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Known Entropy Inequalities

Table 1: Representatives for each of the 8 inequality orbits of the holographic entropy cone Cs for 5 regions. Respectively,
their orbit lengths are 15, 20, 45, 72, 10, 60, 60 and 90, thus defining 372 facets for Cs in a 31-dimensional entropy space.

Cuenca,
2019

1. 54+ S5 > San

3. Sapc+ Sape+ SecpeE > Sa+ Sec+ Spe+
SABCDE

5. Sapc+Sapp+Sape+Sacp+Sace+Sape+
Sece+SBpE+ScpE > Sap+Sac+Sap+SBe+
Sce+ Spe+ Secp+ SaBce+Saspe+ Sacpe

7.25aBc+SaBp+SaBE+SAacpD+SapeE+SBCE+
SBpe > Sap+Sac+Sap+Sec+ See+ Spe+
Sapep + Sapce+ SaBDE

2. SaB+ Sac+Spc>Sa+ S+ Sc+ Sarc

4. SaBc+SaBp+Sace+SepE+Scpe > Sap+
Sac+Sep+ Sce+ Spe+ SapcpE

6. 3SaBc+ 3SaBp + SaBe + Sacp + 3Sace +
Sape+SBcp+SecE+SBpE+ ScpE > 254+
254c+Sap+Sag+Spc+2Spp+2Sce+Spe+
25aBcp +2SaBcE + SaBpE+ SacpE

8. Sap+Spc+ Sape+ Sace+ Sape+ Sepe+
Scpe > Sa+Sp+Sc+Sp+Sae+Spe+Spce+
SaBpe+ SacpE

SaBpE + SaBpr+ SaBeg + Saper + SaDEG

+Sacpe + Sacpr + Sacec + SBpEF + SBDEG

+SBcpe + Seepr + SeeceEc + ScpeF + ScpEG

>

Sapc + Sape + Sapr + Sagc + Sepe + Sepr + Sec + Scpe + Scpr + Scec

+ SaBpEF + SABDEG + SAacpEF + SacpEG + SBeDEF + SBCDEG

(2.1)
BC and
Wang,
2022



New Inequalities

Toric inequalities are defined for m and n, which are both odd. They take the following

form: I o
ZZSA;LBJ.‘ = ZZSA;BJ.- "‘SAgm) (1.6)

i=1 j=1 i=1 j=1
We characterize and explore these inequalities in Section 2.2, then prove them in Section 5.1.
We exemplified how terms of (1.6) can be arranged on a discretized torus in inequality (1.3).
As we explain in Section 2.2.1, that spatial arrangement has further, even more compelling
features.

Projective plane inequalities are defined for m = n. They read:
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To give you a feeling:

SA,A,43B; +S454,4:B, +S4:4,4,B, +S4,454,8, +SA4A:A,B;
+S4,4,43B, +S454,4:B, +54:4,4,B, +54,454,B, +SA,A5A,B,
+S4,4,43Bs +S454,4:B5 +5454,4,B5 +SA4,454,Bs +SA,A5A,Bs

> (2.9)

SA4A5B1 + SA1A231 + SA3A4B1 + SA5A1B1 + SAzAgBl
+Sa,4.B, +S4,4,B, +S4s4,B, +54:4,B, +S54,45B,
+Sa,4:Bs  +S54,4,B5 +5454,B5 +54:4,Bs + 54,4585

+ SA,A,45A,A5



The inequalities live on two-

dimensional manifolds
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This inequality lives on the

projective plane:

EFG

Neighboring
relations given by
entanglement

ABCD ABCDG ABCG | DEF  ADEF  ADF Wedge neStinQ

ABCD ABC DEFG ADEFG

ABCD = ABD ABDG  ABG CDEF  ACDEF ACDF ABCDF Neighboring four
terms form a
discretized second
derivative

ABCDF ABDF ABDFG ABFG CDE ACDE CDA

ADF ADFG AFG BCDE ABCDE ABCD

ADEFG AEFG BCD ABCD

EFG ABCD



One last inequality:

cubohemioctahedron

6. 3SaBc+ 3SaBp + SaBe + Sacp + 3Sace +
SapE+SBep+SBce+ SBpE+ ScpE > 2SaB+
254c+Sap+Sag+Spc+2Spp+2Sce+Spe+
254Bcp +25aBcE + SaBpE + SacDE




These two-dimensional manifolds

are kinematic spaces

What does that mean?

A brief review...
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How to describe a center of AdS;?

Czech et al., 2013-5
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intersecting geodesics

tangent geodesics

circumference 025 (u,v) j
4G - thersect Ou Ov aues

All the new inequalities have the schematic form:
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New inequalities:

Length of some curve
in a two-sided black hole background

>

Entropy of the black hole

LHS can also be understood
as the Chern number of
an “entanglement Berry parameter space”



Why toric code?

Proof involves constructing a table for
LHS terms and RHS terms:

z y = f(z)

AB BC AC A B C ABC
O 0 0 0 0 0 0 O
o 0 1 0 0 0 1
o 1 0 0 0 0 1
c o0 1 1 0 0 1 1
1 0 0 0 0 0 1
A1 0 1 1 0 0 1
B 1 1 0 0 1 0 1
1 1 1 0 0 0 1

Table 2. Proof by contraction of monogamy of the holographic mutual information.
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The assignment of 0’s and 1’s is based

on the existence of certain loops on the two-d manifold
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This is just like local excitations and “logical bits” in the toric code.
Still trying to understand why.

Probably related to the toric code being a stabilizer state...
The inequalities probably count stabilizer operators...



Everything Everywhere All at Once:

Two new infinite families of
holographic entropy inequalities.
They naturally live on (discretized) two-dimensional manifolds.
One of the resulting polytopes is the cubohemioctahedron.
The spatial organization on the 2d manifolds is dictated by
entanglement wedge nesting.
These manifolds are kinematic spaces or
modular Berry parameter spaces.
The inequalities motivate a new type of differential entropy.
Schematically, they read:

“length of a curve” > “black hole horizon”

“modular Chern number” > “black hole horizon”
The proof involves manipulations, which are familiar from the
toric code. This probably reflects properties of stabilizer states.

THANK YOU!




