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Spatially resolved transcriptomics

https://www.mscience.co.nz/view/10x-genomics/10x-genomics

1-10 cells in 1 spot

Nature Method of the Year 2020
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Spatially resolved transcriptomics

https://www.mscience.co.nz/view/10x-genomics/10x-genomics

Subcellular spatially resolved transcriptomics

1-10 cells in 1 spot Subcellular detections

10x Genomics Xenium
NanoString CosMx
Vizgen MERSCOPE

Nature Method of the Year 2020
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Subcellular spatially resolved transcriptomics (SST)

– Detect expression of hundreds of genes at subcellular resolution in situ
– Capture multi-channel spatial transcriptomic maps and DAPI images

Scale: 100 µm
10x Genomics Xenium (breast cancer, 313 genes)

Transcripts (Summed channels) DAPI (Nuclei)
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Cell segmentation

– Task: Identify all the pixels 
belonging to a cell in the form 
of a mask 

– Do this for every unique cell in 
the image – i.e., instance 
segmentation

– The segmentation is used to 
quantify gene expression of 
each cell, by collecting the 
detected transcripts that falls 
inside the pixels belonging to 
a cell’s mask 



The University of Sydney Page 7

Challenges of SST images

– High dimensionality (hundreds of channels)
– High sparsity within each channel
– Lack of visual boundaries 
– Densely-packed together cells 
– No ground truth CD3D

EGFR

Scale: 100 µm
10x Genomics Xenium (breast cancer, 313 genes)
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Existing methods

– Classical: watershed, Voronoi expansion, dilation from nuclei boundary
– Spatial gene expression is irrelevant, tend to rely on nuclei/distance-based

– Clustering/Transcript-based: Baysor, ClusterMap
– Disregard cell morphologies, sensitive to hyperparameters, slow, assume cells are homogeneous 

– Deep learning (e.g., convolutional neural networks (CNNs)): Cellpose
– SST images are considerably different to other modalities

• Models pre-trained on other datasets are unsuitable
– How to learn? There are no cell annotations, and manual annotation is impractical
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Biologically-informed deep learning-based cell segmentation (BIDCell)
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Results
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Cell Segmentation Performance Assessment (CellSPA)
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Cell Segmentation Performance Assessment (CellSPA)
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Cell Segmentation Performance Assessment (CellSPA)

Nuclei
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Cell Segmentation Performance Assessment (CellSPA)
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Evaluation – Trade-off between expression purity and size of cell
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Cell Segmentation Performance Assessment (CellSPA)
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Cell Segmentation Performance Assessment (CellSPA)
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Cell Segmentation Performance Assessment (CellSPA)
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Flexibility

Worked in Stero-seq from BGI
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BIDCell2  - What is the difference ? 
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BIDCell2  - What is the difference ? 

Lin etal Molecular System Biology 2020
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Data and Code 

Manuscript:
https://www.biorxiv.org/content/10.1101/2023.06.13.544733v1

Code:
– BIDCell training and inference in 
https://github.com/SydneyBioX/BIDCell

– We provide our CellSPA framework in 
https://github.com/SydneyBioX/CellSPA.

https://www.biorxiv.org/content/10.1101/2023.06.13.544733v1
https://github.com/SydneyBioX/BIDCell
https://github.com/SydneyBioX/CellSPA
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