CS-CORE: cell-type-specific co-expression inference from single cell RNA-seq data

Emma Jingfei Zhang, Emory University

Single Cell Plus BIRS Workshop, Banff 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Gene co-expression networks

Gene co-expression networks characterize correlations of gene expression levels across biological samples.

Single cell RNA-seq data

- 日本 本語 本 本 田 本 王 本 田 本

Confounding by sequencing depth variations

イロト イヨト イヨト

э

Confounding by sequencing depth variations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Marginal normalization?

Figure: Expressions of a simulated independent gene pair in original UMI counts and scaled counts calculated as $10^4 \times x_i/s_i$, where s_i is sequencing depth.

Marginal normalization?

Figure: Expressions of a simulated independent gene pair in original UMI counts and log normalized counts calculated as $\log(10^4 \times x_i/s_i + 1)$, where s_i is sequencing depth.

A D > A P > A B > A B >

э

Existing methods

- Generic methods applied on log normalized data
 - Pearson
 - Spearman
- Methods developed for single cell data
 - baredSC [Lopez-Delisle and Delisle, 2022]
 - IocCSN [Wang et al., 2021]
 - Noise Regularization [Zhang et al., 2021]
 - Normalisr [Wang, 2021]
 - propr [Quinn et al., 2017]
 - ρ-sctransform [Hafemeister and Satija, 2019]
 - ▶ *p*-analytic Pearson residual [Lause et al., 2021]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- SpQN [Wang et al., 2022]
- Dozer [Lu and Keleş, 2023] (to be added)

Confounding by sequencing depth variations

Figure: A permutation-based experiment where all gene pairs have co-expression=0.

Attenuation by measurement noises

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Attenuation by measurement noises

(日) (四) (日) (日) (日)

Figure: Simulated gene pairs. True correlation=0.5.

Expression-measurement model in CS-CORE

For cell $i = 1, \ldots, n$, gene $j = 1, \ldots, p$, we assume

 $(z_{i1},\ldots,z_{ip}) \sim F_p, \quad x_{ij}|z_{ij} \sim \mathsf{Poisson}(s_i z_{ij}),$

where F_p is some nonnegative *p*-variate distribution.

We measure co-expression via:

 $\rho_{jj'} = \operatorname{Cor}(z_{ij}, z_{ij'}).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Moment conditions

For expression level (z_{i1}, \ldots, z_{ip}) , denote

Mean:	$\mu_j = \mathbb{E}[z_{ij}],$
Variance:	$\sigma_{jj} = Var[z_{ij}],$
Covariance:	$\sigma_{jj'} = Cov(z_{ij}, z_{ij'}).$

• We can show for **UMI counts** (x_{i1}, \ldots, x_{ip}) that

Mean:	$\mathbb{E}[x_{ij}] = s_i \mu_j,$
Variance:	$Var[x_{ij}] = s_i \mu_j + s_i^2 \sigma_{jj},$
Covariance:	$Cov(x_{ij}, x_{ij'}) = s_i^2 \sigma_{jj'}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

From the moment conditions, we can write

$$\begin{aligned} x_{ij} &= s_i \mu_j + \epsilon_{ij}, \\ (x_{ij} - s_i \mu_j)^2 &= s_i \mu_j + s_i^2 \sigma_{jj} + \eta_{ij}, \\ (x_{ij} - s_i \mu_j) (x_{ij'} - s_i \mu_{j'}) &= s_i^2 \sigma_{jj'} + \xi_{ijj'}, \end{aligned}$$

where $\mathbb{E}(\epsilon_{ij}) = 0$, $\mathbb{E}(\eta_{ij}) = 0$ and $\mathbb{E}(\xi_{ijj'}) = 0$.

IRLS Estimation

Iteratively reweighted least squares estimation:

$$\hat{\mu}_{j} = \min_{\mu} \sum_{i=1}^{n} w_{ij} (x_{ij} - s_{i}\mu)^{2},$$

$$\hat{\sigma}_{jj} = \min_{\sigma} \sum_{i=1}^{n} \frac{h_{ij}}{i} [(x_{ij} - s_{i}\hat{\mu}_{j})^{2} - s_{i}\hat{\mu}_{j} - s_{i}^{2}\sigma]^{2},$$

$$\hat{\sigma}_{jj'} = \min_{\sigma} \sum_{i=1}^{n} \frac{g_{ijj'}}{i} [(x_{ij} - s_{i}\hat{\mu}_{j})(x_{ij'} - s_{i}\hat{\mu}_{j'}) - s_{i}^{2}\sigma]^{2}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Test for independence

$$\blacktriangleright \ H_0: \underbrace{Z_j \text{ and } Z_{j'}}_{\substack{\text{underlying expression}\\ \text{levels from genes } j, j'}} \text{ are independent.}$$

We define the test statistic

$$T_{jj'} = \frac{\sum_{i} s_{i}^{2} (x_{ij} - s_{i}\mu_{j}) (x_{ij'} - s_{i}\mu_{j'}) g_{ijj'}}{\sqrt{\sum_{i} s_{i}^{4} (s_{i}\mu_{j} + s_{i}^{2}\sigma_{jj}) (s_{i}\mu_{j'} + s_{i}^{2}\sigma_{j'j'}) g_{ijj'}^{2}}}.$$

• Under H_0 , $T_{jj'}$ is asymptotically $\mathcal{N}(0,1)$.

CS-CORE is fast

 CS-CORE takes 10s to estimate a co-expression network with 500 genes.

CS-CORE is not confounded by sequencing depths

▲ロ▶▲圖▶▲圖▶▲圖▶ ■ の名⊙

CS-CORE is not biased by measurement noises

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Systematic evaluations of CS-CORE

Alzheimer's disease (AD) and COVID-19 scRNA-seq data

Data sets	Lau et al.	Mathys et al.	Morabito et al.	Wilk et al.	Unterman et al.
	[2020]	[2019]	[2021]	[2020]	[2022]
Tissue	Brain	Brain	Brain	PBMC	PBMC
Disease	AD	AD	AD	COVID-19	COVID-19
#cells/nucleus	169,500	70,634	61,472	44,721	153,554
#cell types	6	8	7	13	29
Median seq depth	2,600	1,474	6,382	1,946	3,618
#samples	21	48	18	14	31

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Biologically interpretable

Figure: CS-CORE accurately grouped genes by biological functions in microglia using single cell data from Lau et al. [2020].

Reproducible and consistent with known gene pairs

Figure: CS-CORE uncovered co-expressions that are more reproducible and more consistent with known transcription factor (TF)-target pairs using single cell data on brain from Mathys et al. [2019] and Lau et al. [2020].

(日)

э

CS-CORE identified up-regulated co-expressions in Interferon signaling pathway from COVID-19 blood samples

Team, paper and software

- CS-CORE makes minimal distribution assumptions, is fast and provides a valid test (also fast).
- Team: Chang Su (Emory U.), Zichun Xu, Xinning Shan, Biao Cai, Hongyu Zhao

 Paper: Cell-type-specific co-expression inference from single cell RNA-sequencing data, bioRxiv, 2022.