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Notation:







¡ Neighboring 
relations given by 
entanglement 
wedge nesting

¡ Neighboring four 
terms form a 
discretized second 
derivative





¡ What does that mean?

¡ A brief review…





¡ All the new inequalities have the schematic form:
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Length of some curve 
in a two-sided black hole background 

>

Entropy of the black hole 

¡ LHS can also be understood 
as the Chern number of 
an “entanglement Berry parameter space”



¡ Proof involves constructing a table for 
LHS terms and RHS terms:
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¡ This is just like local excitations and “logical bits” in the toric code.
Still trying to understand why. 

¡ Probably related to the toric code being a stabilizer state… 
The inequalities probably count stabilizer operators…



¡ Two new infinite families of 
holographic entropy inequalities.

¡ They naturally live on (discretized) two-dimensional manifolds. 
One of the resulting polytopes is the cubohemioctahedron. 

¡ The spatial organization on the 2d manifolds is dictated by 
entanglement wedge nesting.

¡ These manifolds are kinematic spaces or 
modular Berry parameter spaces. 

¡ The inequalities motivate a new type of differential entropy.
¡ Schematically, they read: 

   “length of a curve” > “black hole horizon”
   “modular Chern number” > “black hole horizon”

¡ The proof involves manipulations, which are familiar from the 
toric code. This probably reflects properties of stabilizer states.

THANK YOU!


