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I. The concept of locality revisited



Locality

Locality principle

The principle of locality (or locality principle) states that an object
is influenced directly only by its immediate surroundings.

Thus, one can separate events located in different regions of
space-time and should be able to measure them independently.

Our aim
Propose a mathematical framework which encompasses the
main features of the locality principle in QFT;
use this framework to carry out renormalisation in accordance
with the locality principle.
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Locality

Causal separation

Light cone, past and future

In the Minkowski space (Rd , g), where g(x , y) = −x0y0 +
∑d−1

j=1 xjyj is
the Lorentzian scalar product,

there is a notion of "past" and "future":

(picture downloaded from Wikipedia)

Two sets S1 and S2 are causally separated (S1‖S2) if and only if
Si does not lie in the future ofSj for i 6= j .
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Locality

Locality in axiomatic QFT

The Wightman field ϕ : S(Rd)→ O(H) obeys the locality axiom

Supp(f1)‖Supp(f2) =⇒ [ϕ(f1), ϕ(f2)] = 0. (1)

The (relative) scattering matrix Sf satisfies the locality condition

Supp(f1)‖Supp(f2) =⇒ Sf (f1 + f2) = Sf (f1)Sf (f2)

=⇒ [Sf (f1),Sf (f2)] = 0. (2)
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Locality

Mathematical interpretation

We introduce two binary relations
on sets:

O1>′O2 :⇔ [O1,O2] = 0, (3)

on test functions:

f1>f2 :⇔ Supp(f1)‖Supp(f2). (4)

Interpretation of (1)

f1>f2 =⇒ ϕ(f1)>′ϕ(f2). (5)

Interpretation of (2)

f1>f2 =⇒ Sf (f1 + f2) = Sf (f1) Sf (f2). (6)
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II. Locality as a symmetric binary relation



Locality

Algebraic locality

Definition of locality
A locality set is a couple (X ,>) where X is a set and > ⊆ X × X is a
symmetric relation on X , called locality relation (or independence
relation) of the locality set:

x1>x2 ⇐⇒ (x1, x2) ∈ >, ∀x1, x2 ∈ X .

First examples of locality

X>∩Y :⇐⇒ X∩Y = ∅ on subsets X ,Y of a set Z .

X>Y :⇐⇒ X⊥Y on subsets X , Y of an euclidean vector space (V ,⊥).

(almost-)Separation of supports

Let U ⊂ Rn be an open subset and ε ≥ 0. Two functions φ, ψ in D(U)
are independent i.e., φ>ε ψ whenever d (Supp(φ),Supp(ψ)) >ε.

For ε = 0, this amounts to disjointness of supports, otherwise to
ε-separation of supports.
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Further examples

Probability theory: independence of events
Given a probability space P := (Ω,Σ,P) and two events A,B ∈ Σ:

A>B ⇐⇒ P(A∩B) = P(A)P(B).

Geometry: transversal manifolds
Given two submanifolds L1 and L2 of a manifold M:

L1> L2 :⇐⇒ L1 t L2 ⇐⇒ TxL1 +TxL2 = TxM ∀x ∈ L1 ∩ L2.

Number theory: coprime numbers
Given two positive integers m, n in N:

m> n⇐⇒ m∧ n = 1.
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Locality category

Locality structures

set X  locality set (X ,>); the polar set ofU is U> := {x ∈ X , x>u ∀u ∈ U}

semi-group (G ,mG )  locality semi-group (G ,mG ,>)

(U ⊂ G =⇒ U> semi-group);

vector space (V ,+, ·)  locality vector space (V ,+, ·,>)
(U ⊂ V =⇒ U> vector space);

algebra (A,+, ·,mA)  locality algebra (A,+, ·,mA,>).

Locality morphisms: f : (X ,>X )→ (Y ,>Y )

locality map:
(f × f )(>X ) ⊂ >Y or equivalently x1>X x2 =⇒ f (x1)>Y f (x2);

locality semi-group morphism f : (X ,mX ,>X )→ (Y ,mY ,>Y ):
f is a locality map andx1>X x2 =⇒ f (mX (x1, x2)) = mY (f (x1), f (x2))
etc...
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III. Locality relations are ubiquitious



Locality

Local functionals

are functionals F on test functions (fields) ϕ of the form F (ϕ) =
∫
M
f
(
jkx (ϕ)

)
dx (here jkx (φ)

is the k-th jet of φ at x): The localised version at ϕ:

F (ϕ+ ψ) = F (ϕ) +

∫
M

f
(
jkx (ψ)

)
dx ∀ψ. (7)

Hammerstein property/partial additivity similar to a causality condition on S-matrices

of [Epstein, Glaser (1973)], [Bogoliubov, Shirkov (1959))], [Stückelberg (1950, 1951)]

ϕ1>∩ϕ2 =⇒F (ϕ1+ϕ+ϕ2) = F (ϕ1 + ϕ)−F (ϕ)+F (ϕ+ ϕ2) ∀ϕ. (8)

Comparing the two [Brouder, Dang, Laurent-Gengoux, Rejzner (2018)]

Provided DϕF can be represented as a function ∇ϕF such that the map
ϕ 7→ ∇ϕF is smooth, then (8) ⇐⇒ (7).
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Locality and singularities

Separation of wavefront sets

We define two locality relations on on D′(U), U ⊂ Rn:

v1>sing v2 ⇐⇒ Singsupp(v1)∩ Singsupp(v2) = ∅,

and v1>WF v2 ⇐⇒WF(v1) ∩WF′(v2) = ∅

where we have set WF′(v) := {(x,−ξ) ∈ U × (Rn \ {0}) | (x, ξ) ∈WF(v)}.

Counterexample

Distributions can be independent for >WF and not for >sing. We have
v1>sing v2 =⇒ v1>WF v2 but not conversely.The wavefront sets of

ν1(φ) :=
∫
R2 φ(0, y) dy and ν2(φ) :=

∫
R2 φ(x, 0) dx read

WF(ν1) = {((0, y); (λ, 0)) | y ∈ R, λ ∈ R \ {0}} ; WF(ν2) = {((x, 0); (0, µ)) | x ∈ R, µ ∈ R \ {0}},

so ν1>WF ν2 but ν1>sing6 ν2.
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Partial product and locality

Partial product of distributions

(Hörmander) ν1>WF ν2 ⇒ (the product ν1 · ν2 is well-defined.)

Partial product of pseudodifferential operators of non-integer order

We equip Ψ/∈Z
pgh (the canonical trace TR is well defined) with the locality relation

A1>/∈Z A2 :⇔ (ord(A1) + ord(A2)/∈ Z)⇒ (TR([A1,A2])= 0).

Counterexample

Yet C equipped with the locality relation x >/∈Z y ⇐⇒ x + y 6∈Z.
(C,>,+) is NOT a locality semi-group:for U = {1/3} we have
(1/3, 1/3) ∈ (U> × U>) ∩ > but 1/3+1/3 = 2/3/∈U>.
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Locality

Open questions on locality [Clavier, Foissy, Lopez, S.P. 2022]

In that work, we enhance to the locality setup the usual Milnor-Moore
theorem that classifies graded connected cocommutative Hopf algebras.
We describe them in terms of the locality tensor algebra of the locality
Lie algebra of their primitive elements. This requires a locality tensor
product and raises the following questions:

1 When is the quotient V /W of a locality vector space (V ,>) by a
linear subspace W , a locality vector space if equipped with the
quotient locality relation > given by the final locality relation:(
[u]>[v ] ⇐⇒ ∃(u′, v ′) ∈ [u]× [v ] : u′>v ′

)
∀([u], [v ]) ∈ (V /W )2

for the canonical projection map π : V → V /W ?
2 Is the locality tensor product V1 ⊗> V2 of locality vector spaces

(V1,>1), (V2,>2) a locality vector space? Does it have the
expected universality property?

3 Is the locality tensor algebra T >(V ) = ⊕∞n=0V
⊗>n

of a locality
vector space (V ,>) a locality algebra? Does it have the expected
universality property?
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IV. Evaluating meromorphic germs at poles in QFT



Locality

Functions of several variables in QFT

Speer’s analytic renormalisation [JMP 1967] revisited
Eugene Speer considers Feynman amplitudes given by the coefficients of
the perturbation-series expansion of the S matrix in a Lagrangian field
theory (with non zero mass).

Excerpt of Speer’s article
In this paper we apply a method of defining divergent quantities which
was originated by Riesz and has been used in various contexts by many
authors. [....] We find it necessary to consider functions of several
complex variables z1, · · · , zk , one associated with each line of the
Feynman graph. The main difficulty is the extension of the above
[Riesz’s] treatment of poles to the more complicated singularities which
occur in several complex variables...
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Locality

Brain teaser

(We assume the poles are at zero)
Speer shows [Theorem 1] that the divergent expressions lie in the filtered
algebraMFeyn(C∞) := ∪∞k=1MFeyn(Ck) consisting of Feynman
functions f : Ck → C,

f =
h(z1, · · · , zk)

L1
s1 · · · Lmsm

, Li =
∑
j∈Ji

zj , Ji ⊂ {1, · · · , k}, h holom. at zero.

Questions:
1 How to evaluate f consistently at the poles z1 = · · · = zk = 0?
2 What freedom of choice do we have for the evaluator?

Evaluating a fraction with a linear pole at zero

f (z1, z2) =
z1 − z2
z1 + z2

|z1=0,z2=0 =


1 or − 1 ?

0 ?
10000 ?
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V. Locality on meromorphic germs comes to the rescue
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Locality on multiparameter meromorphic germs

Multiparameter meromorphic germs with linear poles

M(Ck) 3 f = h(`1,··· ,`n)
L
s1
1 ···L

sn
n

, h holomorphic germ, si ∈ Z≥0,

`i : Ck → C, Lj : Ck → C linear forms.

Dependence space Dep(f ) := 〈`1, · · · , `m, L1, · · · , Ln〉.

Locality: separation of variables

OnM(C∞) =
⋃

k∈NM(Ck) , f1 Q> f2 ⇐⇒ Dep(f1)⊥Dep(f2).

MQ
−(Ck) is the set of polar germs f = h

g with h⊥Q g .

Back to the brain teaser

` := z1⊥ z2 =: L =⇒ z1
z2
∈MQ

−(C2)

(` := z1 − z2) ⊥ (z1 + z2 =: L) =⇒ z1−z2
z1+z2

∈MQ
−(C2).
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Back to the locality principle in QFT

We considerM :=M(C∞) := ∪∞k=1M(Ck) consisting of meromorphic
functions/germs f : Ck → C with linear poles at zero,

f =
h(~z)

Ls11 (~z) · · · Lsmm (~z)
, Li linear in ~z := (z1, · · · , zk), h holom. at zero.

Aim: evaluate meromorphic germs at poles according to the principle of
locality: "two events separated in space can be measured independently."

Principle of locality: factorisation on independent events

a and b︸ ︷︷ ︸
∈A

independent =⇒
factorisation

Meas (a ∨ b)︸ ︷︷ ︸
concatenation

= Meas(a) · Meas(b).

As before, we equipM with the locality relation ⊥Q ;

Principle of locality revisited: locality evaluators

f ⊥Q g =⇒ E(f · g) = E(f ) E(g) for two meromorphic germs f and g in
an appropriate subalgebraM• ofM.
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Locality

Speer’s generalised evaluators

Reminder: Meromorphic germs inMFeyn(Ck) have linear poles
Li =

∑
ji∈Ji ji .

Speer’s evaluators consist of a family E = {Ek ,∈ N} of linear forms
Ek :MFeyn(Ck)→ C, compatible with the filtration, which fulfill the
following conditions

1 (extend ev0) E is the ordinary evaluation ev0 at zero on holom.
germs;

2 (partial multiplicativity) E(f1 · f2) = E(f1) · E(f2) if f1 and f2
depend on different sets (we call them independent) of variables zi ;

3 E is invariant under permutations of the variables Ek ◦ σ∗ = Ek for
any σ ∈ Σk , with σ∗f (z1, · · · , zk) := f (zσ(1), · · · , zσ(k));

4 (continuity) If fn(~zk) · Ls11 · · · Lsmm
uniformly−→
n→∞

g(~zk) as holomorphic

germs, then Ek(fn) −→
n→∞

Ek( lim
n→∞

fn) (investigated in [Dahmen,
Schmeding, S.P. 2022] in the context of Silva spaces).

Drawback: Speer’s approach depends on the choice of coordinates
z1, · · · , zk , · · · .
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Locality

Where we stand

Data(
M•,⊥Q

)
an (locality) algebra of meromorphic germs at zero

with a prescribed type of poles (e.g. Chen ⊂ Speer ⊂
Feynman);

M+ ⊂M• the algebra of holomorphic germs at zero;
the evaluation at zero: ev0 :M+ → C;
a group GalQ (M•/M+) (for "Galois") of (locality) isomorphisms
of
(
M•,⊥Q

)
that leave holomorphic germs invariant;

M•Q− is generated by polar germs f = h
g with h⊥Q g .

Orthogonal projection

⊥Q induces a splitting [Berline and Vergne 2005, Guo, Zhang, S.P. 2015]

M• =M+⊕QM•Q− and π+
Q :M• −→M+

is the induced projection onto the holomorphic part.
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VI. Classification of locality evaluators



Locality

Theorem [Guo, S.P., Zhang 2022]

Definition
A locality evaluator at zero E :M• −→ C is a linear form, which

i)
extends the ordinary evaluation ev0 at zero, and ii) factorises on
independent germs (i.e., it is a locality character):

f1⊥Q f2 =⇒ E(f1·, f2) = E(f1) · E(f2).

Example: Minimal subtraction scheme:

EMS : M• π+
Q

−→M+
ev0−→ C is a locality evaluator.

Theorem
A locality evaluator at zero E :M• −→ C is of the form:
E = ev0 ◦ π+Q︸ ︷︷ ︸

EMS

◦ T E︸︷︷︸
GalQ (M•/M+)

.
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Locality

Ingredients for the proof

Given a locality set (X ,>)

the locality polynomial algebra generated by X :

a locality algebra

(A,>) such that X is locality algebraically independent (distinct locality monomials built from X

are linearly independent) and (A,>) if the only locality subalgebra of (A,>) containing X .

the locality shuffle algebra generated by X :the locality polynomial

algebra generated by the subset of locality words w = w1 · · ·wk with letters in X such that

wi>wj , 1 ≤ i 6= j ≤ k, plus the empty word.

locality Lyndon words with letters in X : locality Lyndon words form an

algebraically independent generating set of the locality shuffle algebra generated by X.
a locality isomorphism u 7→ xu between the locality algebra
generated by Chen-type poles Li =

∑i
j=1 `uj = `u1 + · · · `ui

with u>v =⇒ `u⊥Q`v and a certain locality shuffle algebra.
Conclusion: MChen (MFeyn) are locality polynomial algebras
with locality "Lyndon fractions" as locality generators.
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Locality

Final step of the proof

SinceMChen, resp. MFeyn are ⊥-local polynomial algebras, a
generalised evaluator is uniquely determined by its values on the
free generators.

The case of freely generated locality-algebras

If M• is a free polynomial locality-algebra generated by S•, then T ∈ Gal⊥(M•/M+)
is uniquely determined by {T (S), S ∈ S•}:
T
(∑

S∈S hS · S
)

=
∑

S∈S• hS · T (S).

⊥-locality evaluators

Given a ⊥Q -locality evaluator E on a freely generated algebraM•
generated by S, the map T E : S• 7→ S• + E(S•) 1 defines an
element of the Galois group Gal⊥(M•/M+) and

E = ev0 ◦ π+⊥︸ ︷︷ ︸
⊥Q−minimal subtraction

◦ T E︸︷︷︸
Galois transformation

.
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