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WhatisaT cell?

T cell

From Wikipedia, the free encyclopedia

AT cell is a type of lymphocyte. T cells are one of the important white blood cells of the
immune system and play a central role in the adaptive immune response. T cells can be
distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell
surface.




T Cell Structure
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T Cell Structure
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Why should we be interested?

—LQ A

COMMUNICATIONS

A RTl C LE '.) Check for updates
https://doi.org/10.1038/s41467-021-25006-7 OPEN

GIANA allows computationally-efficient TCR
clustering and multi-disease repertoire
classification by isometric transformation

Hongyi Zhang', Xiaowei Zhan? & Bo Li® 3

Similarity in T-cell receptor (TCR) sequences implies shared antigen specificity between
receptors, and could be used to discover novel therapeutic targets. However, existing
methods that cluster T-cell receptor sequences by similarity are computationally inefficient,
making them impractical to use on the ever-expanding datasets of the immune repertoire.
Here, we developed GIANA (Geometric Isometry-based TCR AligNment Algorithm) a




Motivation
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Fig. 4 Disease-specific grouping of TCR repertoire samples via ultra-large-scale clustering.
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As demonstrated in autoimmune and infectious diseases,
antigen-specific public TCRs shared at low frequencies are
potentially important biomarkers?%41:42; which can be detected
by comparing large amount of TCRs from thousands of indivi-
duals. Methods have been developed to individually detect
cancer!”-18, COVID-19%0, or multiple sclerosis*> using immune

repertoire, but none has been able to simultaneously diagnose and

separate different diseases. In contrast,|our effort could be
developed into a unified platform to diagnose infectious disease,
autoimmune disorders and cancer. |Sucﬁ a platform has been




We believe this is potentially a significant advance because:
first, disease diagnosis is mainly symptom-driven for decades,
with each disease requiring a distinct set of signatures obtained
from diverse clinical assays, such as radioactive imaging, liquid
biopsy, invasive endoscopy, surgery, etc.lTEe feasiB]']ity of using
the immune system as a single biomarker to indicate multiple
diseases could shift the paradigm from symptom-driven to

immune-response-driven, which provides a universal solution to
many immune-related disorders.[Additionally, differential diag-




Application: Renal Cell Carcinoma
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Figure 1. Single-cell profiling of clear cell renal cell carcinoma



TCR Sequencing
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Figure 4. TCR analysis reveals lower diversity in terminally exhausted T cells



Cells can be ambiguous
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| As demonstrated in autoimmune and infectious diseases, |
antigen-specific public TCRs shared at low frequencies are
potentially important biomarkers2%-4142 which can be detected
by comparing large amount of TCRs from thousands of indivi-
duals. Methods have been developed to individually detect
cancer!”-18, COVID-19%0, or multiple sclerosis*> using immune

repertoire, but none has been able to simultaneously diagnose and

separate different diseases. In contrast,|our effort could be
developed into a unified platform to diagnose infectious disease,
autoimmune disorders and cancer. |Sucﬁ a platform has been




Clonotype Identification
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Consistent Clonotypes
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Clonotype Identification
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Proportional Assignment (EM)
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Same Data, More Cells
Cells with Assigned Clonotypes by Method
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Same Data, More Cells
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Improved Signal
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Quantifying (alpha) Diversity

e Total clonotypes
e (normalized) Shannon entropy
e (inverse) Simpson Index

(currently) limited:
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Simulation Accuracy
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Bioconductor Package

VDJdive

platforms 'some J rank 2122 / 2229 support‘O / 0 ] in Bioc | 0.5 years
build ok updated before release | dependencies 79

DOI: 10.18129/B9.bioc.VDIdive

Analysis Tools for 10X V(D)J Data

Bioconductor version: Release (3.17)

This package provides functions for handling and analyzing immune receptor repertoire data, such as
produced by the CellRanger V(D)J pipeline. This includes reading the data into R, merging it with paired
single-cell data, quantifying clonotype abundances, calculating diversity metrics, and producing common
plots. It implements the E-M Algorithm for clonotype assignment, along with other methods, which makes
use of ambiguous cells for improved quantification.

Author: Kelly Street [aut, cre] "=, Mercedeh Movassagh [aut] ", Jill Lundell [aut] "=, Jared Brown
[ctb], Linglin Huang [ctb]




Cells can be ambiguous
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With enclone (Cell Ranger >=3.1)
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Before - Improved Signal
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After - Same Signa
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