Euclidean Wormholes and String Theory

Gary Shiu

University of Wisconsin-Madison

Why Euclidean Wormholes?

- Theoretical laboratory for sharpening concepts such as locality in gravitational systems.
- Play crucial roles in Holography, especially from the quantum information perspective.
- Explicit role in producing the Page-curve of entanglement entropy, as a fine-grained entropy, of the black hole radiation degrees of freedom. [Penington];Almheiri, Mahajan, Maldacena, Zhao];
- Results demonstrating the utility of wormholes in black hole information were obtained in 2 D gravity in which explicit calculations are under control.
- Do Euclidean wormholes play similar roles in $D \geq 4$ where gravity is dynamical?
- Do they arise as Euclidean saddles of UV complete theories such as string theory?
- Are they genuine saddle points? Perturbatively stable?
- Can we construct Euclidean wormholes from compactification of string theory?

Plan of the Talk

- Complex saddles and Euclidean wormholes in the Lorentzian path integral $\left[\right.$ Loges, Gs, sudhir, $\left.{ }^{2} 2\right]$:
- Evaluate Lorentzian path integral using Picard-Lefschetz theory: Lorentzian, Euclidean \& complex saddles treated democratically. Allowability criterion [Kontsevich, Segal, '21]; [Witten, '21].
- Wormhole stability: Consider gauge invariant perturbations and correct boundary conditions. No homogenous perturbation (pure gauge) while inhomogeneous modes increase the Euclidean action. Axionic wormhole is perturbatively stable.
- A 10d construction of Euclidean axion wormholes in flat and AdS space [Loges, Gs, van Riet '23]:
- Explicit 10d embedding of Euclidean axion wormhole from universal hypermultiplet of IIA compactification on T^{6}.
- Explicit 10d embedding of Euclidean axion wormholes in $A d S_{5} \times T^{1,1}$: test of positivity bound $\operatorname{Tr}(F \pm \star F)^{2} \geq 0$ in the dual CFT.

Giddings-Strominger Wormhole

Giddings-Strominger Solutions

- Consider the following Euclidean action in $\mathrm{d} \geq 3$ dimensions:

$$
S=\frac{1}{2 \kappa_{d}^{2}} \int\left(\star(\mathcal{R}-2 \Lambda)-\frac{1}{2} G_{i j}(\varphi) \mathrm{d} \varphi^{i} \wedge \star \mathrm{~d} \varphi^{j}\right)
$$

- A simple set of solutions with $\mathrm{O}(\mathrm{d})$ symmetry take the form [Giddings, Strominger, '88]:

$$
\begin{aligned}
\mathrm{d} s^{2} & =f(r)^{2} \mathrm{~d} r^{2}+a(r)^{2} \mathrm{~d} \Omega_{d-1}^{2}, \\
\left(\frac{a^{\prime}}{f}\right)^{2} & =1+\frac{a^{2}}{\ell^{2}}+\frac{\mathrm{c}}{2(d-1)(d-2) a^{2 d-4}}, \\
\mathrm{c} & =G_{i j}(\varphi) \frac{\mathrm{d} \varphi^{i}}{\mathrm{~d} h} \frac{\mathrm{~d} \varphi^{j}}{\mathrm{~d} h}=\mathrm{constant}
\end{aligned}
$$

- $h(r)$ is a harmonic function, normalized to $h^{\prime}=f / a^{d-1}$ so that $\star h=\operatorname{vol}_{d-1}$; plays the role of affine parameter along the geodesic.

Three Classes of Euclidean Geometries

$c>0$
space-like geodesic
Core instanton

$\mathrm{c}=0$
null geodesic
Extremal instanton, e.g. D-instanton

$\mathrm{c}<0$
time-like geodesic
Wormhole

Three Classes of Euclidean Geometries

$c>0$
space-like geodesic
Core instanton

$$
\mathrm{c}=0
$$

null geodesic

$c<0$
time-like geodesic

Extremal instanton, e.g. D-instanton
Wormhole

Wormhole Regularity

- Required geodesic length for wormholes only depends on the wormhole size in AdS units:

$$
D_{d}\left(\frac{a_{0}}{\ell}\right)=\text { "length of geodesic required by geometry" }
$$

- $D_{d}\left(q_{0}\right)$ is monotonic in $q_{0} \equiv a_{0} / \ell$:

$$
2 \pi \sqrt{\frac{d-1}{2(d-2)}}=D_{d}(0) \quad \geq \quad D_{d}\left(q_{0}\right) \quad \geq \quad D_{d}(\infty)=2 \pi \sqrt{\frac{d-2}{2(d-1)}}
$$

- There must exist a time-like geodesic longer than $D_{d}\left(q_{0}\right)$ [Arkani-Hamed, Orgera, Polchinski, 077]

$$
\sum_{i} \frac{1}{\beta_{i}^{2}}>\frac{d-1}{2(d-2)}
$$

Euclidean Axion Wormholes in String Theory

[Loges, GS, Van Riet, '23]

Wormholes and Quantum Gravity

Euclidean Wormholes

- These wormholes lead to a breakdown of locality:

$$
S_{W H}=-\frac{1}{2} \sum_{I, J} \int d^{D} x \int d^{D} y \widehat{O}_{I}(x) C^{I J} \mathscr{O}_{J}(y)
$$

- Coleman's α-parameters [Coleman, '89]:

$$
e^{-S_{W H}}=\int d \alpha_{I} e^{-\frac{1}{2} \alpha_{I}\left(C^{-1}\right)^{I J} \alpha_{J}} e^{-\int d^{D} x \sum_{I} \alpha_{I} \widehat{O}_{I}(x)}
$$

- Euclidean wormhole, if embeddable into AdS compactification of string theory, poses a puzzle for AdS/CFT as they jeopardize factorization of the two bdy CFTs [Maldacena, Maoz, '04].

Wormholes and Quantum Gravity

Wormholes breaks global symmetries by Planck suppressed operators.
They play a key role in the axionic Weak Gravity Conjecture [Brown, cotrrell, gs,
Soler, '45];:Montero, Valenzuela, Uranga, '15]; [Heidenreich, Reece, Rudelius, '155]; [Hebecker,Mangat-Theissen-Witkowski; '16]
[Hebecker, Mikhail, Soler, '18];

$$
f \cdot S_{\text {instanton }} \lesssim M_{P}
$$

which constrains some large field inflation models.
Derivative corrections lower the wormhole action, giving support to the axionic WGC

Andriolo, Huang, Noumi, Ooguri, GS, '20]; [Andriolo, GS, Soler, Van Riet, '22].
α-parameter interpretation leads to -1 form global symmetries [McNamara, Vafa, '20]Factorization and AdS/CFT (ensemble average).
\exists AdS wormholes which violate positivity bound $\operatorname{Tr}(F \pm \star F)^{2} \geq 0$ in the dual
CFT:
: [Katmadas, Ruggeri, Trigiante, VR, '18]; [Loges, GS, Van Riet, '23]

Wormhole Stability

Wormhole Stability

- Previous works (25+ years) on perturbative stability of axion wormholes have led to contradictory claims, casting doubts on their contributions to the Euclidean path integral.

Frame Stable Gauge-inv $\mathrm{j}=0,1 \quad$ B.C.

Rubakov, Shvedov, '96	axion	No	No	physical	X
Alonso, Urbano, '17	axion	Yes	Yes	physical	X
Hertog, Truijen, Van Riet, '18	axion	No	Yes	pure gauge	X
Loges, GS, Sudhir, '22	3-form	Yes	Yes	pure gauge	,
Hertog, Meanaut, Tielemans, Van Riet, to appear	axion	Yes	Yes	pure gauge	\boldsymbol{y}

Boundary Conditions and Gauge Invariance

- Under diffeomorphism, metric and axion/3-form perturbations are mixed. Physically meaningful conclusions can only be drawn on gauge-invariant perturbations.
- In analyzing scalar perturbations around the GS wormhole, the boundary conditions in the 3 -form picture can be imposed more straightforwardly. Finite energy perturbations:

$$
\int \delta H \wedge \star \delta H<\infty
$$

which corresponds to:

$$
\int \mathrm{d} \delta \theta \wedge \star \mathrm{~d} \delta \theta<\infty,
$$

- Metric perturbations vanish at the boundaries. Gauge invariant perturbations are Dirichlet in the H_{3} picture [Loges, GS, Sudhir, '22], while in the θ picture, gauge invariant perturbations involve mixed b.c. [Hertog, Meanaut, Tielemans, Van Riet, to appear].

Wormhole Stability

- We determine the stability of GS wormhole by carrying out the following steps:
- Parametrization of scalar perturbations and their boundary conditions.
- Diffeomorphisms and physical degrees of freedom.
- Quadratic action.
- Integrate out non-dynamical and unphysical, gauge-dependent modes.
- Analyze spectrum of remaining physical modes.

Steps akin to analyzing gauge invariant perturbations in inflationary cosmology.
But as we shall show, not only is the spectrum of perturbations
but on-shell value of the quadratic action is important for determining stability.

Scalar Perturbations

$$
\begin{aligned}
\mathrm{d} s^{2} & =a(\eta)^{2}\left[-(1+2 \phi) \mathrm{d} \eta^{2}+2 \partial_{i} B \mathrm{~d} \eta \mathrm{~d} x^{i}+\left((1-2 \psi) \gamma_{i j}+2 \nabla_{i} \partial_{j} E\right) \mathrm{d} x^{i} \mathrm{~d} x^{j}\right] \\
H & =\frac{n}{2 \pi^{2}}\left[(1+s) \mathrm{vol}_{3}+\mathrm{d} \eta \wedge\left(\frac{1}{2} \sqrt{\gamma} \epsilon_{i j k} \partial^{i} w \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{k}\right)\right]
\end{aligned}
$$

- 6 scalar perturbations: ϕ, ψ, E, B, s, w.
- Dirichlet boundary conditions: perturbations must go to zero.

Diffeomorphisms

- Some of these perturbations are unphysical and only represent the freedom to perform diffeomorphism.
. Under a diffeomorphism generated by $\xi=\zeta^{0} \partial_{0}+\gamma^{i j}\left(\partial_{i} \zeta\right) \partial_{j}$ parametrized by two scalar functions ζ^{0}, ζ, the perturbations transform:

$$
\begin{aligned}
& \delta_{\xi} \phi=\dot{\zeta}^{0}+\mathcal{H} \zeta^{0} \\
& \delta_{\xi} B=-\zeta^{0}+\dot{\zeta} \\
& \delta_{\xi} s=\Delta \zeta \\
& \delta_{\xi} \psi=-\mathcal{H} \zeta^{0} \\
& \delta_{\xi} E=\zeta \\
& \delta_{\xi} w=\dot{\zeta}
\end{aligned}
$$

- Only one physical scalar mode. Convenient to pick:

$$
\mathcal{S}=s-\Delta E \quad \delta_{\xi} \mathcal{S}=0
$$

Quadratic Action

- Expanding the action to quadratic order in perturbations:

$$
\begin{gathered}
S=\int\left(\frac{1}{2} \star R-\frac{1}{2} H \wedge \star H\right)+\left.(\text { boundary terms }) \longrightarrow S\right|_{\mathrm{bkgd}}+S_{2}+\cdots \\
S_{2}=\int \mathrm{d} \eta \mathrm{~d}^{3} x \sqrt{\gamma} a^{2}\left\{-3(\dot{\psi}+\mathcal{H} \phi)^{2}+(B-\dot{E}) \Delta(B-\dot{E})-2(\dot{\psi}+\mathcal{H} \phi) \Delta(B-\dot{E})\right. \\
-3\left(1+\mathcal{H}^{2}\right)\left[(\phi+3 \psi-\Delta E+s)^{2}-\phi^{2}+(B-w) \Delta(B-w)\right] \\
\quad+(2 \phi-\psi)(\Delta+3) \psi\}+\sqrt{6} \tilde{n} \int \mathrm{~d} \eta \mathrm{~d}^{3} x \sqrt{\gamma}(\dot{s}-\Delta w) \theta
\end{gathered}
$$

- Note: not all perturbations are dynamical (non-dynamical perturbations impose constraints)
- Expand perturbations in angular momentum eigenstates:

$$
\Delta \rightarrow \lambda_{j}=j(j+2) \in\{0,3,8,15, \ldots\}
$$

Homogeneous Modes $(j=0)$

- In terms of conjugate momentum of the only dynamical field ψ :

$$
\begin{aligned}
\left.\mathcal{L}\right|_{j=0} & =a^{2}\left[-3\left(\dot{\psi}_{0}+\mathcal{H} \phi_{0}\right)^{2}-9\left(1+\mathcal{H}^{2}\right)\left(2 \phi_{0}+3 \psi_{0}\right) \psi_{0}+3\left(2 \phi_{0}-\psi_{0}\right) \psi_{0}\right] \\
& =\Pi_{0}^{\psi} \dot{\psi}_{0}+\frac{\left(\Pi_{0}^{\psi}\right)^{2}}{12 a^{2}}-3 a^{2}\left(10+9 \mathcal{H}^{2}\right) \psi_{0}^{2}+[\underbrace{\mathcal{H} \Pi_{0}^{\psi}-6 a^{2}\left(2+3 \mathcal{H}^{2}\right) \psi_{0}}_{\text {gauge-invariant }}] \phi_{0}
\end{aligned}
$$

- Integrate out non-dynamical field ϕ_{0} :

$$
\left.\mathcal{L}\right|_{j=0}=6 a^{2} \mathcal{H}^{-1}\left[\left(2+3 \mathcal{H}^{2}\right) \psi_{0} \dot{\psi}_{0}+\left(2+\mathcal{H}^{2}\right) \psi_{0}^{2}\right]=\frac{\mathrm{d}}{\mathrm{~d} \eta}\left[3 a^{2} \mathcal{H}^{-1}\left(2+3 \mathcal{H}^{2}\right) \psi_{0}^{2}\right]
$$

- No physical degrees of freedom (no conformal factor problem!). Similarly, $j=1$ mode is pure gauge.

Quadratic Action for Physical Perturbations

- For each $j \geq 2$ there is one physical degree of freedom $\left(\mathcal{S}_{j}=s_{j}+\lambda_{j} E_{j}\right)$

$$
S_{2}=\int \mathrm{d} \eta \sum_{j \geq 2} \frac{3 a^{2}}{\lambda_{j}\left(\frac{9}{\lambda_{j}-3}+\frac{1}{1+\mathcal{H}^{2}}\right)}\left[\dot{S}_{j}^{2}+\frac{6 \lambda_{j}\left(1+\mathcal{H}^{2}\right)}{\left(\lambda_{j}-3\right) \mathcal{H}} S_{j} \dot{S}_{j}-\frac{\lambda_{j}}{\mathcal{H}^{2}}\left(\frac{\lambda_{j}-9}{\lambda_{j}-3}\left(1+\mathcal{H}^{2}\right)-1\right) S_{j}^{2}\right]
$$

- Wick rotate $\eta \rightarrow-i r$ to GS wormhole: $a(r) \propto \sqrt{\cosh (2 r)}$ and $\mathcal{H}_{E}(r)=-i \mathcal{H}(i r)=\tanh (2 r)$
- Canonical normalize $\mathcal{Q}_{j}=(\cdots) \mathcal{S}_{j}$:

$$
S_{2}^{\mathrm{E}}=\int \mathrm{d} r \sum_{j \geq 2}(\frac{1}{2}\left(\mathcal{Q}_{j}^{\prime}\right)^{2}+\frac{1}{2}(\underbrace{U_{j}^{\mathrm{E}}+\lambda_{j}+1}_{>0}) \mathcal{Q}_{j}^{2}+G_{j}^{\mathrm{E}})
$$

- S_{2}^{E} looks positive definite, but we will have to check the boundary term G_{j}^{E}.

Eigenvalue Problem

- Schrodinger-like problem: $\mathcal{Q}_{j}^{(k) \prime \prime}+U_{j}^{\mathrm{E}}(r) \mathcal{Q}_{j}^{(k)}=\omega_{j}^{(k)} \mathcal{Q}_{j}^{(k)}$

. $\mathcal{S} \rightarrow 0 \Longrightarrow \mathcal{Q}_{j}^{(k)}$ must go to zero faster than $e^{-|r|}$. Look for bound states with $\omega_{j}^{(k)}<-1$.

Eigenfunctions

- There is exactly one even and one odd bound state for each $j \geq 2$:

. Total derivative term G_{j}^{E} is not integrable for the even eigenfunctions: $S_{2}\left[\mathcal{Q}^{(\text {even })}\right] \rightarrow+\infty$

Spectrum and Stability

$$
\begin{array}{r|cc||c|cc}
j & \omega_{j}^{(\text {odd })} & \omega_{j}^{(\text {odd })}+\lambda_{j}+1 & j & \omega_{j}^{(\text {odd })} & \omega_{j}^{(\text {odd })}+\lambda_{j}+1 \\
\hline 2 & -1.5335 & 7.4665 & 6 & -1.0921 & 47.9079 \\
3 & -1.2873 & 14.7127 & 7 & -1.0705 & 62.9295 \\
4 & -1.1817 & 23.8183 & 8 & -1.0556 & 79.9444 \\
5 & -1.1256 & 34.8744 & 9 & -1.0450 & 98.9550 \\
\mathcal{Q}=\sum_{j \geq 2} c_{j} \mathcal{Q}_{j}^{\text {(odd) }}(r) Y_{j}(\Omega) \Longrightarrow \quad S_{2}=\sum_{j \geq 2} \frac{1}{2}\left(\omega_{j}^{\text {(odd) }}+\lambda_{j}+1\right) c_{j}^{2}>0
\end{array}
$$

The Euclidean action only ever increases under scalar perturbations: the GS wormhole is perturbatively stable.

String Theory Embeddings

[Loges, GS, Van Riet, '23]

Euclidean Axion Wormholes in Flat Space

[Loges, GS, Van Riet, '23]

- Reduction ansatz motivated by the extremal solution:

$$
\begin{aligned}
\mathrm{d} s_{10}^{2} & =e^{-6 b \varphi} \mathrm{~d} s_{4}^{2}+e^{2 b \varphi} R^{2} \mathcal{M}_{i j} \mathrm{~d} \theta^{i} \mathrm{~d} \theta^{j} \\
\mathcal{M}_{i j} & =\operatorname{diag}\left(e^{\vec{\beta}_{1} \cdot \vec{\Phi}}, e^{\vec{\beta}_{2} \cdot \vec{\Phi}}, \ldots, e^{\vec{\beta}_{6} \cdot \vec{\Phi}}\right) \\
C_{3} & =\chi_{1} \mathrm{~d} \theta^{123}+\chi_{2} \mathrm{~d} \theta^{145}+\chi_{3} \mathrm{~d} \theta^{256}+\chi_{4} \mathrm{~d} \theta^{346}
\end{aligned}
$$

- 4d theory contains 11 scalars:

	1	2	3	4	5	6
$\mathrm{D} 2_{1}$	\times	\times	\times			
$\mathrm{D} 2_{2}$	\times			\times	\times	
$\mathrm{D} 2_{3}$		\times			\times	\times
$\mathrm{D} 2_{4}$			\times	\times		\times

No Wick rotation that turns them into
Lorentzian "overextremal" branes.

$$
S_{4}=\frac{1}{2 \kappa_{4}^{2}} \int\left[-\mathcal{R}+\frac{1}{2} \sum_{i=1}^{4}\left[\left(\partial s_{i}\right)^{2}+e^{2 s_{i}}\left(\partial \chi_{i}\right)^{2}\right]+\frac{1}{2} \sum_{i=5}^{7}\left(\partial s_{i}\right)^{2}\right]
$$

There are four decoupled axio-dilaton pairs with $\beta=2$:

$$
\sum_{i=1}^{4} \frac{1}{\beta_{i}^{2}}=1 \quad>\quad \frac{3}{4}
$$

Euclidean Axion Wormholes in AdS Space

[Loges, GS, Van Riet, '23]

Background solution:

$$
\begin{aligned}
\mathrm{d} s_{10}^{2} & =\ell^{2} \mathrm{~d} s_{5}^{2}+\ell^{2}\left(\mathrm{~d} s_{\mathrm{KE}}^{2}+\eta^{2}\right) \\
e^{\Phi} & =g_{\mathrm{s}} \\
B_{2} & =0 \\
C_{0} & =0 \\
C_{2} & =0 \\
F_{5} & =4 \ell^{2}(1-i \star) \mathrm{vol}_{T^{1,1}}
\end{aligned}
$$

Reduction ansatz;

$$
\begin{aligned}
\mathrm{d} s_{10}^{2} & =\ell^{2} e^{-\frac{2}{3}(4 u+v)} \mathrm{d} s_{5}^{2}+\ell^{2}\left(e^{2 u} \mathrm{~d} s_{\mathrm{KE}}^{2}+e^{2 v} \eta^{2}\right) \\
e^{\Phi} & =g_{\mathrm{s}} e^{\phi} \\
B_{2} & =\ell^{2} g_{\mathrm{s}}^{1 / 2} b \Phi_{2} \\
C_{0} & =i g_{\mathrm{s}}^{-1} \chi \\
C_{2} & =i \ell^{2} g_{\mathrm{s}}^{-1 / 2} c \Phi_{2} \\
F_{5} & =4 \ell^{2}(1-i \star) \operatorname{vol}_{T^{1,1}}
\end{aligned}
$$

Consistent Reduction to 5D

[Cassani, Dall'Agata, Faedo - '10]

Consistent Reduction to 5D

[Cassani, Dall'Agata, Faedo - '10]
[Cassani, Faedo - '11]
Not Giddings-Strominger wormhole!

Dual CFT and Operators Positivity

Type IIB on $T^{1,1}$ is dual to an $\mathcal{N}=1$ quiver CFT with two nodes [Klebanov, Witten - '98]

$$
\begin{array}{rlrl}
e^{-\Phi} & \longleftrightarrow \frac{1}{g_{1}^{2}}+\frac{1}{g_{2}^{2}} & C_{0} & \longleftrightarrow \\
\theta_{1}+\theta_{2} \\
\int_{S^{2}} B_{2} & \longleftrightarrow \frac{1}{g_{1}^{2}}-\frac{1}{g_{2}^{2}} & \int_{S^{2}} \tilde{C}_{2} & \longleftrightarrow \\
\left(\mathrm{~d} \tilde{C}_{2}=\mathrm{d} C_{2}-C_{0} \mathrm{~d} B_{2}\right)
\end{array}
$$

Dual operators:

$$
\begin{aligned}
\mathcal{O}_{\Phi}=\operatorname{Tr}\left(F_{1} \wedge \star F_{1}+F_{2} \wedge \star F_{2}\right) & \mathcal{O}_{C_{0}}=\operatorname{Tr}\left(F_{1} \wedge F_{1}+F_{2} \wedge F_{2}\right) \\
\mathcal{O}_{B_{2}}=\operatorname{Tr}\left(F_{1} \wedge \star F_{1}-F_{2} \wedge \star F_{2}\right) & \mathcal{O}_{\tilde{C}_{2}}=\operatorname{Tr}\left(F_{1} \wedge F_{1}-F_{2} \wedge F_{2}\right)
\end{aligned}
$$

Operator positivity:

$$
\left\langle\operatorname{Tr}\left[\left(F_{i} \pm \star F_{i}\right)^{2}\right]\right\rangle \geq 0 \quad \Longrightarrow \quad\left\langle\mathcal{O}_{\Phi}\right\rangle \pm\left\langle\mathcal{O}_{B_{2}}\right\rangle \geq\left\langle\mathcal{O}_{C_{0}}\right\rangle \pm\left\langle\mathcal{O}_{\tilde{C}_{2}}\right\rangle
$$

Violation of Positivity Bounds

With the fully explicit 10d gravity solution, we can check whether $\left\langle\mathcal{O}_{\Phi}\right\rangle \pm\left\langle\mathcal{O}_{B_{2}}\right\rangle \geq\left\langle\mathcal{O}_{C_{0}}\right\rangle \pm\left\langle\mathcal{O}_{\tilde{C}_{2}}\right\rangle$
This is always violated (for all q_{0} and χ_{∞})!

One boundary vs two?

Summary

Summary

- Establish that GS wormhole is perturbatively stable. The 3-form picture makes gauge invariance and proper boundary boundary conditions transparent.
- Conclusion of stability may carry over to AdS space since the (physical) perturbations are localized to the wormhole throat whose size is much less than the AdS curvature.
- Construct explicit Euclidean axion wormholes in flat and AdS space from string theory:
- Flat space wormholes from type IIA on T^{6} : cannot Wick rotate to only Lorentzian branes.
- AdS space wormholes from type IIB on $T^{1,1}$
- Not Giddings-Strominger type: saxions have a potential and are sourced by the axions.
- Known CFT dual: violation of positivity bounds in the CFT state for two-boundary solutions.
- Massive scalars u, v dual to irrelevant operators may play a crucial role in identifying such CFT state.
- Other conceptual issues remain, e.g., α-parameters? Baby universes? For small wormholes (in AdS units) where one might integrate out wormhole effects a la Coleman, the solutions break down.

