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Incompressible Euler

oiv+v-Vv=-Vp v = velocity
divv=0 p = pressure
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Incompressible Euler

oiv+v-Vv=-Vp v = velocity
divv=0 p = pressure

» On R9 or T (no boundaries!).

» Euler: homogeneous, incompressible, inviscid fluid.

Formal estimate for the kinetic energy:

1d 1
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Incompressible Euler and Navier-Stokes eqns.

{ O:v+v-Vv=—-Vp+rAv v = velocity v = viscosity

divv =0 p = pressure

» On R9 or T (no boundaries!).
» Euler: homogeneous, incompressible, inviscid fluid.
» Navier-Stokes: homogeneous, incompressible, viscous fluid.

Formal estimate for the kinetic energy:
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Incompressible Euler and Navier-Stokes eqns.

{ Oiv+v-Vv=—-Vp+vAv v = velocity

: v = viscosit
divv=0 p = pressure ¥

» On R9 or T (no boundaries!).
» Euler: homogeneous, incompressible, inviscid fluid.
» Navier-Stokes: homogeneous, incompressible, viscous fluid.

Formal estimate for the kinetic energy:

1 1
2i/|v\2dx+2/v-V]v|2dx:—/Vp-vdx—y/|Vv2dx

which leads to
1 5 ‘ 2
S(t)zi lv|© dx, E(t)y=¢&€(0) —v |Vv|*dxds
0
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» Energy is conserved in the inviscid case.
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» Energy is conserved in the inviscid case.
» Energy is dissipated in the viscous case, at a rate depending

— on viscosity, and
— on the regularity of the solution itself.
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» Energy is dissipated in the viscous case, at a rate depending
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— on the regularity of the solution itself.

Leray-Hopf solutions: weak solutions with energy inequality.
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v([Vv'[?) >£>0 unif. in viscosity.

Here (-) denotes some averaging (space, time, or ensemble).
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» Energy is conserved in the inviscid case. Formally!
» Energy is dissipated in the viscous case, at a rate depending

— on viscosity, and
— on the regularity of the solution itself.

Leray-Hopf solutions: weak solutions with energy inequality.

» Onsager '49: “turbulent dissipation could take place just as
readily without the final assistance of viscosity [...] because
the velocity field does not remain differentiable”.

» Kolmogorov K41: 0-th law of turbulence [3D vs 2D]
v([Vv'[?) >£>0 unif. in viscosity.

Here (-) denotes some averaging (space, time, or ensemble).
» Nonlinearity ~~ cascade to small scales / high frequencies.

» Experimentally and numerically validated to a large extent.
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Formal manipulation of the nonlinear term in the energy estimate:

T T 3
/ /(V-Vv)-vdxdtw/ /’V%v‘ dx dt
0 0
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Formal manipulation of the nonlinear term in the energy estimate:

T T 3
/ /(V-Vv)-vdxdtw/ /’Vlhv‘ dx dt
0 0

Onsager’s {Conjecture ~» Theorem}: C“ Euler solutions

F(+0) = () ~ ]
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Formal manipulation of the nonlinear term in the energy estimate:

T T 3
/ /(V-Vv)-vdxdtw/ /’Vlhv‘ dx dt
0 0

Onsager’s {Conjecture ~» Theorem}: C“ Euler solutions
1+ 0 = F()] ~ 2]
» Conserve the energy if @ > 1/3.  [C-E-T| with commutators.

» Can dissipate the energy if a < 1/3.
[I] + [B-DL-S-V] with convex integration = nonuniqueness.
[But: energy can grow, globally or locally]

K41 theory of fully developed turbulence:
» Uniformly in the vanishing-viscosity limit.
([B-V] for weak, non-Leray-Hopf sol'ns, with convex integr.).
» Statistical theory (“universality”). (Lack of math. setup!).

Extreme nonuniqueness. Can we restore uniqueness by selection?
(This is the case for scalar conservation laws (Burgers).)
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Theory of scalar turbulence
Scalar (temperature) passively advected by a turbulent flow

0 +u-Vi=0
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Theory of scalar turbulence
Scalar (temperature) passively advected by a turbulent flow

09 + u -V = kA

and diffused with diffusivity .
Formal L2 estimate (using div u = 0):

t
19t )22 = 100, |22 — 2+ /0 / VIP dx ds

G. Crippa — DMI Uni Basel Anomalous dissipation 5/15



Theory of scalar turbulence
Scalar (temperature) passively advected by a turbulent flow

09 + u -V = kA

and diffused with diffusivity .
Formal L2 estimate (using div u = 0):

t
19(t, )12 = [[9(0, )| — 2¢ /0 / V0|2 dx ds

Nonlinear term:

T T 2
/ /(u.w) -ﬂdxdtw/ /V“u(V(la)/2ﬁ> dx dt
0 0
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Theory of scalar turbulence
Scalar (temperature) passively advected by a turbulent flow

0t + u -V = gAY
and diffused with diffusivity .

Formal L2 estimate (using div u = 0):

t
19(t, )12 = [[9(0, )| — 2¢ /0 / V0|2 dx ds

Nonlinear term:

T T 2
/ /(u~Vz9) -ﬂdxdtw/ /V“u(V(la)/219> dx dt
0 0

Yaglom's relation: u € C* and ¥ € C? with

> 1 subcritical
a+28 =1 critical
<1 supercritical
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Obukhov-Corrsin predictions (1949-1951)

» Subcritical regime:

— Uniqueness (linear equation!).
— Conservation of L2 norm.
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lim sup /{//|V19”\2dxd525>0.
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G. Crippa — DMI Uni Basel Anomalous dissipation 6/15



Obukhov-Corrsin predictions (1949-1951)

» Subcritical regime:

— Uniqueness (linear equation!).
— Conservation of L2 norm.

» Supercritical regime:

— Nonuniqueness.
— Dissipation of L2 norm.
— Anomalous dissipation: for 9" equi-C# it can be

lim sup /{//|V19”\2dxd525>0.
AN

Comments:

» Subcritical: proof via C-E-T-like argument.

G. Crippa — DMI Uni Basel Anomalous dissipation 6/15



Obukhov-Corrsin predictions (1949-1951)

» Subcritical regime:

— Uniqueness (linear equation!).
— Conservation of L2 norm.

» Supercritical regime:

— Nonuniqueness.
— Dissipation of L2 norm.
— Anomalous dissipation: for 9" equi-C# it can be

lim sup /{//|V19”\2dxd52§>0.
AN

Comments:

» Subcritical: proof via C-E-T-like argument.
» Supercritical: which question exactly?

— One velocity field and one initial datum.
— One velocity field and all initial data.
— Statistical statement.
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Result and approach [MC-GC-MS]

» Supercritical regime: anomalous dissipation for
one velocity field and one initial datum.

G. Crippa — DMI Uni Basel Anomalous dissipation 7/15



Result and approach [MC-GC-MS]
» Supercritical regime: anomalous dissipation for
one velocity field and one initial datum.
» Lack of selection by vanishing diffusivity.
» Lack of selection by convolution of the velocity field.

G. Crippa — DMI Uni Basel Anomalous dissipation 7/15



Result and approach [MC-GC-MS]

» Supercritical regime: anomalous dissipation for
one velocity field and one initial datum.
» Lack of selection by vanishing diffusivity.
» Lack of selection by convolution of the velocity field.

Lagrangian approach:

09+ u-Vi=0

G. Crippa — DMI Uni Basel Anomalous dissipation 7/15



Result and approach [MC-GC-MS]

» Supercritical regime: anomalous dissipation for
one velocity field and one initial datum.
» Lack of selection by vanishing diffusivity.
» Lack of selection by convolution of the velocity field.

Lagrangian approach:

09+ u-Vi=0

Deterministic flow:  X(t,x) = u(t, X(t,x))

Lagrangian repres.:  9(t,x) = Yin(X(t,-)"}(x))

G. Crippa — DMI Uni Basel Anomalous dissipation 7/15



Result and approach [MC-GC-MS]
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Result and approach [MC-GC-MS]

» Supercritical regime: anomalous dissipation for
one velocity field and one initial datum.
» Lack of selection by vanishing diffusivity.
» Lack of selection by convolution of the velocity field.

(Stochastic) Lagrangian approach:
0t + u- VI =rAY
Deterministic flow:  X(t,x) = u(t, X(t,x))
Stochastic flow: dX*(t,x) = u(t, X"(t, x))dt + v2kdW
Lagrangian repres.:  9(t, x) = Ui (X(t,)71(x))
Stochastic Lagr. repres.:  9%(t,x) = E[0in(X"(t,-) " (x))]
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Result and approach [MC-GC-MS]

» Supercritical regime: anomalous dissipation for
one velocity field and one initial datum.
» Lack of selection by vanishing diffusivity.
» Lack of selection by convolution of the velocity field.

(Stochastic) Lagrangian approach:
09 + u- VI =rAY

Deterministic flow:  X(t,x) = u(t, X(t,x))
Stochastic flow: dX*(t,x) = u(t, X"(t, x))dt + v2kdW
Lagrangian repres.:  9(t,x) = Yin(X(t,-)"}(x))
Stochastic Lagr. repres.:  9%(t,x) = E[0in(X"(t,-) " (x))]

W is a Brownian motion, informally (in this context)
— a (probabilistically) parametrized family of trajectories
— with Gaussian increments
— and isotropically distributed.
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Chessboard mixing a la Depauw-Bressan

» Pick a sequence of times T, | 0

» and a sequence of space-scales a; | 0
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> Velocity field: shear flows at appropriate space-scales.
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» and a sequence of space-scales a; | 0
such that at times 1 — T, (which 1 1)

¥ =41 on a chessboard of side aq.
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> Velocity field: shear flows at appropriate space-scales.

» Think of dyadic. But superexponential is needed in order to

— ‘“separate scales”, and
— optimize regularity.
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Chessboard mixing a la Depauw-Bressan

» Pick a sequence of times T, | 0
» and a sequence of space-scales a; | 0
such that at times 1 — T, (which 1 1)

¥ =41 on a chessboard of side aq.

u"

> Velocity field: shear flows at appropriate space-scales.

» Think of dyadic. But superexponential is needed in order to

— ‘“separate scales”, and
— optimize regularity.

» Perfect mixing at t = 1. Reconstruct chessboard for t € [1,2].
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Filtering (convolution)

Convolution u ~~ u®* = u * @, in pure advection

09 + u® - V* =0.
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Filtering (convolution)

Convolution u ~~ u®* = u * @, in pure advection
09" +u° - VIF=0.
» Convolution “filters” shear flows with scale below €.
> ¢ does not get fully mixed at t = 1.
P ¢ stays fixed-scale ~ ¢, then large scales are reconstructed.

> For t > 1 introduce a “swap” move at each step:

<o
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Filtering (convolution)

Convolution u ~~ u®* = u * @, in pure advection

09" +u° - VIF=0.
Convolution “filters” shear flows with scale below ¢.
1¥¢ does not get fully mixed at t = 1.

¢ stays fixed-scale ~ ¢, then large scales are reconstructed.

For t > 1 introduce a “swap” move at each step:

<o

» Depending on the “parity of ", the solution 9¥° will converge
for € | 0 to an even or odd chessboard for t ~ 2.
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Filtering (convolution)

Convolution u ~» u® = u * @, in pure advection
09 +ut - VI =0.
Convolution “filters” shear flows with scale below ¢.

1¥¢ does not get fully mixed at t = 1.

¢ stays fixed-scale ~ ¢, then large scales are reconstructed.

vvvyyypy

For t > 1 introduce a “swap” move at each step:

<o

» Depending on the “parity of ", the solution 9¥° will converge
for € | 0 to an even or odd chessboard for t ~ 2.

» Lack of selection by convolution (cp. [C-C-S] and [DL-G]).
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Filtering vs. diffusing

0r* 4+ u® - VI* =0 0" + u - VI© = kKAY"
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Filtering vs. diffusing

0 + uf - V¥ =0 0" + u - VI = kAY”
acts on the velocity field acts on trajectories
~ £ ~ TK
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Filtering vs. diffusing

0 + uf - V¥ =0 0" + u - VI = kAY”
acts on the velocity field acts on trajectories
~ £ ~ TK

If u =0 on a certain time interval

no effect convolution with a Gaussian
(damping)
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Filtering vs. diffusing

0r* 4+ u® - VI* =0

O™ + u - VI* = s AY*

acts on the velocity field

acts on trajectories

~ &

~TK

If u =0 on a certain time interval

no effect

convolution with a Gaussian
(damping)

Surprisingly, for our effects. ..

infinite propagation speed

finite propagation speed
(with high probability)
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Playing with scales and frequencies
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Playing with scales and frequencies

» Let t € [0,1]. Advection refines the chessboard at each step.
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» Let t € [0,1]. Advection refines the chessboard at each step.
» Add a pure-diffusion stage at each step (heat-equation stage).
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Playing with scales and frequencies

» Let t € [0,1]. Advection refines the chessboard at each step.

» Add a pure-diffusion stage at each step (heat-equation stage).
» Separation of scales: 3 critical time 0 < tqit(x) 1 1 so that:

— For 0 < t < tepit(k): diffusion is a perturbation.
— In the heat-eq. stage for t ~ tet(k): diffusion is dominant.
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Playing with scales and frequencies

» Let t € [0,1]. Advection refines the chessboard at each step.

» Add a pure-diffusion stage at each step (heat-equation stage).
» Separation of scales: 3 critical time 0 < tqit(x) 1 1 so that:

— For 0 < t < tepit(k): diffusion is a perturbation.
— In the heat-eq. stage for t ~ tet(k): diffusion is dominant.

v

Difficulty: heat-eq. stage active just for a small time.

v

Enhanced diffusion. Baby example: both
fi(t,x) = e ‘sinx and H(t,x) = e 1% sin(10x)

solve the heat equation 0;f — O f = 0.

G. Crippa — DMI Uni Basel Anomalous dissipation 11/15



Playing with scales and frequencies

» Let t € [0,1]. Advection refines the chessboard at each step.

» Add a pure-diffusion stage at each step (heat-equation stage).
» Separation of scales: 3 critical time 0 < tqit(x) 1 1 so that:

— For 0 < t < tepit(k): diffusion is a perturbation.
— In the heat-eq. stage for t ~ tet(k): diffusion is dominant.

» Difficulty: heat-eq. stage active just for a small time.

» Enhanced diffusion. Baby example: both
fi(t,x) = e ‘sinx and H(t,x) = e 1% sin(10x)

solve the heat equation 0;f — O f = 0.
» Small time is balanced by high frequency of the solution!
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Playing with scales and frequencies

» Let t € [0,1]. Advection refines the chessboard at each step.
» Add a pure-diffusion stage at each step (heat-equation stage).

» Separation of scales: 3 critical time 0 < tqit(x) 1 1 so that:

— For 0 < t < tepit(k): diffusion is a perturbation.
— In the heat-eq. stage for t ~ tet(k): diffusion is dominant.

» Difficulty: heat-eq. stage active just for a small time.

» Enhanced diffusion. Baby example: both
fi(t,x) = e ‘sinx and H(t,x) = e 1% sin(10x)

solve the heat equation 0;f — O f = 0.
» Small time is balanced by high frequency of the solution!

> We get: dissipation of a fixed amount of the solution.
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— Cancellations due to isotropy of Brownian motion.
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» Lack of selection under vanishing diffusivity.
— Convergence to a conservative solution along another x | 0.
— Cancellations due to isotropy of Brownian motion.

Space regularity of the velocity field.

Time integrability of the velocity field.

Regularity of the solution: based on regularity of stoch. flow.

Loss of L2 happens “only at final time".
— lIsotropic turbulence?
— [J-S]: dissipation continuous in time.
— Intermittency?
— Dimension of dissipation set [DR-1], [DR-D-I].
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» Very many technical issues!
» Lack of selection under vanishing diffusivity.

— Convergence to a conservative solution along another x | 0.
— Cancellations due to isotropy of Brownian motion.

» Space regularity of the velocity field.

> Time integrability of the velocity field.

» Regularity of the solution: based on regularity of stoch. flow.
| 2

Loss of L2 happens “only at final time".
— lIsotropic turbulence?
— [J-S]: dissipation continuous in time.
— Intermittency?
— Dimension of dissipation set [DR-1], [DR-D-I].

» Also compare [D-E-I-J] (solution just bounded).
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» Very many technical issues!

» Lack of selection under vanishing diffusivity.
— Convergence to a conservative solution along another x | 0.
— Cancellations due to isotropy of Brownian motion.

Space regularity of the velocity field.

Time integrability of the velocity field.

Regularity of the solution: based on regularity of stoch. flow.

Loss of L2 happens “only at final time".

— lIsotropic turbulence?

— [J-S]: dissipation continuous in time.

— Intermittency?

— Dimension of dissipation set [DR-1], [DR-D-I].

» Also compare [D-E-I-J] (solution just bounded).

v

Recently [A-V]: Anomalous diffusion by fractal homogeniz.
[H-T]: Energy can increase
[E-L]: Universality
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Anomalous dissipation for forced
Navier-Stokes [B-C-C-DL-S]

Two-and-a-half-dimensional system: v = (u,4) and
» u solves a two-dimensional equation not involving ¥
» 1) is advected and diffused by u.
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Two-and-a-half-dimensional system: v = (u,4) and
» u solves a two-dimensional equation not involving ¥
» 1) is advected and diffused by u.

Take v and ¥ from before and notice that

(shear flow)

=0 =0
—~ A
Otu+ u-Vu+ Vg —vAu =1,
defining f, = Oru — vAu
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Anomalous dissipation for forced
Navier-Stokes [B-C-C-DL-S]
Two-and-a-half-dimensional system: v = (u,4) and
» u solves a two-dimensional equation not involving ¥

» 1) is advected and diffused by u.

Take v and ¥ from before and notice that

(shear flow)

=0 =0
—~ A
Otu+ u-Vu+ Vg —vAu =1,
defining f, = Oru — vAu

Hence anomalous dissipation and lack of selection for
Ovy + vV - Vv = -Vqg" +vAVY + F, F, = (f,,0).
for v¥ uniformly Onsager-supercritical.
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» Can arrange that F, smooth and v” the unique smooth sol.
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» Can arrange that F, smooth and v” the unique smooth sol.
“Any function solves any equation with a suitable forcing!”

» Physical meaning: need sup, ||F,|y < oo for Y which
prevents linear anomalous dissipation:

— If Y = L[}(L>°), heat equation can exhibit anomalous dissip.
— We can get Y = L1T9(C?) for some o > 0.

Anomalous dissipation from the cascade due to nonlinearity!
» Lack of selection under vanishing viscosity.
» Open: unforced, or forced but with F, = F.

» Open: two-dimensional case
(very special due to vorticity transport! can have selection?)
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Thank you for your attention!
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