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Single-Cell Sequencing

Clustering is used to identify cell states; DE is used to identify marker
genes that differentiate states



Motivations

Definition
Normalization = removal of all kinds of unwanted variation, not
limited only to library size

Motivation I: Current normalization methods remove biology
when unwanted variation (UV) are associated with biology.

Motivation II: Most methods only return dimensional reduction
(cell embedding) unsuitable for downstream analyses.

RUV-III-NB takes into account biology × UV association and
return adjusted data for all genes.
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NSCLC Study

Non-small cell lung carcinoma (∼ 6,000 cells) study using 10x
platform (from one batch)

sctransform seems to separate all major cell-types adequately.

Biology (cell-type) is associated with library size (UV),
with the larger Epithelial cells and Monocytes have higher LS.
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NSCLC Study

Non-small cell lung carcinoma (∼ 6,000 cells) study using 10x
platform (from one batch)

RUV-III-NB separates Monocytes better and makes Epithelial
cells cluster tighter.
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Only RUV-III-NB and Dino improve biological silhouette score
relative to scran.



Cell line Study

Jurkat and 293t cells (∼ 9,000 cells) from 3 batches (10x protocol),
but only one batch contains both cell types.

There’s a strong batch effects for Jurkat cells and biology
(cell-type) is associated with batch (UV).
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Cell line Study

Seurat completely removes biology



Cell line Study

RUV-III-NB removes batch effects without removing biology



Cell line Study

RUV-III-NB removes batch effects without removing biology



RUV-III-NB: Model

Let µg = (µg1, µg2, . . . , µgN)T be the vector of NB mean
parameter for gene g across N cells, we assume
yg ∼ NB(µg, ψg), with

We assume that we have cell state information for na ≤ 3, 000
cells. This cell state information can come from:

For cell types: highly-confident annotation after initial LS
normalization
For other factors, e.g. treatment, we have this information from
experimental design.



RUV-III-NB: Model

Let µg = (µg1, µg2, . . . , µgN)T be the vector of NB mean
parameter for gene g across N cells, we assume
yg ∼ NB(µg, ψg), with

We assume that we have cell state information for na ≤ 3, 000
cells. This cell state information can come from:

For cell types: highly-confident annotation after initial LS
normalization
For other factors, e.g. treatment, we have this information from
experimental design.



RUV-III-NB: Model

For cells with annotation,

logµa
g = ζg + Mβg +Waαg ,

M(na ×m) matrix that contains dummy variables for cell states,
Wa(na ×K) is rows subset of a K-dimensional unknown
unwanted factors W associated with annotated cells,
βg ∼ N(0, λ−1

β Im),αg ∼ N(0, λ−1
α Ik)

For cells without annotation,

logµu
g = ζg + βgc +Wuαg ,

Wu is rows subset of W associated with the un-annotated cells
and βgc ∼ N(0, λ−1

β )
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RUV-III-NB: Model

We also assume there is a negative control gene set (C ) so that
for any genes in this set,

logµg = ζg +Wαg ,

W(N× k) is a K-dimensional unknown unwanted factors for all
cells



Adjusted data: log percentile-invariant adjusted count (PAC)

1 Calculate percentile under full fitted model: rgc = acg+bcg
2

, where

agc = FNB(ygc ;µgc = e ζ̂g+β̂gc+ŵc
T α̂g , ψ̂g )

bgc = FNB(ygc + 1;µgc = e ζ̂g+β̂gc+ŵc
T α̂g , ψ̂g )

and ŵc the cth row of the matrix Ŵ

PACgc = F−1
NB(rgc ;µgc = exp(ζ̂g + β̂gc + w̄T α̂g ), ψ̂g )

2 Invert the percentile under NB distribution where the mean is
shifted to have average unwanted variations, where w̄ is vector
of entries equal to the average level N−1

∑N
c=1 ŵc of unwanted

variation.

3 Add 1 and take log → log(PACgc + 1)
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Parameter Estimation

Iterative reweighted least squares (IRLS)-based

Parameters ζg ,ψg ,Wa and αg are estimated using annotated
cells

Parameters βgc and Wu are estimated using un-annotated cells.



To run RUV-III-NB, we need:

Cell states information (M matrix): some cells need to have
known cell states.

Negative control gene sets: RUV-III-NB is a robust against a
degree of miss-specification

The number of unwanted factors (K): slight overestimation does
not remove biological signals.
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Cell line Study: W estimates

RUV-III-NB correctly identifies logLS and batch as the unwanted
factors.



Cell line Study

RUV-III-NB’s performance is quite robust for a range of assumed
unwanted factors (K )
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Cell line study

Robust performance with different sets of negative control genes



Cell line Study: DEG

DEG of the same cell types located in different batches. RUV-III-NB
adjusted data has the smallest amount of batch effects



ZINB extension

UMI data dominates in scRNA-seq world but there are still
platforms without UMI

Non-UMI data are known to often exhibit zero inflation
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RUV-III-ZINB

This is achieved with only 5% of the cells having known annotations.



Robustness against incorrect annotation?

We rerun RUV-III-ZINB assuming that the delta and PP cells are of
the same cell-type



Robustness against incorrect annotation?

RUV-III-ZINB can still separate the two cell-types
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Conclusion

RUV-III-NB removes UV and preserves biology when biology and
UV are associated.

RUV-III-NB returns percentile adjusted count (PAC) that can be
readily used for downstream analyses without further
normalisation.

The method has a degree of robustness against overestimation
of unwanted factors, negative control gene sets and
miss-specified initial annotation.

R package is available from
https://github.com/limfuxing/ruvIIInb/.

Future works: extensions to scMultiOmics and spatial
transcriptomics.
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