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Abstract Operator spaces

Abstract operator space

A normed space V with a sequence of norm
∥ · ∥n : Mn(V ) → [0,∞) : n ∈ N (known as matrix norm) is said to be an
abstract operator space; if the following conditions are satisfied:

1 ∥v ⊕ w∥n+m ≤ max{∥v∥n, ∥w∥m}, v ∈ Mn(V ) and w ∈ Mm(V );

2 ∥αvβ∥n ⩽ ∥α∥∥v∥n∥β∥ ∀ α ∈ Mm,n, β ∈ Mm,n, v ∈ Mn(V ).

ϕ : V → W between operator spaces V and W is said to be
completely bounded (abbreviated as c.b.) if

∥ϕ∥cb := sup{∥ϕn∥ : n ∈ N} <∞,

where ϕn : Mn(V ) → Mn(W ) is defined by

ϕn((xij)) = (ϕ(xij)) for all (xij) ∈ Mn(V ).

ϕ is a complete isometry if each ϕn is so

Ruan(1988)

If V is an abstract operator space , then V is completely isometrically
isomorphic to a linear subspace B(H) for some H.
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Abstract operator systems

As in the case of operator spaces, one can consider an abstract definition
independent of associated Hilbert space

Definition

An Abstract operator system is a triple {V , {Cn}∞n=1, e)}, where V is a
complex ∗-vector space, {Cn}∞n=1 is a matrix ordering on V, and e ∈ Vh is
an Archimedean matrix order unit.

Cn ⊂ Mn(V )h is a cone

Cn ∩ (−Cn) = {0}
A ∈ Mm,n =⇒ ACnA∗ ⊂ Cm.
en := diag(e, e, . . . , e) ∈ Mn(V )h satisfies:

x ∈ Mn(V )h =⇒ ren − x ∈ Cn for some r > 0, and

ten + x ∈ Cn for all t > 0 =⇒ x ∈ Cn
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Operator Systems

Let S and T be operator systems. A linear map ϕ : S → T is said
to be completely positive provided

(ϕ(sij)) ∈ Mn(T )+ for all (sij) ∈ Mn(S)+

Theorem (Choi-Effros(1977))

If (V , {Cn}∞n=1, e) is an abstract operator system, then there exists a
Hilbert space H, a concrete operator system S ⊆ B(H), and a complete
order isomorphism ϕ : V → S with ϕ(e) = I .

Thus one can identify abstract and concrete operator systems and refer
to them simply as operator systems.
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C∗-covers

C∗
e (S) : C∗-envelope of S (Arveson 1969, Hamana 1979)

The C∗-envelope C∗
e (S) is the C∗-algebra generated by an isomorphic

copy of S that enjoys the following universal “minimality” property: For

every isomorphic copy ϕ(S) of S, there is a unique surjective unital
∗-homomorphism π : C∗(ϕ(S)) → C∗

e (S) such that π(ϕ(s)) = s for every
s in S, i.e. the following diagram commutes:

S� _

��

ϕ // C∗(ϕ(S))

π
yy

C∗
e (S)

C∗
u(S) : Universal C∗-cover of S (Kirchberg-Wasserman 1998)

The maximal C∗-cover generated by S.
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Tensor products: Operator systems

Definition

Given operator system (S, {Pn}∞n=1, e1) and (T , {Qn}∞n=1, e2), an
operator system structure on S ⊗ T is a family {Cn}∞n=1 of cones,
where Cn ⊆ Mn(S ⊗ T ), satisfying :

(T1) (S ⊗ T , {Cn}∞n=1, e1 ⊗ e2) is an operator system,

(T2) Pn ⊗Qm ⊆ Cnm for all n,m ∈ N, and
(T3) If ϕ : S → Mn and ψ : T → Mm are unital completely positive maps,

then ϕ⊗ ψ : S ⊗ T → Mmn is a unital completely positive map.

By an operator system tensor product we mean a mapping
τ : O ×O → O, such that for every pair of operator systems S and T ,
τ(S, T ) is an operator system structure on S ⊗ T , denoted S ⊗τ T .
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Tensor Products of Operator Systems

Motivated by the Choi-Effros’ characterization:

KPTT 2011

A lattice of functorial partially ordered tensor products were introduced:

min ≤ e ≤ er, el ≤ c ≤ max.

minimal (min): S ⊗min T ⊂ B(H)⊗C∗-min B(K)

maximal (max): S ⊗max T ⊂ A⊗C∗-max B

maximal commuting (c): S ⊗c T ⊂ C∗
u(S)⊗max C

∗
u(T )

enveloping (e): S ⊗e T ⊂ I (S)⊗max I (T )

left enveloping (el): S ⊗e T ⊂ I (S)⊗max T
right enveloping (er): S ⊗e T ⊂ S ⊗max I (T ).
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ess-tensor product

ess-tensor product (FKPT 2014)

S ⊗ess T ⊂ C∗
e (S)⊗max C

∗
e (T )

Proposition (GL 16)

For any two unital C∗-algebras A and B, we have

A⊗ess B = A⊗c B = A⊗max B.

Proposition (GL 16)

ess is symmetric non-functorial, and hence is different from all known
tensor products.
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Nuclearities in operator systems

(α, β)-nuclear (KPTT 2013)

The identity map between S ⊗α T and S ⊗β T is a complete order
isomorphism for every operator system T .

Unlike C∗-algebra there are several notions of nuclearity.

Properties Operator systems Equivalent Nuclearity

Exactness K-P-T-T 2013 (min,el)-nuclear

osLLP K-P-T-T 2013 (min,er)-nuclear

DCEP K-P-T-T 2013 (el,c)-nuclear

WEP K-P-T-T 2013 - Han 2011 (el,max)-nuclear

C∗-nuclearity Kavruk 2014 (min,c)-nuclearity

CPFP Han-Paulsen 2011 (min,max)-nuclear

Table: Structural properties and equivalent nuclearities for operator systems
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Structural Properties for C∗-algebras, operator spaces and operator systems

Properties C∗-algebra Operator
spaces

Operator
systems

Exactness Kirchberg
1978

Pisier 1995 KPTT 2013

Local Lifitng
Property

Kirchberg
1993

Kye-Ruan
1999

KPTT 2013

WEP Lance 1982 Pisier 2003 KPTT 2013-
Han 2011

DCEP Arveson 1969 Paulsen 2011 KPTT 2013

CPFP Choi-Effros
1975-
Kirchberg
1977

Kirchberg
1995

Han-Paulsen
2011

Nuclearity Takesaki
1964-Lance
1973

Does not ex-
end

Kavruk 2014
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Examples related to group C∗-algebras

Operator system from discrete group (FKPT 2014)

Given a countable discrete group G and generating set u of G ,

S(u) := span{1, u, u∗ : u ∈ u} ⊂ C∗(G ),

where C∗(G ) is the full group C∗-algebra of the group G and u ∈ G is
identified with δu ∈ C∗(G ).

For Fn, the free group with n-generators
⇝ S(u) is a (2n + 1)-dimensional operator system independent of the
generating set u
⇝ Sn ⊂ C∗(Fn).
In general, such independence is not expected.
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Operator system nuclearity via C∗-envelopes

Lance 1973

For a discrete group G , C∗(G ) is nuclear ⇐⇒ G is amenable.

Question: : What kind of nuclearity is observed by S(u) if G is
amenable?
⇝ C∗

e (S(u)) = C∗(G ) ! (Kavruk, 2014)
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More general question

Question: : What kind of nuclearity is observed by an operator system S
if its C∗-envelope C∗

e (S) is nuclear?

Kirchberg and Wassermann 1998 gave an example of a
(min,max)-nuclear operator system whose C∗-envelope is
non-nuclear.

The other direction is equally mysterious.

Preeti
C*-envelopes and Nuclearity related properties of Operator Systems 14 /

24



More general question

Question: : What kind of nuclearity is observed by an operator system S
if its C∗-envelope C∗

e (S) is nuclear?
Kirchberg and Wassermann 1998 gave an example of a
(min,max)-nuclear operator system whose C∗-envelope is
non-nuclear.

The other direction is equally mysterious.

Preeti
C*-envelopes and Nuclearity related properties of Operator Systems 14 /

24



More general question

Question: : What kind of nuclearity is observed by an operator system S
if its C∗-envelope C∗

e (S) is nuclear?
Kirchberg and Wassermann 1998 gave an example of a
(min,max)-nuclear operator system whose C∗-envelope is
non-nuclear.

The other direction is equally mysterious.

Preeti
C*-envelopes and Nuclearity related properties of Operator Systems 14 /

24



Nuclearity of group operator systems

Theorem (GL 16)

S(u) is (min, ess) nuclear ⇐⇒ G is amenable.

The exhaustive list of nuclear group operator systems.

Theorem (GL 16)

u be a minimal generating set of a finitely generated group G .
S(u) is (min,max)-nuclear if and only if |G | ≤ 3.
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Nuclearity of graph operator systems

Graph operator systems (KPTT 2011)

Given a finite graph G with n-vertices,

SG = span{{Ei,j : (i , j) ∈ G} ∪ {Ei,i : 1 ≤ i ≤ n}} ⊆ Mn(C),

where {Ei,j} is the standard system of matrix units in Mn(C) and (i , j)
denotes (an unordered) edge in G .

Theorem (GL 16)

SG is (min,max)-nuclear if and only if each component of G is complete.

Preeti
C*-envelopes and Nuclearity related properties of Operator Systems 16 /

24



Nuclearity of graph operator systems

Graph operator systems (KPTT 2011)

Given a finite graph G with n-vertices,

SG = span{{Ei,j : (i , j) ∈ G} ∪ {Ei,i : 1 ≤ i ≤ n}} ⊆ Mn(C),

where {Ei,j} is the standard system of matrix units in Mn(C) and (i , j)
denotes (an unordered) edge in G .

Theorem (GL 16)

SG is (min,max)-nuclear if and only if each component of G is complete.

Preeti
C*-envelopes and Nuclearity related properties of Operator Systems 16 /

24



Embeddings of exact operator systems

Kirchberg 2000

A unital separable C∗-algebra A is exact if and only if it admits a unital
embedding into O2.

Question: Are separable exact operator system embeddable in O2?

Answer NO!

Kirchberg-Wasserman (1998) and Lupini (2014) constructed examples
that are exact but non-embeddable in O2.

Question: Under what conditions operator systems are embeddable in
O2?

Preeti
C*-envelopes and Nuclearity related properties of Operator Systems 17 /

24



Embeddings of exact operator systems

Kirchberg 2000

A unital separable C∗-algebra A is exact if and only if it admits a unital
embedding into O2.

Question: Are separable exact operator system embeddable in O2?

Answer NO!

Kirchberg-Wasserman (1998) and Lupini (2014) constructed examples
that are exact but non-embeddable in O2.

Question: Under what conditions operator systems are embeddable in
O2?

Preeti
C*-envelopes and Nuclearity related properties of Operator Systems 17 /

24



Embeddings of exact operator systems

Kirchberg 2000

A unital separable C∗-algebra A is exact if and only if it admits a unital
embedding into O2.

Question: Are separable exact operator system embeddable in O2?

Answer NO!

Kirchberg-Wasserman (1998) and Lupini (2014) constructed examples
that are exact but non-embeddable in O2.

Question: Under what conditions operator systems are embeddable in
O2?

Preeti
C*-envelopes and Nuclearity related properties of Operator Systems 17 /

24



Embeddings of exact operator systems

Kirchberg 2000

A unital separable C∗-algebra A is exact if and only if it admits a unital
embedding into O2.

Question: Are separable exact operator system embeddable in O2?

Answer NO!

Kirchberg-Wasserman (1998) and Lupini (2014) constructed examples
that are exact but non-embeddable in O2.

Question: Under what conditions operator systems are embeddable in
O2?

Preeti
C*-envelopes and Nuclearity related properties of Operator Systems 17 /

24



Operator systems with simple C∗-covers

PZ 2016

For the generators s1, s2, · · · , sn (n ≥ 2) of the Cuntz algebra On and
identity I , the Cuntz operator system

SOn := span{I , s1, s2, · · · , sn, s∗1 , s∗2 , · · · , s∗n } ⊂ On.

For s1, s2, · · · in O∞ ⇝
SO∞ = span{I , s1, s2, · · · , s∗1 , s∗2 , · · · } ⊂ O∞.

If an operator system S has a simple C∗-cover (A, i) then
A ∼= C∗

e (S).
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Embeddings of operator systems into O2

Theorem (LK 17)

Let S be a separable operator system with C∗-envelope. Then there
exists a unital complete order embedding of S into O2 if and only if
C∗

e (S) is exact.

Corollary (LK 17)

For any simple, unital, separable and nuclear C∗-algebra A, we have
C∗

e (A⊗min=max SO2)
∼= O2.

(LK 17)

For any unital, simple, nuclear, separable and purely infinite C∗-algebra
A, C∗

e (A⊗min=max S∞) ∼= A.
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Operator system inductive limits and C∗-envelopes

Theorem (KL 18)

Let {Si}∞i=1 be an increasing collection of operator systems such that
that the complete order embedding Si ⊂ Si+1 extends to a
∗-homomorphism, then we have

C∗
e (lim−→

Si ) = lim
−→

C∗
e (Si ).

And, moreover if each Si is separable, exact and contains enough
unitaries of C∗

e (Si ), then lim
−→

Si embeds into O2.
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Polynomial-induced matrix ordering operator systems

Theorem (LKR 18)

Let (S, {Mn(S)+}∞n=1, eS) and (T , {Mn(T )+}∞n=1, eT ) be operator
systems. The family {Cn}∞n=1 defined as

Cn = {α⊗λj (v1, v2, · · · , vm)α∗ | vt ∈ Mj(Vt)
+, α ∈ Mn,τ(j), j ∈ N, t = 1, 2, · · · ,m} ⊂ Mn(⊗λVi )h

satisfying (O1)− (O3), is a matrix ordering on S ⊗ T with order unit
eS ⊗ eT .
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λ-tensor product of operator systems

Definition

Let λ = (λn)n∈N fulfills conditions (O1)− (O3), and let

Cλ
n := {P ∈ Mn(S ⊗ T ) | r(eS ⊗ eT )n + P ∈ Cn, for all r > 0}

be the Archimedeanization of the matrix ordering Cn for all n ≥ 1. We
call the operator system (S ⊗ T , {Cλ

n }∞n=1, eS ⊗ eT ) the λ- operator
system tensor product of S and T and denote it by S ⊗λ T .

Theorem (LKR 18)

The mapping λ : O ×O → O sending (S, T ) to S ⊗λ T is a functorial
operator system tensor product.

Theorem (AKL 18)

lim
−→

(Sk ⊗λ T )
c.o.i.∼= (lim

−→
Sk)⊗λ T .
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call the operator system (S ⊗ T , {Cλ

n }∞n=1, eS ⊗ eT ) the λ- operator
system tensor product of S and T and denote it by S ⊗λ T .

Theorem (LKR 18)

The mapping λ : O ×O → O sending (S, T ) to S ⊗λ T is a functorial
operator system tensor product.

Theorem (AKL 18)

lim
−→

(Sk ⊗λ T )
c.o.i.∼= (lim

−→
Sk)⊗λ T .
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