

{
∂tv + v · ∇v = −∇p

+ ν∆v

v = velocity
div v = 0 p = pressure

ν = viscosity

▶ On Rd or Td (no boundaries!).

▶ Euler: homogeneous, incompressible, inviscid fluid.

▶ Navier-Stokes: homogeneous, incompressible, viscous fluid.

Formal estimate for the kinetic energy:

1

2

d

dt

∫
|v |2 dx + 1

2

∫
v · ∇|v |2 dx = −

∫
∇p · v dx

− ν

∫
|∇v |2 dx

which leads to

E(t) = 1

2

∫
|v |2 dx , E(t) = E(0)

− ν

∫ t

0

∫
|∇v |2 dx ds
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▶ Energy is conserved in the inviscid case.

Formally!
▶ Energy is dissipated in the viscous case, at a rate depending

– on viscosity, and
– on the regularity of the solution itself.

Leray-Hopf solutions: weak solutions with energy inequality.

▶ Onsager ’49: “turbulent dissipation could take place just as
readily without the final assistance of viscosity [. . . ] because
the velocity field does not remain differentiable”.

▶ Kolmogorov K41: 0-th law of turbulence

[3D vs 2D]

ν
〈
|∇vν |2

〉
≥ ε̄ > 0 unif. in viscosity.

Here ⟨·⟩ denotes some averaging (space, time, or ensemble).

▶ Nonlinearity ⇝ cascade to small scales / high frequencies.

▶ Experimentally and numerically validated to a large extent.
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Formal manipulation of the nonlinear term in the energy estimate:∫ T

0

∫ (
v · ∇v

)
· v dx dt ∼

∫ T

0

∫ ∣∣∇1/3v
∣∣3 dx dt

Onsager’s {Conjecture ⇝ Theorem}: Cα Euler solutions[
|f (·+ ℓ)− f (·)| ∼ ℓα

]
▶ Conserve the energy if α > 1/3. [C-E-T] with commutators.

▶ Can dissipate the energy if α < 1/3.
[I] + [B-DL-S-V] with convex integration ⇒ nonuniqueness.

[But: energy can grow, globally or locally]

K41 theory of fully developed turbulence:

▶ Uniformly in the vanishing-viscosity limit.
([B-V] for weak, non-Leray-Hopf sol’ns, with convex integr.).

▶ Statistical theory (“universality”). (Lack of math. setup!).

Extreme nonuniqueness. Can we restore uniqueness by selection?
(This is the case for scalar conservation laws (Burgers).)
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Theory of scalar turbulence
Scalar (temperature) passively advected by a turbulent flow

∂tϑ+ u · ∇ϑ = 0

κ∆ϑ

and diffused with diffusivity κ.
Formal L2 estimate (using div u = 0):

∥ϑ(t, ·)∥2L2 = ∥ϑ(0, ·)∥2L2 − 2κ

∫ t

0

∫
|∇ϑ|2 dx ds

Nonlinear term:∫ T

0

∫ (
u · ∇ϑ

)
· ϑ dx dt ∼

∫ T

0

∫
∇αu

(
∇(1 − α)/2ϑ

)2
dx dt

Yaglom’s relation: u ∈ Cα and ϑ ∈ Cβ with

> 1 subcritical
α+ 2β = 1 critical

< 1 supercritical
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Obukhov-Corrsin predictions (1949-1951)

▶ Subcritical regime:

– Uniqueness (linear equation!).
– Conservation of L2 norm.

▶ Supercritical regime:

– Nonuniqueness.
– Dissipation of L2 norm.
– Anomalous dissipation: for ϑκ equi-Cβ it can be

lim sup
κ↓0

κ

∫ ∫
|∇ϑκ|2 dx ds ≥ ε̄ > 0 .

Comments:

▶ Subcritical: proof via C-E-T-like argument.
▶ Supercritical: which question exactly?

– One velocity field and one initial datum.
– One velocity field and all initial data.
– Statistical statement.
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Result and approach [MC-GC-MS]
▶ Supercritical regime: anomalous dissipation for

one velocity field and one initial datum.

▶ Lack of selection by vanishing diffusivity.
▶ Lack of selection by convolution of the velocity field.

(Stochastic) Lagrangian approach:

∂tϑ+ u · ∇ϑ = 0κ∆ϑ

Deterministic flow: Ẋ (t, x) = u(t,X (t, x))

Stochastic flow: dXκ(t, x) = u(t,Xκ(t, x))dt +
√
2κdW

Lagrangian repres.: ϑ(t, x) = ϑin(X (t, ·)−1(x))

Stochastic Lagr. repres.: ϑκ(t, x) = E
[
ϑin(X

κ(t, ·)−1(x))
]

W is a Brownian motion, informally (in this context)

– a (probabilistically) parametrized family of trajectories

– with Gaussian increments

– and isotropically distributed.
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Chessboard mixing à la Depauw-Bressan

▶ Pick a sequence of times Tq ↓ 0

▶ and a sequence of space-scales aq ↓ 0

such that at times 1− Tq (which ↑ 1)

ϑ = ±1 on a chessboard of side aq.

⇝ ⇝

▶ Velocity field: shear flows at appropriate space-scales.
▶ Think of dyadic. But superexponential is needed in order to

– “separate scales”, and
– optimize regularity.

▶ Perfect mixing at t = 1. Reconstruct chessboard for t ∈ [1, 2].
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Chessboard mixing à la Depauw-Bressan

▶ Pick a sequence of times Tq ↓ 0

▶ and a sequence of space-scales aq ↓ 0

such that at times 1− Tq (which ↑ 1)

ϑ = ±1 on a chessboard of side aq.

⇝ ⇝

▶ Velocity field: shear flows at appropriate space-scales.
▶ Think of dyadic. But superexponential is needed in order to

– “separate scales”, and
– optimize regularity.

▶ Perfect mixing at t = 1. Reconstruct chessboard for t ∈ [1, 2].

G. Crippa – DMI Uni Basel Anomalous dissipation 8/15



Chessboard mixing à la Depauw-Bressan
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Filtering (convolution)

Convolution u ⇝ uε = u ∗ φε in pure advection

∂tϑ
ε + uε · ∇ϑε = 0 .

▶ Convolution “filters” shear flows with scale below ε.

▶ ϑε does not get fully mixed at t = 1.

▶ ϑε stays fixed-scale ∼ ε, then large scales are reconstructed.

▶ For t > 1 introduce a “swap” move at each step:

⇝

▶ Depending on the “parity of ε”, the solution ϑε will converge
for ε ↓ 0 to an even or odd chessboard for t ∼ 2.

▶ Lack of selection by convolution (cp. [C-C-S] and [DL-G]).
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Filtering vs. diffusing

∂tϑ
ε + uε · ∇ϑε = 0 ∂tϑ

κ + u · ∇ϑκ = κ∆ϑκ

acts on the velocity field acts on trajectories

∼ ε ∼ τκ

If u = 0 on a certain time interval

no effect convolution with a Gaussian
(damping)

Surprisingly, for our effects. . .

infinite propagation speed finite propagation speed
(with high probability)
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Playing with scales and frequencies

▶ Let t ∈ [0, 1]. Advection refines the chessboard at each step.

▶ Add a pure-diffusion stage at each step (heat-equation stage).
▶ Separation of scales: ∃ critical time 0 < t crit(κ) ↑ 1 so that:

– For 0 < t < t crit(κ): diffusion is a perturbation.
– In the heat-eq. stage for t ∼ t crit(κ): diffusion is dominant.

▶ Difficulty: heat-eq. stage active just for a small time.

▶ Enhanced diffusion. Baby example: both

f1(t, x) = e−t sin x and f2(t, x) = e−100t sin(10x)

solve the heat equation ∂t f − ∂xx f = 0.

▶ Small time is balanced by high frequency of the solution!

▶ We get: dissipation of a fixed amount of the solution.
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Swept under the rug. . .

a lot!!
▶ Very many technical issues!
▶ Lack of selection under vanishing diffusivity.

– Convergence to a conservative solution along another κ ↓ 0.
– Cancellations due to isotropy of Brownian motion.

▶ Space regularity of the velocity field.

▶ Time integrability of the velocity field.

▶ Regularity of the solution: based on regularity of stoch. flow.

▶ Loss of L2 happens “only at final time”.
– Isotropic turbulence?
– [J-S]: dissipation continuous in time.
– Intermittency?
– Dimension of dissipation set [DR-I], [DR-D-I].

▶ Also compare [D-E-I-J] (solution just bounded).

▶ Recently [A-V]: Anomalous diffusion by fractal homogeniz.
[H-T]: Energy can increase
[E-L]: Universality
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Anomalous dissipation for forced
Navier-Stokes [B-C-C-DL-S]

Two-and-a-half-dimensional system: v = (u, ϑ) and

▶ u solves a two-dimensional equation not involving ϑ

▶ ϑ is advected and diffused by u.

Take u and ϑ from before and notice that

∂tu +

(shear flow)

=0︷ ︸︸ ︷
u · ∇u +

=0︷︸︸︷
∇q −ν∆u = fν

defining fν = ∂tu − ν∆u

Hence anomalous dissipation and lack of selection for

∂tv
ν + vν · ∇vν = −∇qν + ν∆vν + Fν Fν = (fν , 0) .

for vν uniformly Onsager-supercritical.
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▶ Can arrange that Fν smooth and vν the unique smooth sol.

▶ “Any function solves any equation with a suitable forcing!”

▶ Physical meaning: need supν ∥Fν∥Y < ∞ for Y which
prevents linear anomalous dissipation:

– If Y = L1(L∞), heat equation can exhibit anomalous dissip.
– We can get Y = L1+σ(Cσ) for some σ > 0.

Anomalous dissipation from the cascade due to nonlinearity!

▶ Lack of selection under vanishing viscosity.

▶ Open: unforced, or forced but with Fν = F .

▶ Open: two-dimensional case
(very special due to vorticity transport! can have selection?)
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Thank you for your attention!
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