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Motivation for Breeden–Litzenberger (1978)

▶ Let K be a random variable representing the strike price of an
option.

▶ Let X be a random variable representing the stock value after
one year.

▶ Your payoff is max{X −K, 0}.

Suppose you know the expected value of your payoff for every
value k of the strike price.

Can you then determine the density function of the stock value,
fX(x)?
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Breeden–Litzenberger (1978) formula

Define C(k) = E [max{X − k, 0}] . Then

d2

dk2
C(k) = fX(k).

Their paper uses calculus of finite differences. (Trading data is
discrete.)

The continuous proof uses differentiation under the integral with
variable limits.
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Continuous proof of Breeden–Litzenberger, part 1

C(k) = E [max{X − k, 0}]

=

∫ ∞

0
max{x− k, 0}fX(x)dx

=

∫ ∞

k
(x− k)fX(x)dx

How to differentiate this with respect to k?
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Differentiation under the integral, fixed limits

Suppose g : X × [a, b] → C, with −∞ < a < b < ∞, and that
g(·, t) : X → C is integrable for each t ∈ [a, b] . Let
G(t) =

∫
X g(x, t)dµ(x).

(1) Suppose there exists h ∈ L1(µ) s.t. |g(x, t)| ≤ h(x) for all
x, t. If limt→t0 g(x, t) = g(x, t0) for every x, then
limt→t0 G(t) = G(t0); in particular, if g(x, ·) is continuous for
each x, then G(t) is continuous.

(2) Suppose that ∂g
∂t exists and there is a h ∈ L1(µ) s.t.

| ∂∂tg(x, t)| ≤ h(x) for all x, t. Then G is differentiable and
G′(t) =

∫
∂
∂tg(x, t)dµ(x).

Proof uses dominated convergence theorem and mean value
theorem. (See e.g. Folland Real Analysis Theorem 2.27.)
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Differentiation under the integral, variable limits

d

dt

∫ b(t)

a(t)
g(x, t)dx =∫ b(t)

a(t)

∂

∂k
g(x, t)dx+ g(b(t), t)

db

dt
− g(a(t), t)

da

dt

Proof uses multivariable chain rule and fundamental theorem of
calculus to extend the fixed-limits version.
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Continuous proof of Breeden–Litzenberger, part 2

d

dk
C(k) =

d

dk

∫ ∞

k
(x− k)fX(x)dx

=
d

dk
lim
b→∞

∫ b

k
(x− k)fX(x)dx

= lim
b→∞

(
d

dk

∫ b

k
(x− k)fX(x)dx

)
= lim

b→∞

(∫ b

k

∂

∂k
(x− k)fX(x)dx+ ((b)− k)

d(b)

dk
− ((k)− k)

d(k)

dk

)
= lim

b→∞

(∫ b

k
−fX(x)dx+ (b− k)

db

dk
− 0

)
= −

∫ ∞

k
fX(x)dx+ 0− 0 = −

(
1−

∫ k

−∞
fX(x)dx

)
= −(1− FX(k)) = FX(k)− 1
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Continuous proof of Breeden–Litzenberger, part 3

Now differentiate again.

d

dk
(FX(k)− 1) = fX(k)

So, yes, you can recover the density function of X by differentiating
the expectation of max{X − k, 0} twice with respect to k.

d2

dk2
E [max{X − k, 0}] = fX(k) (1)
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What is the operator algebraic interpretation?

▶ expectation = trace, as we know.
▶ random variables X and K = operators in von Neumann

algebras M and N ?
▶ max{X − k, 0} = some kind of pairing between M and N ?

▶ recovering a density function = recovering an element in the
predual of M?

▶ What is “differentiation under the integral?” Possibly related
to closable derivations?

▶ What’s the cumulative distribution function?
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Thank you!
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