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Figure adapted from Longo, Guo, Ji and Khavari (2021, Nat. Rev. Genetics)

Clustering is used to identify cell states; DE is used to identify marker

genes that differentiate states
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Definition

Normalization = removal of all kinds of unwanted variation, not
limited only to library size

@ Motivation I: Current normalization methods remove biology
when unwanted variation (UV) are associated with biology.

@ Motivation Il: Most methods only return dimensional reduction
(cell embedding) unsuitable for downstream analyses.

@ RUV-III-NB takes into account biology x UV association and
return adjusted data for all genes.



NSCLC Study

Non-small cell lung carcinoma (~ 6,000 cells) study using 10x
platform (from one batch)
@ sctransform seems to separate all major cell-types adequately.
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Non-small cell lung carcinoma (~ 6,000 cells) study using 10x
platform (from one batch)
@ sctransform seems to separate all major cell-types adequately.
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o Biology (cell-type) is associated with library size (UV),
with the larger Epithelial cells and Monocytes have higher LS.



NSCLC Study

Non-small cell lung carcinoma (~ 6,000 cells) study using 10x
platform (from one batch)

@ RUV-III-NB separates Monocytes better and makes Epithelial
cells cluster tighter.
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@ Only RUV-III-NB and Dino improve biological silhouette score
relative to scran.

method

I Dino

& RUV-III-NB

B RUV-III-NB (psCells)
M scran

B SCT-logcorr

[l SCT-pearson

1l ZINB-WaVE

BIO_SIL




Cell line Study

Jurkat and 293t cells (~ 9,000 cells) from 3 batches (10x protocol),
but only one batch contains both cell types.



Cell line Study

Jurkat and 293t cells (~ 9,000 cells) from 3 batches (10x protocol),
but only one batch contains both cell types.
@ There's a strong batch effects for Jurkat cells and biology

(cell-type) is associated with batch (UV).
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Cell line Study

Seurat completely removes biology
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Cell line Study

RUV-III-NB removes batch effects without removing biology

RUV-II-NB (K=5): log PAC

3 ® 293t
® jurkat
o
8' 0 batch
+ bacth2
-3 « batch1
= batch3d
-6
-10 -5 0 5 10
PC_1
RUV-III-NB (K=5): log PAC
3 ® bacth2
® batchi
N ® batch3
6]
a new.lables
-3 -+ 293t
+ Jurkat
-6 .




Cell line Study

RUV-III-NB removes batch effects without removing biology
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RUV-11I-NB: Model

o Let yg = (f1g1, fg2, - - -, f1gn) " be the vector of NB mean
parameter for gene g across N cells, we assume
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RUV-11I-NB: Model

o Let yg = (f1g1, fg2, - - -, f1gn) " be the vector of NB mean
parameter for gene g across N cells, we assume
Ye ~ NB(1ig, 1), with
@ We assume that we have cell state information for n, < 3,000
cells. This cell state information can come from:
e For cell types: highly-confident annotation after initial LS

normalization
e For other factors, e.g. treatment, we have this information from

experimental design.
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@ For cells with annotation,
log py = (g + M, + Wi,

M(n, x m) matrix that contains dummy variables for cell states,
W,(n, x K) is rows subset of a K-dimensional unknown
unwanted factors W associated with annotated cells,

Bg ~ N(0, A5 ), cg ~ N(0, A )

@ For cells without annotation,

|Og Mg = Cg + 6gc + Wuaga

W, is rows subset of W associated with the un-annotated cells
and Sg ~ N(0,A5")



RUV-11I-NB: Model

@ We also assume there is a negative control gene set (C) so that
for any genes in this set,

log g = (g + Way,

W(N x k) is a K-dimensional unknown unwanted factors for all
cells



Adjusted data: log percentile-invariant adjusted count (PAC)
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Adjusted data: log percentile-invariant adjusted count (PAC)

@ Calculate percentile under full fitted model: r,. = m, where
p g 2
s ot A
dge = Fup(Vge f1ge = €%t G gy )
e
bgc = FNB(ng + 1v Hge = ng-i-,Bgc-‘ch aga wg)

and ‘w, the ct" row of the matrix W

10, . A 5 —T A\ 7
PACge = Fp(raci tge = exp(Cg + Bgc + W' Gy ), V)
© Invert the percentile under NB distribution where the mean is
shifted to have average unwanted variations, where w is vector
of entries equal to the average level N1 Z'CVZIAWC of unwanted
variation.

© Add 1 and take log — log(PAC,. + 1)



RUV-I1I-NB workflow
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Parameter Estimation

o lterative reweighted least squares (IRLS)-based

o Parameters (z,1,, W, and «, are estimated using annotated
cells

@ Parameters ;. and W, are estimated using un-annotated cells.
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To run RUV-III-NB, we need:

o Cell states information (M matrix): some cells need to have
known cell states.

o Negative control gene sets: RUV-III-NB is a robust against a
degree of miss-specification

@ The number of unwanted factors (K): slight overestimation does
not remove biological signals.



Cell line Study: W estimates

RUV-11I-NB correctly identifies logLS and batch as the unwanted
factors.
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Cell line Study

RUV-II-NB's performance is quite robust for a range of assumed
unwanted factors (K)
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Cell line study

Robust performance with different sets of negative control genes
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Cell line Study: DEG

DEG of the same cell types located in different batches. RUV-III-NB

adjusted data has the smallest amount of batch effects
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RUV-III-ZINB
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This is achieved with only 5% of the cells having known annotations.



Robustness against incorrect annotation?

We rerun RUV-III-ZINB assuming that the delta and PP cells are of
the same cell-type
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Robustness against incorrect annotation?

RUV-III-ZINB can still separate the two cell-types
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Conclusion

@ RUV-III-NB removes UV and preserves biology when biology and
UV are associated.

@ RUV-III-NB returns percentile adjusted count (PAC) that can be
readily used for downstream analyses without further
normalisation.

@ The method has a degree of robustness against overestimation
of unwanted factors, negative control gene sets and
miss-specified initial annotation.

@ R package is available from
https://github.com/limfuxing/ruvIIInb/.

@ Future works: extensions to scMultiOmics and spatial
transcriptomics.
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