Improving the Resolution of Single-Cell TCR-seq

Kelly Street

Assistant Professor Division of Biostatistics Keck School of Medicine July 4, 2023

The Team

Miya Hugaboom

Mingzhi Ye

T cell

From Wikipedia, the free encyclopedia

A **T cell** is a type of lymphocyte. T cells are one of the important white blood cells of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell surface.

T Cell Structure

T Cell Structure

Why should we be interested?

Motivation

Fig. 4 Disease-specific grouping of TCR repertoire samples via ultra-large-scale clustering.

Motivation

As demonstrated in autoimmune and infectious diseases, antigen-specific public TCRs shared at low frequencies are potentially important biomarkers^{20,41,42}, which can be detected by comparing large amount of TCRs from thousands of individuals. Methods have been developed to individually detect cancer^{17,18}, COVID-19²⁰, or multiple sclerosis⁴³ using immune repertoire, but none has been able to simultaneously diagnose and separate different diseases. In contrast, our effort could be developed into a unified platform to diagnose infectious disease, autoimmune disorders and cancer. Such a platform has been

Motivation

As demonstrated in autoimmune and infectious diseases, antigen-specific public TCRs shared at low frequencies are potentially important biomarkers^{20,41,42}, which can be detected by comparing large amount of TCRs from thousands of individuals. Methods have been developed to individually detect cancer^{17,18}, COVID We believe this is potentially a significa

cancer^{17,18}, COVID repertoire, but none separate different developed into a un autoimmune disord We believe this is potentially a significant advance because: first, disease diagnosis is mainly symptom-driven for decades, with each disease requiring a distinct set of signatures obtained from diverse clinical assays, such as radioactive imaging, liquid biopsy, invasive endoscopy, surgery, etc. The feasibility of using the immune system as a single biomarker to indicate multiple diseases could shift the paradigm from symptom-driven to immune-response-driven, which provides a universal solution to many immune-related disorders. Additionally, differential diag-

Application: Renal Cell Carcinoma

Figure 1. Single-cell profiling of clear cell renal cell carcinoma

TCR Sequencing

Figure 4. TCR analysis reveals lower diversity in terminally exhausted T cells

Cells can be ambiguous

chains

#

alpha

> beta chains #

As demonstrated in autoimmune and infectious diseases, antigen-specific public TCRs shared at low frequencies are potentially important biomarkers^{20,41,42}, which can be detected by comparing large amount of TCRs from thousands of individuals. Methods have been developed to individually detect cancer^{17,18}, COVID-19²⁰, or multiple sclerosis⁴³ using immune ant advance because: repertoire, but none has been able to simultaneously diagnose and diriven for decades, separate different diseases. In contrast, our effort could be f signatures obtained developed into a unified platform to diagnose infectious disease, ctive imaging, liquid autoimmune disorders and cancer. Such a platform has been he feasibility of using

the immune system as a single biomarker to indicate multiple diseases could shift the paradigm from symptom-driven to immune-response-driven, which provides a universal solution to

many immune-related disorders. Additionally, differential diag-

Clonotype Identification

- Many cells have a unique, identifiable clonotype
- Rare clonotypes are clinically relevant

beta

Consistent Clonotypes

1 possible clonotype

4 possible clonotypes

nBeta possible clonotypes

alpha **ann**

Clonotype Identification

Proportional Assignment (EM)

Same Data, More Cells

Cells with Assigned Clonotypes by Method

Improved Signal

Quantifying (alpha) Diversity

- Total clonotypes
- (normalized) Shannon entropy
- (inverse) Simpson Index

(currently) limited:

- Chao1
- Chao-Bunge
- breakaway
- breakaway_nof1

Simulation

Simulation Accuracy

Bioconductor Package

Cells can be ambiguous

chains

#

alpha

> beta chains #

With enclone (Cell Ranger >=3.1)

chains

#

alpha

> beta chains #

Before - Improved Signal

After - Same Signal

The Team

Miya Hugaboom

Mingzhi Ye