Project:
 SOME ASPECTS OF GAUSSIAN QUANTUM MARKOV SEMIGROUPS

EMANUELA SASSO AND SACHI SRIVASTAVA June 26th 2023 - WOAIII

Arundhathi Krishnan, Yulia Kuznetsova, Priyanga Ganesan, Sarah Plosker

Fock Space

We work on the Hilbert space $\mathcal{H}=\Gamma\left(\mathbb{C}^{d}\right) \simeq \Gamma(\mathbb{C}) \otimes \cdots \otimes \Gamma(\mathbb{C})$. $\left(e(\alpha)=e\left(\alpha_{1}, \ldots, \alpha_{d}\right)\right)_{\alpha}$ the canonical orthonormal basis. We consider annihilation and creation operators a_{j}, a_{j}^{\dagger}

$$
\begin{aligned}
a_{j} e\left(\alpha_{1}, \ldots, \alpha_{d}\right) & =\sqrt{\alpha_{j}} e\left(\alpha_{1}, \ldots, \alpha_{j}-1, \ldots, \alpha_{d}\right) \\
a_{j}^{\dagger} e\left(\alpha_{1}, \ldots, \alpha_{d}\right) & =\sqrt{\alpha_{j}+1} e\left(\alpha_{1}, \ldots, \alpha_{j}+1, \ldots, \alpha_{d}\right)
\end{aligned}
$$

which are unbounded operators.
They satisfy $\left[a_{j}, a_{k}^{\dagger}\right]=\delta_{j k} \mathbb{1}$ and $a_{j}^{*}=a_{j}^{\dagger}$.

Quantum Markov Semigroups

The evolution is usually given on $\mathcal{B}(\mathcal{H})$ via a QMS $\mathcal{T}=\left(\mathcal{T}_{t}\right)_{t}$.
Consider the generator of \mathcal{T} in the GKLS form

$$
\mathcal{L}(x)=\mathrm{i}[H, x]+\frac{1}{2} \sum_{\ell=1}^{d}\left(2 L_{\ell}^{*} x L_{\ell}-\left\{L_{\ell}^{*} L_{\ell}, x\right\}\right), \quad x \in \mathcal{B}(h)
$$

We want to consider

$$
\begin{gathered}
H=\text { quadratic polynomial in } a_{j}, a_{j}^{\dagger} \\
L_{\ell}=\text { linear polynomial in } a_{j}, a_{j}^{\dagger}
\end{gathered}
$$

For $\xi=\sum_{\alpha} \xi_{\alpha} e(\alpha), x \in \mathcal{B}(\mathcal{H})$ we define

$$
\begin{aligned}
£(x)\left[\xi^{\prime}, \xi\right] & =\mathrm{i}\left\langle H \xi^{\prime}, x \xi\right\rangle-\mathrm{i}\left\langle\xi^{\prime}, x H \xi\right\rangle \\
& +\frac{1}{2} \sum_{\ell}\left[2\left\langle L_{\ell} \xi^{\prime}, x L_{\ell} \xi\right\rangle-\left\langle\xi^{\prime}, x L_{\ell}^{*} L_{\ell} \xi\right\rangle-\left\langle L_{\ell}^{*} L_{\ell} \xi^{\prime}, x \xi\right\rangle\right]
\end{aligned}
$$

Gaussian QMS

$$
\begin{gathered}
H=\sum_{j, k=1}^{d}\left[\Omega_{j k} a_{j}^{\dagger} a_{k}+\frac{\kappa_{j k}}{2} a_{j}^{\dagger} a_{k}^{\dagger}+\frac{\overline{\kappa_{j k}}}{2} a_{j} a_{k}\right]+\sum_{j=1}^{d}\left[\frac{\zeta_{j}}{2} a_{j}^{\dagger}+\frac{\overline{\zeta_{j}}}{2} a_{j}\right] \\
L_{\ell}=\sum_{j=1}^{d} \bar{v}_{\ell} a_{j}+u_{\ell} a_{j}^{\dagger}, \quad \ell=1, \ldots, m
\end{gathered}
$$

with $\Omega=\Omega^{*}, \kappa=\kappa^{T}$ and $\operatorname{ker}\left(U^{*}\right) \cap \operatorname{ker}\left(V^{T}\right)=\{0\}$.
Theorem (Agredo, Fagnola, Poletti (2021))
We can construct a unique $Q M S, \mathcal{T}=\left(\mathcal{T}_{t}\right)_{t}$ such that

$$
\left.\frac{d}{d t}\left\langle\xi^{\prime}, \mathcal{T}_{t}(x) \xi\right\rangle\right|_{t=0}=£(x)\left[\xi^{\prime}, \xi\right]
$$

We call it Gaussian QMS associated with H, L_{ℓ}.

Gaussian states

$W(z)$ are the Weyl operators, defined by

$$
W(z):=e^{\sum_{j=1}^{d} z_{j} a_{j}^{\dagger}-\bar{z}_{j} a_{j}}
$$

Definition

ρ is a gaussian state if

$$
\hat{\rho}(z)=\operatorname{tr}(\rho W(z))=\exp \left\{-i \operatorname{Re}\langle\omega, z\rangle-\frac{1}{2} \operatorname{Re}\langle z, S z\rangle\right\}
$$

for every $z \in \mathbb{C}^{d}$. For certain $\omega \in \mathbb{C}^{d}$ and $S: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$ an invertible, real linear operator. We write $\rho=\rho_{\omega, S}$.

$$
\hat{\rho}(z)=\exp \left\{-\mathrm{i}\left\langle\binom{\operatorname{Re} \omega}{\operatorname{Im} \omega},\binom{\operatorname{Re} z}{\operatorname{Im} z}\right\rangle-\frac{1}{2}\left\langle\binom{\operatorname{Re} z}{\operatorname{Im} z}, S_{\mathbb{R}^{2 d}}\binom{\operatorname{Re} z}{\operatorname{Im} z}\right\rangle\right\}
$$

Why Gaussian Semigroups?

Theorem (Agredo, Fagnola, Poletti (2021))
If $\rho=\rho_{(\omega, S)}$ then $\rho_{t}:=\mathcal{T}_{* t}(\rho)$ is still a gaussian state $\rho_{\left(\omega_{t}, S_{t}\right)}$ with

$$
\begin{aligned}
& \omega_{t}=e^{t Z^{T}} \omega-\int_{0}^{t} e^{s Z^{T}} \zeta d s \\
& S_{t}=e^{t Z^{T}} S e^{T Z}+\int_{0}^{t} e^{s Z^{T}} C e^{s Z} d s
\end{aligned}
$$

where Z and C are the real linear operators

$$
\begin{aligned}
& Z z=\left(\frac{1}{2} \overline{\left(U^{*} U-V^{*} V\right)}+\mathrm{i} \Omega\right) z+\left(\frac{1}{2}\left(U^{T} V-V^{T} U\right)+\mathrm{i} \kappa\right) \bar{z} \\
& C z=\left(\frac{1}{2} \overline{\left(U^{*} U+V^{*} V\right)}\right) z+\left(\frac{1}{2}\left(U^{T} V+V^{T} U\right)\right) \bar{z}
\end{aligned}
$$

More motivation

Theorem
It holds $\mathcal{T}_{t}(W(z))=c_{t}(z) W\left(e^{t Z} z\right)$ with
$c_{t}(z)=\exp \left\{-\frac{1}{2} \int_{0}^{t} \operatorname{Re}\left\langle e^{s Z} z, C e^{s Z} z\right\rangle d s+\mathrm{i} \int_{0}^{t} \operatorname{Re}\left\langle\zeta, e^{s Z} z\right\rangle d s\right\}$

The converse also holds:
Theorem (Agredo, Fagnola, Poletti (2021))
The following are equivalent:

- \mathcal{T} is a gaussian $Q M S$ associated with H, L_{ℓ};
- $\mathcal{T}_{t}(W(z))=c_{t}(z) W\left(\mathrm{e}^{t Z} z\right)$, for some C, Z, ζ;
- \mathcal{T}_{*} preserves the set of gaussian states.

List of problems

Problem 1: Irreducibility

A semigroup is irreducible if and only if for every p projection

$$
\mathcal{T}_{t}(p) \geq p \Rightarrow p=0, p=\mathbb{1}
$$

Theorem (Fagnola, Rebolledo)

Let p be a projection and $\operatorname{Rg}(p)$ its range. Then $\mathcal{T}_{t}(p) \geq p$ if and only if
(i) $\operatorname{Rg}(p)$ is invariant for the strongly continuous contraction semigroup $e^{t G}$
(ii) $L_{\ell} u=p L_{\ell} u$, for $u \in \operatorname{Dom}(G) \cap \operatorname{Rg}(p)$

$$
G=-\mathrm{i} H-\frac{1}{2} \sum_{\ell} L_{\ell}^{*} L_{\ell}
$$

Decoherence-free Subalgebra

$$
\begin{aligned}
\mathcal{N}(\mathcal{T})=\left\{x \in \mathcal{B}(\mathcal{H}) \mid \mathcal{T}_{t}\left(x^{*} x\right)\right. & =\mathcal{T}_{t}\left(x^{*}\right) \mathcal{T}_{t}(x), \\
\mathcal{T}_{t}\left(x x^{*}\right) & \left.=\mathcal{T}_{t}(x) \mathcal{T}_{t}\left(x^{*}\right), \forall t \geq 0\right\} .
\end{aligned}
$$

Theorem (Agredo, Fagnola, Poletti (2021))

The decoherence-free subalgebra $\mathcal{N}(\mathcal{T})$ is the generalised commutant of the set

$$
\left\{\delta_{H}^{n}\left(L_{\ell}\right), \delta_{H}^{n}\left(L_{\ell}^{*}\right) \mid \ell=1, \ldots, m, 0 \leq n \leq 2 d-1\right\}
$$

where $\delta_{H}(X)=[H, X]$.
$x \in \mathcal{B}(\mathcal{H})$ is in the generalised commutant of A if

$$
x A \subset A x .
$$

$\mathcal{N}(\mathcal{T})$ for gaussian QMSs

Theorem (Agredo, Fagnola, Poletti)

The decoherence-free subalgebra $\mathcal{N}(\mathcal{T})$ is the von Neumann subalgebra of $\mathcal{B}(\mathcal{H})$ generated by Weyl operators $W(z)$ such that z belonging to real subspaces of $\operatorname{ker}(C)$ that are Z-invariant. Moreover, up to unitary equivalence,

$$
\mathcal{N}(\mathcal{T})=L^{\infty}\left(\mathbb{R}^{d_{c}} ; \mathbb{C}\right) \bar{\otimes} \mathcal{B}\left(\Gamma\left(\mathbb{C}^{d_{f}}\right)\right)
$$

for a pair of natural numbers $d_{c}, d_{f} \leq d$.

EID's definition "à la" Blanchard-Olkiewicz

Definition

There is environment induced decoherence (EID) on the system described by \mathcal{T}, if there exist a \mathcal{T}_{t}-invariant von Neumann subalgebra \mathcal{M}_{1} of \mathcal{M} and a \mathcal{T}_{t}-invariant and -invariant weak* closed subspace \mathcal{M}_{2} of \mathcal{M} such that:

EID1 $\mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2}$ with $\mathcal{M}_{2} \neq\{0\}$,
EID2 \mathcal{M}_{1} is a maximal von Neumann subalgebra of \mathcal{M} on which every \mathcal{T}_{t} acts a $*$-automorphism,
EID3 $w^{*}-\lim _{t \rightarrow \infty} \mathcal{T}_{t}(x)=0$ for all $x \in \mathcal{M}_{2}$.

- \mathcal{M}_{1} decoherence-free algebra
- \mathcal{M}_{2} space of not-detectable observables.

problem 2: Decoherence

EID holds for a Gaussian Quantum Markov semigroup? $\mathcal{M}_{1}=\mathcal{N}(\mathcal{T})$?

