Greater than the sum of the parts: Learning relationships between histone modifications in single cells

Jake Yeung Institute of Science and Technology Austria (ISTA)

PhD 2019 EPFL HFSP Fellow 2019-2022 at Hubrecht, Sanger, ISTA Incoming Group Leader (2024): Genentech

Monday July 3, 2023 BIRS : Data Science Challenges in Single-Cell Research

Single-cell epigenomics is increasingly multimodal, can we infer relationships between modalities?

Adapted from Mermet, Yeung, Naef, 2017 Cold Spring Harbor Perspectives

Single-cell epigenomics is increasingly multimodal, can we infer relationships between modalities?

Adapted from Mermet, Yeung, Naef, 2017 Cold Spring Harbor Perspectives

Most chromatin profiling techniques measure only one histone modification per cell

Most chromatin profiling techniques measure only one histone modification per cell

Most chromatin profiling techniques measure only one histone modification per cell

Repressed GCTA... AGGT... Active pA-MNase based: CUT&RUN: Skene and Henikoff 2017 Elife uliCUT&RUN: Hainer et al 2019 Cell scChIC-seq: Ku et al 2019 Nat Methods iscChIC-seq: Ku et al. 2021 Genome Res sortChIC: Zeller*, Yeung* et al. 2022 Nature Genetics

pA-Tn5 based:

scChIPseq: ChIL-seq: Harada et al 2018 Nat Cell Biol Grosselin et al 2019 CoBATCH: Wang et al 2019 Mol Cell Nature Genetics CUT&TAG: Kaya-Okur et al 2019 Nat Comm scCUT&TAG: Bartosovic et al and Wu et al 2021 Nat Biotech autoCUT&TAG: Janssens et al 2021 *Nature Genetics*

To generate a cut location $w_{d,n}$ in cell d for the nth read:

1) Choose a latent variable (topic)

$$z_{d,n} \sim \text{Multinomial}\left(1, \vec{\theta_d}\right)$$

Latent factors

To generate a cut location $w_{d,n}$ in cell d for the nth read:

1) Choose a latent variable (topic)

$$z_{d,n} \sim \text{Multinomial}\left(1, \vec{\theta_d}\right)$$

Latent factors

To generate a cut location $w_{d,n}$ in cell d for the nth read:

1) Choose a latent variable (topic)

$$z_{d,n} \sim \text{Multinomial}\left(1, \vec{\theta_d}\right)$$

Latent factors

2) Choose a genomic region, given the latent variable

To generate a cut location $w_{d,n}$ in cell d for the nth read:

1) Choose a latent variable (topic)

$$z_{d,n} \sim \text{Multinomial}\left(1, \vec{\theta_d}\right)$$

Latent factors

2) Choose a genomic region, given the latent variable

To generate a cut location $w_{d,n}$ in cell d for the nth read:

1) Choose a latent variable (topic)

$$\vec{\theta_d} \sim \text{Dirichlet} \left(\alpha\right) \\ z_{d,n} \sim \text{Multinomial} \left(1, \vec{\theta_d}\right)$$

Latent factors

To generate a cut location $w_{d,n}$ in cell d for the nth read:

1) Choose a latent variable (topic)

$$\vec{\theta_d} \sim \text{Dirichlet} \left(\alpha\right) \\ z_{d,n} \sim \text{Multinomial} \left(1, \vec{\theta_d}\right)$$

Parameters **0** and **P** are inferred by collapsed Gibbs sampling

Data science solution (mix and deconvolve): Yeung*, Florescu* et al Nat Biotech 2023

Data science solution (mix and deconvolve): Yeung*, Florescu* et al Nat Biotech 2023

from this multimodal data?

scChIX-seq: chromatin immunocleavage and unmixing Yeung*, Florescu* et al Nature Biotech 2023

scChIX-seq: chromatin immunocleavage and unmixing Yeung*, Florescu* et al Nature Biotech 2023

Training data from single signals or 4

scChIX-seq: chromatin immunocleavage and unmixing Yeung*, Florescu* et al Nature Biotech 2023

scChIX-seq: chromatin immunocleavage and unmixing Yeung*, Florescu* et al Nature Biotech 2023

Extending multinomial models to allow linear combinations of profiles

Apply scChIX-seq to uncover dynamic relationships between two active histone marks

H3K4me1: active and primed regions H3K36me3: transcription

Experimentalists:

Maria Florescu Max Wellenstein Alexander van Oudenaarden group

scChIX-seq connects H3K4me1 and H3K36me3 dynamics in single cells H3K4me1 Day 0 2 4 6 1 3 5 7 H3K36me3

UMAP of cell-cell relationship matrix

Axis of variation: histone modification A Axis of variation: histone modification B

Axis of variation: histone modification A

Axis

of

variation:

Axis of variation: histone modification A

Axis

<u>of</u>

variation:

histone

incation

Axis

variation:

Axis of variation: histone modification A

Axis of variation: histone modification A histon

ation

 \square

Axis

variation:

Axis of variation: histone modification A

Axis

Axis of variation: histone modification A

Axis

Inferring pseudotime along both H3K4me1 and H3K36me3 reveals distinct dynamics

 t_i, τ_i

Inferring pseudotime along both H3K4me1 and H3K36me3 reveals distinct dynamics

Find t and τ that maximizes multinomial likelihood: $L(t,\tau) = \log\left(\Pr\left(\vec{y}|\vec{p}(t),\vec{q}(\tau),w\right)\right) \propto \sum y_g \log\left(w\vec{p}_g(t) + (1-w)\vec{q}_g(\tau)\right)$ g=1

g=1

g=1

K4me1 primes genes for transcription (K36me3)

Modeling the dynamics of both histone modifications reveals chromatin velocity

$$\frac{dK_{36}\left(t\right)}{dt} = K_4\left(t\right) - \gamma K_{36}\left(t\right)$$

Modeling the dynamics of both histone modifications reveals chromatin velocity

15

PC2 (6%)

$$\frac{dK_{36}\left(t\right)}{dt} = K_4\left(t\right) - \gamma K_{36}\left(t\right)$$

Summary of 206 genes

Integrative methods reveal interactions that are "greater than the sum of the parts"

sortChIC: Zeller*, Yeung* et al. *Nat Genetics* 2022

Axis of variation: histone modification A

Axis

Of

variation:

Challenges: towards data science-driven experimental methods and design

regulatory picture captured by single-cell genomics.

differ influences experimental design and integrative analysis.

stochastic trajectories? Can they be (partially) alleviated?

• Data science-driven solutions can reveal experimental insights that expand the gene

• Dynamics of different chromatin states can be distinct: why and how much they

• What are the limits of analyzing noisy snapshot data to learn the real underlying

We use single-incubated data as training to infer cell type and heterochromatin identity in double-incubated cells

We use single-incubated data as training to infer cell type and heterochromatin identity in double-incubated cells

with highest probability

Each double-incubated cell generates a likelihood grid, which gives probabilities for each cluster-pair Double-incubated single cells (observed)

Each double-incubated cell generates a likelihood grid, which gives probabilities for each cluster-pair Double-incubated single cells (observed)

Likelihood map for one cell

Each double-incubated cell generates a likelihood grid, which gives probabilities for each cluster-pair Double-incubated single cells (observed)

Likelihood map for one cell

Double-incubated analysis reveals heterochromatin can be shared across related cell types

Calculate logLikelihood grid for each double-incubated cell:

Double-incubated analysis reveals heterochromatin can be shared across related cell types

Calculate logLikelihood grid for each double-incubated cell:

We use single-incubated data as training to infer cell type and heterochromatin in double-incubated cells

We use single-incubated data as training to infer cell type and heterochromatin in double-incubated cells

LDA gives these probabilities for free

We use single-incubated data as training to infer cell type and heterochromatin in double-incubated cells

17

LDA gives these probabilities for free

Model for double-incubated counts coming from cluster b and ii:

 $\vec{y}|\vec{p_b}, \vec{p_{ii}} \sim \text{Multinomial}\left(w\vec{p_b} + (1-w)\vec{p_{ii}}, N\right)$

Distinct cell types from related lineage share similar heterochromatin

Distinct cell types from related lineage share similar heterochromatin

Chromatin regulation gives information of its cell type and its lineage

Each cell has two labels:

Chromatin regulation gives information of its cell type and its lineage

Each cell has two labels:

Repressive chromatin dynamics are distinct from active dynamics, and reveal hierarchical structure

Full model is complex, but integration simplifies the update equation for Gibbs sampling

$\operatorname{Prob}\left(\vec{z}, \vec{w}, \vec{\theta}, \vec{p} | \alpha, \lambda\right) = \operatorname{Prob}\left(\operatorname{topic}\right) \operatorname{Prob}\left(\operatorname{cell}\right) \operatorname{Prob}\left(\operatorname{genomic location}|\operatorname{topic}\right)$

Full model is complex, but integration simplifies the update equation for Gibbs sampling

$$\operatorname{Prob}\left(\vec{z}, \vec{w}, \vec{\theta}, \vec{p} | \alpha, \lambda\right) = \operatorname{Prob}\left(\operatorname{topic}\right)$$
$$\operatorname{Prob}\left(\vec{z}, \vec{w}, \vec{\theta}, \vec{p} | \alpha, \lambda\right) = \prod_{k=1}^{K} \operatorname{Prob}\left(p_k | \lambda\right) \prod_{d=1}^{L}$$

Prob (cell) Prob (genomic location|topic) $\int \operatorname{Prob}\left(\theta_{d} \mid \alpha\right) \int \operatorname{Prob}\left(z_{d,n} \mid \theta\right) \operatorname{Prob}\left(w_{d,n} \mid \lambda_{z_{d,n}}\right)$ n=1=1

Full model is complex, but integration simplifies the update equation for Gibbs sampling

$$\operatorname{Prob}\left(\vec{z}, \vec{w}, \vec{\theta}, \vec{p} | \alpha, \lambda\right) = \operatorname{Prob}\left(\operatorname{topic}\right) \operatorname{I}_{d=1}^{K} \operatorname{Prob}\left(\vec{z}, \vec{w}, \vec{\theta}, \vec{p} | \alpha, \lambda\right) = \prod_{k=1}^{K} \operatorname{Prob}\left(p_{k} | \lambda\right) \prod_{d=1}^{D} \operatorname{Prob}\left(\vec{z}, \vec{w} | \alpha, \lambda\right) = \int_{\vec{p}} \prod_{k=1}^{K} \operatorname{Prob}\left(p_{k} | \lambda\right) \operatorname{Prob}\left(p_{k} | \lambda\right) \operatorname{Prob}\left(\vec{z}, \vec{w} | \alpha, \lambda\right) = \int_{\vec{p}} \prod_{k=1}^{K} \operatorname{Prob}\left(p_{k} | \lambda\right) \operatorname{Pro}\left(p_{k} |$$

Prob (cell) Prob (genomic location topic) $\prod_{i=1}^{n} \operatorname{Prob}\left(\theta_{d} \mid \alpha\right) \prod_{n=1}^{n} \operatorname{Prob}\left(z_{d,n} \mid \theta\right) \operatorname{Prob}\left(w_{d,n} \mid \lambda_{z_{d,n}}\right)$

 $\operatorname{rob}\left(z_{d,n}|\theta\right)\operatorname{Prob}\left(w_{d,n}|\lambda_{z_{d,n}}\right)\int_{\vec{\theta}}\prod_{d=1}^{D}\operatorname{Prob}\left(\theta_{d}|\alpha\right)$

Probability of assigning read *n* to topic *k*:

Probability of assigning read *n* to topic *k*:

Prob
$$(z_{d,n} = k | \vec{z}_{-d,n}, \vec{w}, \alpha, \lambda) = \frac{u_{d,k} + \alpha_k}{\sum_{k'}^K u_{d,k'} + \alpha_{k'}} \cdot \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{w'}^W v_{k,w'} + \lambda_i}$$

: number of times cell d uses topic k Ud,k *V_{k,wd,n}* : number of times topic *k* uses locus *W_{d,n}* : Dirichlet prior for cell-to-topic distribution α : Dirichlet prior for topic-to-locus distribution λ

Probability of assigning read *n* to topic *k*:

$$\operatorname{Prob}\left(z_{d,n}=k|\vec{z}_{-d,n},\vec{w},\alpha,\lambda\right) = \boxed{\frac{u_{d,k}+\alpha_k}{\sum_{k'}^{K}u_{d,k'}+\alpha_{k'}}} \cdot \frac{v_{k,w_{d,n}}+\lambda_{w_{d,n}}}{\sum_{w'}^{W}v_{k,w'}+\lambda_i}$$
How much a cell likes a topic

: number of times cell d uses topic k Ud,k *V_{k,wd,n}* : number of times topic *k* uses locus *W_{d,n}* : Dirichlet prior for cell-to-topic distribution α : Dirichlet prior for topic-to-locus distribution λ

Probability of assigning read *n* to topic *k*:

$$\operatorname{Prob}\left(z_{d,n}=k|\vec{z}_{-d,n},\vec{w},\alpha,.\right.$$

How much a cell likes a topic

How much a topic likes a genomic locus

: number of times cell d uses topic k Ud,k *V_{k,wd,n}* : number of times topic *k* uses locus *W_{d,n}* : Dirichlet prior for cell-to-topic distribution α : Dirichlet prior for topic-to-locus distribution λ

