Euclidean Wormholes and String Theory

Gary Shiu University of Wisconsin-Madison

Why Euclidean Wormholes?

- Theoretical laboratory for sharpening concepts such as locality in gravitational systems.
- Play crucial roles in Holography, especially from the quantum information perspective.
- Explicit role in producing the **Page-curve** of entanglement entropy, as a fine-grained entropy, of the black hole radiation degrees of freedom. [Penington];[Almheiri, Mahajan, Maldacena, Zhao];..
- Results demonstrating the utility of wormholes in black hole information were obtained in 2D gravity in which explicit calculations are under control.
- Do Euclidean wormholes play similar roles in $D \ge 4$ where gravity is dynamical?
- Do they arise as Euclidean saddles of UV complete theories such as string theory?
 - Are they genuine saddle points? Perturbatively stable?
 - Can we construct Euclidean wormholes from compactification of string theory?

Plan of the Talk

- - **increase** the Euclidean action. Axionic wormhole is perturbatively stable.
- - IIA compactification on T^6 .
 - bound $Tr(F \pm \star F)^2 \ge 0$ in the dual CFT.

Complex saddles and Euclidean wormholes in the Lorentzian path integral [Loges, GS, Sudhir, '22]:

• Evaluate Lorentzian path integral using Picard-Lefschetz theory: Lorentzian, Euclidean & complex saddles treated democratically. Allowability criterion [Kontsevich, Segal, '21]; [Witten, '21].

 Wormhole stability: Consider gauge invariant perturbations and correct boundary **conditions**. No homogenous perturbation (pure gauge) while inhomogeneous modes

A 10d construction of Euclidean axion wormholes in flat and AdS space [Loges, GS, Van Riet '23]:

Explicit 10d embedding of Euclidean axion wormhole from universal hypermultiplet of

Explicit 10d embedding of Euclidean axion wormholes in $AdS_5 \times T^{1,1}$: test of positivity

Giddings-Strominger Wormhole

Giddings-Strominger Solutions

Consider the following Euclidean action in $d \ge 3$ dimensions: •

$$S = \frac{1}{2\kappa_d^2} \int \left(\star (\mathcal{R} - 2\Lambda) - \frac{1}{2} G_{ij}(\varphi) \mathrm{d}\varphi^i \wedge \star \mathrm{d}\varphi^j \right)$$

A simple set of solutions with O(d) symmetry take the form [Giddings, Strominger, '88]: •

$$ds^{2} = f(r)^{2} dr^{2} + a(r)^{2} d\Omega_{d-1}^{2},$$

$$\left(\frac{a'}{f}\right)^{2} = 1 + \frac{a^{2}}{\ell^{2}} + \frac{c}{2(d-1)(d-2)a^{2d-4}},$$

$$c = G_{ij}(\varphi)\frac{d\varphi^{i}}{dh}\frac{d\varphi^{j}}{dh} = \text{constant}$$

• role of affine parameter along the geodesic.

h(r) is a harmonic function, normalized to $h' = f/a^{d-1}$ so that $\star h = \operatorname{vol}_{d-1}$; plays the

Three Classes of Euclidean Geometries

c > 0space-like geodesic

Core instanton

Extremal instanton, e.g. D-instanton

 $G_{ij}(\varphi) \,\mathrm{d}\varphi^i \mathrm{d}\varphi^j = -\mathrm{d}\chi^2$

c = 0null geodesic

 \times

c < 0time-like geodesic

Wormhole

only time-like geodesics

Three Classes of Euclidean Geometries

c > 0 space-like geodesic nu Core instanton Extremal insta

c = 0null geodesic

 \times

c < 0time-like geodesic

Extremal instanton, e.g. D-instanton

Wormhole

 $c \ge 0$ all possible, but longest time-like geodesic has length $\frac{2\pi}{|\beta|}$

Wormhole Regularity

- $D_d(q_0)$ is monotonic in $q_0 \equiv a_0/\ell$:

$$2\pi \sqrt{\frac{d-1}{2(d-2)}} = D_d(0) \ge D_d(q_0) \ge D_d(\infty) = 2\pi \sqrt{\frac{d-2}{2(d-1)}}$$

•

$$\sum_{i} \frac{1}{\beta_i^2} > \frac{d-1}{2(d-2)}$$

Required geodesic length for wormholes only depends on the wormhole size in AdS units:

 $D_d\left(\frac{a_0}{\ell}\right) =$ "length of geodesic required by geometry"

There must exist a time-like geodesic longer than $D_d(q_0)$ [Arkani-Hamed, Orgera, Polchinski, '07]

Euclidean Axion Wormholes in String Theory

[Loges, GS, Van Riet, '23]

Wormholes and Quantum Gravity

Euclidean Wormholes

These wormholes lead to a **breakdown of locality**:

Coleman's *α***-parameters** [Coleman, '89]:

$$e^{-S_{WH}} = \int d\alpha_I \ e^{-\frac{1}{2}}$$

•

٠

$$S_{WH} = -\frac{1}{2} \sum_{I,J} \int d^D x \int d^D y \mathcal{O}_I(x) C^{IJ} \mathcal{O}_J(y)$$

 $\frac{1}{2}\alpha_I(C^{-1})^{IJ}\alpha_{J\rho} - \int d^D x \sum_I \alpha_I \mathcal{O}_I(x)$ ensembles

Euclidean wormhole, if embeddable into AdS compactification of string theory, poses a puzzle for AdS/CFT as they jeopardize factorization of the two bdy CFTs [Maldacena, Maoz, '04].

Wormholes and Quantum Gravity

[Hebecker, Mikhail, Soler, '18]; ...

which constrains some large field inflation models.

axionic WGC [Andriolo, Huang, Noumi, Ooguri, GS, '20]; [Andriolo, GS, Soler, Van Riet, '22].

Factorization and AdS/CFT (ensemble average).

CFT: [Katmadas, Ruggeri, Trigiante, VR, '18];[Loges, GS, Van Riet, '23]

- b Wormholes breaks global symmetries by Planck suppressed operators.
 - They play a key role in the axionic Weak Gravity Conjecture [Brown, Cottrell, GS, Soler, '15]; [Montero, Valenzuela, Uranga, '15]; [Heidenreich, Reece, Rudelius, '15]; [Hebecker, Mangat-Theissen-Witkowski, '16];
 - $f \cdot S_{instanton} \leq M_P$
 - Derivative corrections lower the wormhole action, giving support to the
- $\sim \alpha$ -parameter interpretation leads to -1 form global symmetries [McNamara, Vafa, '20]

 - \exists AdS wormholes which violate positivity bound $Tr(F \pm \star F)^2 \ge 0$ in the dual

Wormhole Stability

Wormhole Stability

to the Euclidean path integral.

	Frame	Stable	Gauge-inv	j=0,1	B.C.
Rubakov, Shvedov, '96	axion	No	No	physical	X
Alonso, Urbano, '17	axion	Yes	Yes	physical	X
Hertog, Truijen, Van Riet, '18	axion	No	Yes	pure gauge	X
Loges, GS, Sudhir, '22	3-form	Yes	Yes	pure gauge	
Hertog, Meanaut, Tielemans, Van Riet, to appear	axion	Yes	Yes	pure gauge	

[Loges, GS, Sudhir, '22]

 Previous works (25+ years) on perturbative stability of axion wormholes have led to contradictory claims, casting doubts on their contributions

Boundary Conditions and Gauge Invariance

- meaningful conclusions can only be drawn on gauge-invariant perturbations.

which corresponds to:

involve mixed b.C. [Hertog, Meanaut, Tielemans, Van Riet, to appear].

Under diffeomorphism, metric and axion/3-form perturbations are mixed. Physically

In analyzing scalar perturbations around the GS wormhole, the boundary conditions in the 3-form picture can be imposed more straightforwardly. Finite energy perturbations:

 $\int \delta H \wedge \star \delta H < \infty \,,$

 $\int \mathrm{d}\delta\theta \wedge \star \mathrm{d}\delta\theta < \infty \,,$

Metric perturbations vanish at the boundaries. Gauge invariant perturbations are Dirichlet in the H_3 picture [Loges, GS, Sudhir, '22], while in the θ picture, gauge invariant perturbations

Wormhole Stability

- We determine the stability of GS wormhole by carrying out the following steps: •
 - Parametrization of scalar perturbations and their boundary conditions. •
 - Diffeomorphisms and physical degrees of freedom.
 - Quadratic action.
 - Integrate out non-dynamical and unphysical, gauge-dependent modes. •
 - Analyze spectrum of remaining physical modes.

- Steps akin to analyzing gauge invariant perturbations in inflationary cosmology.
 - But as we shall show, not only is the spectrum of perturbations
- but **on-shell value of the quadratic action** is important for determining stability.

Scalar Perturbations

$$ds^{2} = a(\eta)^{2} \left[-(1+2\phi) d\eta^{2} + 2\partial_{i}B d\eta dx^{i} + \left((1-2\psi)\gamma_{ij} + 2\nabla_{i}\partial_{j}E\right) dx^{i}dx^{j} \right]$$
$$H = \frac{n}{2\pi^{2}} \left[(1+s)\mathrm{vol}_{3} + d\eta \wedge \left(\frac{1}{2}\sqrt{\gamma}\epsilon_{ijk}\partial^{i}w dx^{j} \wedge dx^{k}\right) \right]$$

- 6 scalar perturbations: ϕ, ψ, E, B, s, w .
- **Dirichlet boundary conditions:** perturbations must go to zero. •

Diffeomorphisms

- diffeomorphism.
- functions ζ^0, ζ , the perturbations transform:

$$\delta_{\xi}\phi = \dot{\zeta}^{0} + \mathcal{H}\zeta^{0} \qquad \qquad \delta_{\xi}B = -\zeta^{0} + \dot{\zeta} \qquad \qquad \delta_{\xi}s = \Delta\zeta$$

$$\delta_{\xi}\psi = -\mathcal{H}\zeta^{0} \qquad \qquad \delta_{\xi}E = \zeta \qquad \qquad \delta_{\xi}w = \dot{\zeta}$$

$$\delta_{\xi}\phi = \dot{\zeta}^{0} + \mathcal{H}\zeta^{0} \qquad \qquad \delta_{\xi}B = -\zeta^{0} + \dot{\zeta} \qquad \qquad \delta_{\xi}s = \Delta\zeta$$

$$\delta_{\xi}\psi = -\mathcal{H}\zeta^{0} \qquad \qquad \delta_{\xi}E = \zeta \qquad \qquad \delta_{\xi}w = \dot{\zeta}$$

Only one physical scalar mode. Convenient to pick: •

$S = s - \Delta E$

Some of these perturbations are unphysical and only represent the freedom to perform

Under a diffeomorphism generated by $\xi = \zeta^0 \partial_0 + \gamma^{ij} (\partial_i \zeta) \partial_j$ parametrized by two scalar

$$\mathcal{E} \qquad \qquad \delta_{\xi}\mathcal{S} = 0$$

Quadratic Action

Expanding the action to quadratic order in perturbations: •

$$S = \int \left(\frac{1}{2}\star R - \frac{1}{2}H \wedge \star H\right) + 0$$

$$S_{2} = \int \mathrm{d}\eta \mathrm{d}^{3}x \sqrt{\gamma} a^{2} \Big\{ -3(\dot{\psi} + \mathcal{H}\phi)^{2} + (B - \dot{E})\Delta(B - \dot{E}) - 2(\dot{\psi} + \mathcal{H}\phi)\Delta(B - \dot{E}) \\ -3(1 + \mathcal{H}^{2}) \big[(\phi + 3\psi - \Delta E + s)^{2} - \phi^{2} + (B - w)\Delta(B - w) \big] \\ + (2\phi - \psi)(\Delta + 3)\psi \Big\} + \sqrt{6} \tilde{n} \int \mathrm{d}\eta \mathrm{d}^{3}x \sqrt{\gamma} (\dot{s} - \Delta w)\theta ,$$

- •
- Expand perturbations in angular momentum eigenstates: •

$$\Delta \to \lambda_j = j(j+2) \in \{0,3,8,15,\dots\}$$

(boundary terms) $\longrightarrow S|_{bkgd} + S_2 + \cdots$

Note: not all perturbations are dynamical (non-dynamical perturbations impose constraints)

Homogeneous Modes (j = 0)

In terms of conjugate momentum of the only dynamical field ψ : •

$$\mathcal{L}|_{j=0} = a^{2} \left[-3 \left(\dot{\psi}_{0} + \mathcal{H} \phi_{0} \right)^{2} - 9 \left(1 + \mathcal{H}^{2} \right) (2\phi_{0} + 3\psi_{0})\psi_{0} + 3(2\phi_{0} - \psi_{0})\psi_{0} \right]$$

= $\Pi_{0}^{\psi} \dot{\psi}_{0} + \frac{(\Pi_{0}^{\psi})^{2}}{12a^{2}} - 3a^{2} \left(10 + 9\mathcal{H}^{2} \right) \psi_{0}^{2} + \left[\underbrace{\mathcal{H} \Pi_{0}^{\psi} - 6a^{2} \left(2 + 3\mathcal{H}^{2} \right) \psi_{0}}_{\text{gauge-invariant}} \right] \phi_{0}$

• Integrate out non-dynamical field ϕ_0 :

$$\mathcal{L}|_{j=0} = 6a^2 \mathcal{H}^{-1} \left[\left(2 + 3\mathcal{H}^2 \right) \psi_0 \dot{\psi}_0 + \left(2 + \mathcal{H}^2 \right) \psi_0^2 \right] = \frac{\mathrm{d}}{\mathrm{d}\eta} \left[3a^2 \mathcal{H}^{-1} \left(2 + 3\mathcal{H}^2 \right) \psi_0^2 \right]$$

• pure gauge.

No physical degrees of freedom (no conformal factor problem!). Similarly, j = 1 mode is

Quadratic Action for Physical Perturbations

• For each $j \ge 2$ there is one physical degree of freedom $(S_j = s_j + \lambda_j E_j)$

$$S_2 = \int \mathrm{d}\eta \sum_{j\geq 2} \frac{3a^2}{\lambda_j \left(\frac{9}{\lambda_j - 3} + \frac{1}{1 + \mathcal{H}^2}\right)} \left[\dot{S}_j^2 + \frac{6\lambda_j \left(1 + \mathcal{H}^2\right)}{(\lambda_j - 3)\mathcal{H}} S_j \dot{S}_j - \frac{\lambda_j}{\mathcal{H}^2} \left(\frac{\lambda_j - 9}{\lambda_j - 3} \left(1 + \mathcal{H}^2\right) - 1\right) S_j^2 \right]_{\mathcal{H}^2}$$

- Canonical normalize $Q_j = (\cdots) S_j$:

$$S_2^{\mathrm{E}} = \int \mathrm{d}r \, \sum_{j \ge 2} \left(\frac{1}{2} (\mathcal{Q}'_j)^2 + \frac{1}{2} \left(\underbrace{U_j^{\mathrm{E}} + \lambda_j + 1}_{>0} \right) \mathcal{Q}_j^2 + G_j^{\mathrm{E}} \right)$$

 S_{2}^{E} looks positive definite, but we will have to check the boundary term G_{i}^{E} .

• Wick rotate $\eta \rightarrow -ir$ to GS wormhole: $a(r) \propto \sqrt{\cosh(2r)}$ and $\mathcal{H}_E(r) = -i\mathcal{H}(ir) = \tanh(2r)$

Eigenvalue Problem

• Schrodinger-like problem: $\mathcal{Q}_j^{(k)\prime\prime} + U$

. $S \to 0 \implies Q_j^{(k)}$ must go to zero *faster* than $e^{-|r|}$. Look for bound states with $\omega_j^{(k)} < -1$.

$$\mathcal{U}_{j}^{\mathrm{E}}(r)\mathcal{Q}_{j}^{(k)} = \omega_{j}^{(k)}\mathcal{Q}_{j}^{(k)}$$

Eigenfunctions

There is exactly one even and one odd bound state for each $j \ge 2$: •

• Total derivative term G_i^E is not integrable for the even eigenfunctions: $S_2[\mathcal{Q}^{(\text{even})}] \to +\infty$

Spectrum and Stability

$$\mathcal{Q} = \sum_{j \ge 2} c_j \mathcal{Q}_j^{(\text{odd})}(r) Y_j(\Omega)$$

The Euclidean action only ever **increases** under scalar perturbations: the GS wormhole is perturbatively stable.

$$\implies S_2 = \sum_{j \ge 2} \frac{1}{2} \left(\omega_j^{\text{(odd)}} + \lambda_j + 1 \right) c_j^2 > 0$$

String Theory Embeddings

[Loges, GS, Van Riet, '23]

Euclidean Axion Wormholes in Flat Space

• Reduction ansatz motivated by the extremal solution:

$$ds_{10}^2 = e^{-6b\varphi} ds_4^2 + e^{2b\varphi} R^2 \mathcal{M}_{ij} d\theta^i d\theta^j$$
$$\mathcal{M}_{ij} = diag \left(e^{\vec{\beta}_1 \cdot \vec{\Phi}}, e^{\vec{\beta}_2 \cdot \vec{\Phi}}, \dots, e^{\vec{\beta}_6 \cdot \vec{\Phi}} \right)$$
$$C_3 = \chi_1 d\theta^{123} + \chi_2 d\theta^{145} + \chi_3 d\theta^{256} + \chi_$$

• 4d theory contains 11 scalars:

$$S_4 = \frac{1}{2\kappa_4^2} \int \left[-\mathcal{R} + \frac{1}{2} \sum_{i=1}^4 \left[(\partial s_i)^2 + e^{2s_i} (\partial \chi_i)^2 \right] + \frac{1}{2} \sum_{i=5}^7 (\partial s_i)^2 \right]$$

There are four decoupled axio-dilaton pairs with $\beta = 2$:

[Loges, GS, Van Riet, '23]

	1	2	3	4	5	6
$D2_1$	×	×	×			
$D2_2$	\times			\times	\times	
$D2_3$		\times			\times	\times
$D2_4$			\times	\times		×

 $+\chi_4 \,\mathrm{d}\theta^{346}$

No Wick rotation that turns them into Lorentzian "overextremal" branes.

$$=1 > \frac{3}{4} \checkmark$$

Euclidean Axion Wormholes in AdS Space

Background solution:

$$ds_{10}^2 = \ell^2 ds_5^2 + \ell^2 (ds_{\text{KE}}^2 + \eta^2)$$

$$e^{\Phi} = g_{\text{s}}$$

$$B_2 = 0$$

$$C_0 = 0$$

$$C_2 = 0$$

$$F_5 = 4\ell^2 (1 - i\star) \text{vol}_{T^{1,1}}$$

[Loges, GS, Van Riet, '23]

Reduction ansatz;

$$ds_{10}^{2} = \ell^{2} e^{-\frac{2}{3}(4u+v)} ds_{5}^{2} + \ell^{2} \left(e^{2u} ds_{\text{KE}}^{2} + e^{2v} \eta^{2} \right)$$

$$e^{\Phi} = g_{\text{s}} e^{\phi}$$

$$B_{2} = \ell^{2} g_{\text{s}}^{1/2} b \Phi_{2}$$

$$C_{0} = i g_{\text{s}}^{-1} \chi$$

$$C_{2} = i \ell^{2} g_{\text{s}}^{-1/2} c \Phi_{2}$$

$$F_{5} = 4 \ell^{2} (1 - i \star) \operatorname{vol}_{T^{1,1}}$$

Consistent Reduction to 5D

$$+ \frac{28}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} (\partial u)^2 + \frac{8}{3}$$

Not Giddings-Strominger wormhole!

[Loges, GS, Van Riet, '23]

Consistent Reduction to 5D

$$+ \frac{28}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} \partial u \partial v + \frac{4}{3} (\partial u)^2 + \frac{8}{3} (\partial u)^2 + \frac{8}{3}$$

Not Giddings-Strominger wormhole!

[Loges, GS, Van Riet, '23]

Dual CFT and Operators Positivity

Dual operators:

 $\mathcal{O}_{\Phi} = \operatorname{Tr}(F_1 \wedge \star F_1 + F_2 \wedge \star F_2)$ $\mathcal{O}_{B_2} = \operatorname{Tr}(F_1 \wedge \star F_1 - F_2 \wedge \star F_2)$

Operator positivity:

$$\langle \operatorname{Tr}[(F_i \pm \star F_i)^2] \rangle \ge 0$$

[Loges, GS, Van Riet, '23]

Type IIB on $T^{1,1}$ is dual to an $\mathcal{N} = 1$ quiver CFT with two nodes [Klebanov, Witten - '98]

$$C_{0} \longleftrightarrow \theta_{1} + \theta_{2}$$

$$\int_{S^{2}} \tilde{C}_{2} \longleftrightarrow \theta_{1} - \theta_{2}$$

$$(\mathrm{d}\tilde{C}_{2} = \mathrm{d}C_{2} - C_{0} \,\mathrm{d}B_{2})$$

$$\mathcal{O}_{C_0} = \operatorname{Tr}(F_1 \wedge F_1 + F_2 \wedge F_2)$$
$$\mathcal{O}_{\tilde{C}_2} = \operatorname{Tr}(F_1 \wedge F_1 - F_2 \wedge F_2)$$

$$\langle \mathcal{O}_{\Phi} \rangle \pm \langle \mathcal{O}_{B_2} \rangle \ge \langle \mathcal{O}_{C_0} \rangle \pm \langle \mathcal{O}_{\tilde{C}_2} \rangle$$

Violation of Positivity Bounds

This is **<u>always</u> violated** (for all q_0 and χ_{∞})!

[Loges, GS, Van Riet, '23]

With the fully explicit 10d gravity solution, we can check whether $\langle \mathcal{O}_{\Phi} \rangle \pm \langle \mathcal{O}_{B_2} \rangle \geq \langle \mathcal{O}_{C_0} \rangle \pm \langle \mathcal{O}_{\tilde{C}_2} \rangle$

One boundary vs two?

[Loges, GS, Van Riet, '23]

$$\begin{aligned} \mathcal{O}_{C_0} \rangle &= 0 \\ \mathcal{O}_{\tilde{C}_2} \rangle &= 0 \end{aligned} \right\} \quad \Longrightarrow \quad \phi_4 \geq \pm \frac{\mathfrak{q}_2}{4} \chi_\infty \quad \checkmark$$

- boundary boundary conditions transparent.
- wormhole throat whose size is much less than the AdS curvature.
- Construct explicit Euclidean axion wormholes in flat and AdS space from string theory: •
 - Flat space wormholes from type IIA on T^6 : cannot Wick rotate to only Lorentzian branes.
 - AdS space wormholes from type IIB on $T^{1,1}$
 - Not Giddings-Strominger type: saxions have a potential and are sourced by the axions.
- where one might integrate out wormhole effects a la Coleman, the solutions break down.

Summary

Establish that GS wormhole is perturbatively stable. The 3-form picture makes gauge invariance and proper

Conclusion of stability may carry over to AdS space since the (physical) perturbations are localized to the

Known CFT dual: violation of positivity bounds in the CFT state for two-boundary solutions.

 $^{\circ}$ Massive scalars u, v dual to irrelevant operators may play a crucial role in identifying such CFT state.

• Other conceptual issues remain, e.g., α -parameters? Baby universes? For small wormholes (in AdS units)