Quantum Spread Complexity in Neutrino Oscillations

Workshop on Quantum Information Theory in Quantum Field Theory and Cosmology, BIRS, Alberta

5 June 2023
Khushboo Dixit
Based on the preprint arXiv:2305.17025 by Khushboo Dixit, S. Shajidul Haque, Soebur Razzaque

Plan of this talk

(1) Motivation
(2) Neutrino Oscillation
(3) Spread Complexity
(4) Spread Complexity in neutrino oscillations
(5) Summary \& Conclusions

Motivation

- Quantum computational complexity estimates the difficulty of constructing quantum states from elementary operations, a problem of prime importance for quantum computation.
- It can also serve to study a completely different physical problem - that of information processing inside black holes.
- Extends the connection between geometry and information. Growth of complexity is equal to the growth of black hole interiors. [Susskind et al., (2014)]
- It would be intriguing to investigate what characteristics complexity shows in other natural processes of evolution.
- Neutrinos have shown features such as entanglement and nonlocal correlations that proves their efficiency to perform QIP tasks. [blasone et al., (2009)], [Formaggio et al., (2016)]
- It gives us motivation to see how complex is an evolution of neutrino system and if complexity can also probe any open issue in the neutrino sector.

Neutrino-properties

- Postulated first by Wolfgang Pauli to explain how beta decay could conserve energy, momentum and angular momentum(spin)

$$
n \rightarrow p+e^{-}+\bar{\nu}_{e}
$$

- Spin half, very small mass, no electric charge
- Come in three flavours $\rightarrow \nu_{e}, \nu_{\mu}, \nu_{\tau}$
- Interact only via weak interaction
- Neutrinos \rightarrow Left-handed, Anti-neutrinos \rightarrow Right-handed

Neutrino Oscillations

- About 65 billion $\left(6.5 \times 10^{10}\right)$ neutrinos coming from Sun's interior pass through 1 square centimeter per second. Homestake experiment's observed value was $1 / 3$ of the predicted flux. This lead Pontecorvo to suggest neutrino oscillations.
- Up-down asymmetry of atmospheric muon neutrino flux by IMB and KamioKande experiments gave additional hint of neutrino oscillations. (T. Kajita (SK), A. McDonald (SNO), 2015)

- Experiments : Solar (e.g. Homestake, Gallex/SAGE, SNO), Atmospheric (e.g. Super Kamiokande), Reactor (e.g. CHOOZ, KamLAND, Daya-Bay, RENO), Accelerator (e.g. T2K, MINOS, NO 1 A, DUNE (upcoming))

Quantum mechanics in neutrino oscillations

- The three flavor states (eigenstates of weak interaction, which are detectable in lab) of neutrinos, ν_{e}, ν_{μ} and ν_{τ} mix via a 3×3 unitary matrix to form the three mass eigenstates (which are the propagation eigenstates) ν_{1}, ν_{2} and ν_{3}. Neutrino oscillations occur only if the three corresponding masses, m_{1}, m_{2} and m_{3}, are non-degenerate.
- In three flavor neutrino oscillation

Propagation states $\rightarrow\left\{\left|\nu_{1}\right\rangle,\left|\nu_{2}\right\rangle,\left|\nu_{3}\right\rangle\right\} ;$
Flavor states $\rightarrow\left\{\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle,\left|\nu_{\tau}\right\rangle\right\}$

- The general state of a neutrino can be expressed in flavor basis as:

$$
|\Psi(t)\rangle=\nu_{e}(t)\left|\nu_{e}\right\rangle+\nu_{\mu}(t)\left|\nu_{\mu}\right\rangle+\nu_{\tau}(t)\left|\nu_{\tau}\right\rangle
$$

- Same state in propagation basis looks like:

$$
|\Psi(t)\rangle=\nu_{1}(t)\left|\nu_{1}\right\rangle+\nu_{2}(t)\left|\nu_{2}\right\rangle+\nu_{3}(t)\left|\nu_{3}\right\rangle
$$

- The coefficients in two representations are connected by a unitary matrix

$$
\left(\begin{array}{l}
\nu_{e}(t) \\
\nu_{\mu}(t) \\
\nu_{\tau}(t)
\end{array}\right)=\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{l}
\nu_{1}(t) \\
\nu_{2}(t) \\
\nu_{3}(t)
\end{array}\right) .
$$

or,

$$
\begin{equation*}
\nu_{\alpha}(t)=\mathbf{U} \nu_{i}(t) . \tag{1}
\end{equation*}
$$

Quantum mechanics in neutrino oscillations

- A convenient parametrization for \mathbf{U} or $U\left(\theta_{12}, \theta_{23}, \theta_{13}, \delta\right)$ is given by the PMNS matrix

$$
U\left(\theta_{12}, \theta_{23}, \theta_{13}, \delta\right)=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{23} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{13} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

- where $c_{i j}=\cos \theta_{i j}, s_{i j}=\sin \theta_{i j}, \theta_{i j}$ being the mixing angles and δ the $C P$ (Charge-Parity) violating phase.
- The mass eigenstates evolve as

$$
\left(\begin{array}{l}
\nu_{1}(t) \\
\nu_{2}(t) \\
\nu_{3}(t)
\end{array}\right)=\left(\begin{array}{ccc}
e^{-i E_{1} t} & 0 & 0 \\
0 & e^{-i E_{2} t} & 0 \\
0 & 0 & e^{-i E_{3} t}
\end{array}\right)\left(\begin{array}{l}
\nu_{1}(0) \\
\nu_{2}(0) \\
\nu_{3}(0)
\end{array}\right),
$$

or,

$$
\begin{equation*}
\nu_{\mathbf{m}}(t)=\mathbf{E}_{\nu_{\mathbf{m}}}(0) \tag{2}
\end{equation*}
$$

- From 1 and $2, \nu_{\mathbf{f}}(t)=\mathbf{U} \mathbf{E U}^{-1} \nu_{\mathbf{f}}(0)=\mathbf{U}_{f} \nu_{\mathbf{f}}(0)$.

$$
\begin{align*}
P_{\alpha \beta}= & \delta_{\alpha \beta}-4 \sum_{i>j} \operatorname{Re}\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin ^{2}\left(1.27 \frac{\Delta_{i j} L}{E}\right) \\
& +2 \sum_{i>j} \operatorname{Im}\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin \left(2.54 \frac{\Delta_{i j} L}{E}\right) \tag{3}
\end{align*}
$$

where $\Delta_{i j}=m_{j}^{2}-m_{i}^{2} \equiv E_{j}-E_{i}$.

Problems not resolved yet . . .

- Neutrino mass hierarchy problem i.e., whether $m_{1} \leq m_{2} \leq m_{3}$ or $\left.m_{3} \leq m_{1} \leq m_{2}\right)$.
- CP violation $(\delta \neq 0)$.
$P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)$
- Absolute mass

Neutrino experimental facilities

We included accelerator $\nu_{\mu^{-}}$neutrino experimental conditions in our study such as DUNE ($L=1300 \mathrm{Km}, E=1-10 \mathrm{GeV}, A=1.7 \times 10^{-13} \mathrm{eV}$) NOLA $\left(L=810 \mathrm{Km}, E=1-4 \mathrm{GeV}, A=1.7 \times 10^{-13} \mathrm{eV}\right)$
T2K ($L=295 \mathrm{Km}, E=0.1-1 \mathrm{GeV}, A=1.01 \times 10^{-13} \mathrm{eV}$)
($L \rightarrow$ baseline, $E \rightarrow$ neutrino-energy, $A \rightarrow$ matter density potential)
Source: www.fnal.gov/

Deep Underground Neutrino Experiment

Matter effects on neutrino oscillations

(a) The Feynman diagrams for charged current inter- (b) The Feynman diagram for neutral actions
rent interactions

$$
H_{f}=U H_{m} U^{-1}+V \operatorname{diag}(1,0,0)+V_{Z_{0}} \mathbb{1}_{3 \times 3}
$$

where, $V \rightarrow$ matter density potential due to coherent-forward scattering of ν_{e} with e^{-}present in the matter.

Complexity

- How difficult is it to construct a desired target state with the elementary operations (gates) at your end?
- Or, the minimum number of unitaries required to construct a "target state" through a "reference state".
- For a system $|\phi(s)\rangle$, if

$$
U_{1} U_{2} U_{3} U_{2}|\phi(s)\rangle=U_{3} U_{1} U_{2} U_{1}\left(U_{1}\right)^{3} U_{2}|\phi(s)\rangle
$$

then the complexity $=4$.

Complexity of spread of states

Balasubramanian et al., PRD 106, 046007 (2022)

- The complexity of the state can be defined by minimizing the spread of the wavefunction over all possible bases.
- This minimum is uniquely attained by an orthonormal basis produced by applying the Gram-Schmidt procedure.
Schrodinger equation for a system represented by $|\psi(t)\rangle$

$$
i \frac{\partial}{\partial t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

Then, the time evolution of the state $|\psi(t)\rangle$ is obtained as

$$
|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle
$$

One can also write

$$
|\psi(t)\rangle=\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!} H^{n}|\psi(0)\rangle=\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!}\left|\psi_{n}\right\rangle,
$$

where, $\left|\psi_{n}\right\rangle=H^{n}|\psi(0)\rangle$. Hence, we can see that the time evolved system-state $|\psi(t)\rangle$ is represented as superposition of infinite $\left|\psi_{n}\right\rangle$ states.

Complexity of spread of states

We have $\left|\psi_{n}\right\rangle=H^{n}|\psi(0)\rangle$. These states $\left\{\left|\psi_{0}\right\rangle,\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \ldots\right\}$ are not orthonomalized. Gram-Schmidt procedure to obtain an ordered orthonomalized basis

$$
\begin{aligned}
& \left|K_{0}\right\rangle=\left|\psi_{0}\right\rangle, \\
& \left|K_{1}\right\rangle=\left|\psi_{1}\right\rangle-\frac{\left\langle K_{0} \mid \psi_{1}\right\rangle}{\left\langle K_{0} \mid K_{0}\right\rangle}\left|K_{0}\right\rangle, \\
& \left|K_{2}\right\rangle=\left|\psi_{2}\right\rangle-\frac{\left\langle K_{0} \mid \psi_{2}\right\rangle}{\left\langle K_{0} \mid K_{0}\right\rangle}\left|K_{0}\right\rangle-\frac{\left\langle K_{1} \mid \psi_{2}\right\rangle}{\left\langle K_{1} \mid K_{1}\right\rangle}\left|K_{1}\right\rangle, \text { and so on. } \\
\mathcal{K}= & \left\{\left|K_{n}\right\rangle, n=0,1,2 \ldots\right\} \Rightarrow \text { Krylov basis }
\end{aligned}
$$

Cost function to quantify the complexity (Balasubramanian et al., PRD 106, 046007 (2022)) For a time evolved state $|\psi(t)\rangle$ and the Krylov basis defined as $\left\{\left|K_{n}\right\rangle\right\}$, the cost function is

$$
\chi=\sum_{n=0}^{\infty} n\left|\left\langle K_{n} \mid \psi(t)\right\rangle\right|^{2},
$$

where $n=0,1,2 \ldots$ For such Krylov basis the above defined cost function becomes minimum.

Spread complexity in two flavor neutrino oscillations

The evolution of flavor states can be represented by Schrodinger equation as

$$
\begin{equation*}
i \frac{\partial}{\partial t}\binom{\left|\nu_{e}(t)\right\rangle}{\left|\nu_{\mu}(t)\right\rangle}=H_{f}\binom{\left|\nu_{e}(t)\right\rangle}{\left|\nu_{\mu}(t)\right\rangle} \tag{4}
\end{equation*}
$$

where $H_{f}=U H_{m} U^{-1}, U$ being the mixing matrix and H_{m} is the Hamiltonian (diagonal) that governs the time evolution of neutrino mass eigenstate

$$
\begin{gathered}
H_{m}=\left(\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right), \quad U=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) . \\
\left|\nu_{e}(0)\right\rangle=\binom{1}{0}, \quad\left|\nu_{\mu}(0)\right\rangle=\binom{0}{1}
\end{gathered}
$$

We have

$$
\left\{\left|\psi_{n}\right\rangle\right\}= \begin{cases}\left\{\left|\nu_{e}(0)\right\rangle, H_{f}\left|\nu_{e}(0)\right\rangle, H_{f}^{2}\left|\nu_{e}(0)\right\rangle \ldots\right\} & \text { for initial } \nu_{e} \text { flavor } \\ \left\{\left|\nu_{\mu}(0)\right\rangle, H_{f}\left|\nu_{\mu}(0)\right\rangle, H_{f}^{2}\left|\nu_{\mu}(0)\right\rangle \ldots\right\} & \text { for initial } \nu_{\mu} \text { flavor }\end{cases}
$$

After applying Gram-Schmidt procedure we get $\left\{\left|K_{n}\right\rangle\right\}=\left\{\left|K_{0}\right\rangle,\left|K_{1}\right\rangle\right\}$, i.e.,

$$
\left\{\left|K_{n}\right\rangle\right\}=\left\{\begin{array}{l}
\left\{\left|K_{0}\right\rangle=\binom{1}{0},\left|K_{1}\right\rangle=\binom{0}{1}\right\}=\left\{\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle\right\} \quad \text { for initial } \nu_{e} \\
\left\{\left|K_{0}\right\rangle=\binom{0}{1},\left|K_{1}\right\rangle=\binom{1}{0}\right\}=\left\{\left|\nu_{\mu}\right\rangle,\left|\nu_{e}\right\rangle\right\} \quad \text { for initial } \nu_{\mu}
\end{array}\right.
$$

Spread complexity in two flavor neutrino oscillations

For a time evolved state $\left|\nu_{e}(t)\right\rangle=\binom{A_{e e}(t)}{A_{e \mu}(t)}=\binom{\cos ^{2} \theta e^{-i E_{1} t}+\sin ^{2} \theta e^{-i E_{2} t}}{\sin \theta \cos \theta\left(e^{-i E_{2} t}-e^{-i E_{1} t}\right)}$ (with $\left.\left\{\left|K_{n}\right\rangle\right\}=\left\{\left|\nu_{e}(0)\right\rangle,\left|\nu_{\mu}(0)\right\rangle\right\}\right)$

$$
\chi_{e}=\sum_{n=0}^{1} n\left|\left\langle K_{n} \mid \nu_{e}(t)\right\rangle\right|^{2}=P_{e \mu}
$$

Similarly, for state $\left|\nu_{\mu}(t)\right\rangle=\left(A_{\mu e}(t), A_{\mu \mu}(t)\right)^{T}\left(\right.$ with $\left.\left\{\left|K_{n}\right\rangle\right\}=\left\{\left|\nu_{\mu}(0)\right\rangle,\left|\nu_{e}(0)\right\rangle\right\}\right)$

$$
\chi_{\mu}=P_{\mu e}
$$

- The more the oscillation probability of neutrino flavor, the more complex the evolution of the neutrino flavor state.
- Since $P_{e \mu}=P_{\mu e}$ for standard vacuum oscillations, the complexity embedded in this system comes out to be same for both cases of initial flavor, i.e., complexity of the system doesn't depend on the initial flavor of neutrino.

Spread complexity in three flavor neutrino oscillations

We have three types of initial states as $\left|\nu_{e}\right\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left|\nu_{\mu}\right\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left|\nu_{\tau}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ with Hamiltonian $H_{f}=U H_{m} U^{-1}, H_{m}=\operatorname{diag}\left(0, \Delta m_{21}^{2}, \Delta m_{31}^{2}\right)$ and $U \rightarrow 3 \times 3$ PMNS mixing matrix

$$
U=\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{13} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

Here, Krylov basis \neq flavor basis.

- For initial $\left|\nu_{e}\right\rangle$ state $\left|K_{0}\right\rangle \equiv\left|\nu_{e}\right\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, other states spanning the Krylov basis take the form

$$
\begin{gathered}
\left|K_{1}\right\rangle=N_{1}\left(\begin{array}{c}
0 \\
a_{1} \\
a_{2}
\end{array}\right)=N_{1}\left(\begin{array}{c}
0 \\
\left(\frac{\Delta m_{21}^{2}}{2 E}\right) \\
\left(\frac{\Delta m_{21}^{2}}{2 E}\right) \\
U_{e 2}^{*} U_{\mu 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right) \\
U_{e 2}^{*} U_{\tau 2}+\left(\frac{\Delta m_{11}^{2}}{2 E}\right) \\
U_{e 3}^{*} U_{\mu 3} \\
U_{e 3}^{*} U_{\tau 3}
\end{array}\right), \\
\left|K_{2}\right\rangle=N_{2}\left(\begin{array}{c}
0 \\
b_{1} \\
b_{2}
\end{array}\right)=N_{2}\binom{\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}-A\right)}{\binom{\frac{\Delta m_{21}^{2}}{*} U_{\mu 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\binom{\left.\frac{\Delta m_{31}^{2}}{2 E}-A\right)}{2 E} U_{e 3}^{*} U_{\mu 3}}{2 E} U_{e 2}^{*} U_{\tau 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}-A\right) U_{e 3}^{*} U_{\tau 3}}
\end{gathered}
$$

Spread complexity in three flavor neutrino oscillations

$$
\begin{aligned}
\chi_{e}=P_{e \mu}(t)\left(N_{1}^{2}\left|a_{1}\right|^{2}+2 N_{2}^{2}\left|b_{1}\right|^{2}\right) & +P_{e \tau}(t)\left(N_{1}^{2}\left|a_{2}\right|^{2}+2 N_{2}^{2}\left|b_{2}\right|^{2}\right)+2 \Re\left(N_{1}^{2} a_{1}^{*} a_{2} A_{e \mu}(t) A_{e \tau}(t)^{*}\right) \\
& +4 \Re\left(N_{2}^{2} b_{1}^{*} b_{2} A_{e \mu}(t) A_{e \tau}(t)^{*}\right)
\end{aligned}
$$

with

$$
A=\frac{\binom{\left(\Delta m_{21}^{2}\right)^{3}\left|U_{\alpha 2}\right|^{2}\left(1-\left|U_{\alpha 2}\right|^{2}\right)+\left(\Delta m_{31}^{2}\right)^{3}\left|U_{\alpha 3}\right|^{2}\left(1-\left|U_{\alpha 3}\right|^{2}\right)}{\left(\Delta m_{21}^{2}\right)^{2}\left|U_{\alpha 2}\right|^{2}\left(1-\left|U_{21}^{2}\right|^{2}\right)+\left(\Delta m_{31}^{2}\right)\left|U_{\alpha 2}\right|^{2}\left|U_{\alpha 3}\right|^{2}\left(\Delta m_{21}^{2}+\Delta m_{31}^{2}\right)}}{-\left(\left.U_{\alpha 3}\right|^{2}\left(1-\left|U_{\alpha 3}\right|^{2}\right)-2\left(\Delta m_{21}^{2}\right)\left(\Delta m_{31}^{2}\right)\left|U_{\alpha 2}\right|^{2}\left|U_{\alpha 3}\right|^{2}\right.},
$$

Effects of different oscillation parameters

Figure: Complexity plotted with respect to the distance L over energy E traveled by neutrinos in vacuum and in case if the initial flavor is ν_{e} (blue solid line), ν_{μ} (red dashed line) and ν_{τ} (green dot-dashed line) for $C P$-violating phase $\delta=0^{\circ}$. Here, mixing parameters $\theta_{12}=33.64^{\circ}, \theta_{13}=8.53^{\circ}, \theta_{23}=47.63^{\circ}, \Delta m_{21}^{2}=7.53 \times 10^{-5} \mathrm{eV}^{2}$ and $\Delta m_{31}^{2}=2.45 \times 10^{-3} \mathrm{eV}^{2}$ are considered.

- The rapid oscillation pattern seen in the left panel (zoomed-in in the right panel) is due to Δm_{31}^{2} mass-squared difference in the oscillation phase, while the longer oscillation pattern is due to Δm_{21}^{2} in the oscillation phase. The oscillation length is $\sim 10^{3} \mathrm{~km}$ at $E=1 \mathrm{GeV}$ for Δm_{31}^{2} and $\sim 3 \times 10^{4} \mathrm{~km}$ at $E=1 \mathrm{GeV}$ for Δm_{21}^{2}.
- In the general case the complexity is maximum if the neutrino is produced initially as ν_{e}, however, this happens only at a very large L / E value of $\sim 1.6 \times 10^{4} \mathrm{~km} / \mathrm{GeV}$.
- In current experimental setups (right panel), which covers roughly one oscillation length for Δm_{31}^{2}, the initial ν_{e} flavor provides the least complexity among all neutrino flavors.

Effects of $C P$-violating parameter δ

Figure: Complexities and $1-P_{\alpha \alpha}$ with respect to L / E.

- Complexity mimics the features of the total oscillation probability $1-P_{\alpha \alpha}$.
- However, it is visible that χ_{α} for all three flavors provide more information regarding the $C P$-violating phase δ.

Figure: Complexity for small L / E range (upper panels), large L / E range (lower panels) with respect to L / E for initial flavor is ν_{e} (left), ν_{μ} (middle) and ν_{τ} (right) for different values of the $C P$-phase δ depicted by different colors.

- For large L / E range the complexities are maximized and the corresponding $\delta=+90^{\circ}$ or -90° for χ_{μ} and χ_{τ}, and at $\delta= \pm 90^{\circ}$ for χ_{e} where CP is maximally violated.
- In the limited L / E range χ_{μ} and χ_{τ} are maximized at $\delta=-90^{\circ}$ (red-dashed line) and at $\delta=+90^{\circ}$ (red-solid line), respectively. However, χ_{e} is maximized at $\delta=+135^{\circ}$ and at -45°.

Matter effects on complexity

- For any initial flavor ν_{α}

$$
\begin{aligned}
\left|K_{0}\right\rangle_{\alpha}^{\text {matter }} & =\left|K_{0}\right\rangle_{\alpha}^{\text {vacuum }} \\
\left|K_{1}\right\rangle_{\alpha}^{\text {matter }} & =\left|K_{1}\right\rangle_{\alpha}^{\text {vacuum }}
\end{aligned}
$$

- $\left|K_{2}\right\rangle$ contains the effects of constant matter density

$$
\left|K_{2}\right\rangle_{e}=N_{2 e}^{m}\left(0, b_{1}^{m}, b_{2}^{m}\right)^{T}
$$

where,

$$
\begin{aligned}
b_{1}^{m} & =\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}+V-B_{e}\right) U_{e 2}^{*} U_{\mu 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}+V-B_{e}\right) U_{e 3}^{*} U_{\mu 3}, \\
b_{2}^{m} & =\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}+V-B_{e}\right) U_{e 2}^{*} U_{\tau 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}+V-B_{e}\right) U_{e 3}^{*} U_{\tau 3} .
\end{aligned}
$$

Matter effects on complexity

- Similarly, for the initial ν_{μ} flavor

$$
\left|K_{2}\right\rangle_{\mu}=N_{2 \mu}^{m}\left(d_{1}^{m}, 0, d_{2}^{m}\right)^{T}
$$

where,

$$
\begin{aligned}
d_{1}^{m} & =\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}+V-B_{\mu}\right) U_{e 2} U_{\mu 2}^{*}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}+V-B_{\mu}\right) U_{e 3} U_{\mu 3}^{*} \\
d_{2}^{m} & =\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}-B_{\mu}\right) U_{\mu 2}^{*} U_{\tau 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}-B_{\mu}\right) U_{\mu 3}^{*} U_{\tau 3},
\end{aligned}
$$

Matter effects on complexity

Figure: Cost function χ_{e} (left), χ_{μ} (middle) and χ_{τ} (right) w. r. t. neutrino-energy E is shown. Here, $L=810 \mathrm{~km}$, $\delta=-90^{\circ}$ and higher octant of θ_{23} is considered. Solid and dashed curves represent the case of vacuum and matter oscillations, respectively. $V=1.01 \times 10^{-13} \mathrm{eV}$.

- Matter effect increases complexity of the system in all cases of initial flavors of the neutrino, most significantly for ν_{e} as expected.

Spread complexity in neutrino oscillation experiments

Figure: T2K: Cost function (upper panel) and 1-P $P_{\alpha \alpha}$ (lower panel) in the plane of $E-\delta$ in case of initial flavor ν_{e} (left), ν_{μ} (middle) and ν_{τ} (right). Here, $L=295 \mathrm{~km}$ and mixing parameters $\theta_{12}=33.64^{\circ}, \theta_{13}=8.53^{\circ}$, $\theta_{23}=47.63^{\circ}, \Delta m_{21}^{2}=7.53 \times 10^{-5} \mathrm{eV}^{2}$ and $\Delta m_{31}^{2}=2.45 \times 10^{-3} \mathrm{eV}^{2}$ are considered.

Figure: $\mathrm{NO} \nu \mathrm{A}$: Cost function (upper panel) and 1- $P_{\alpha \alpha}$ (lower panel) in the plane of $E-\delta$ in case of initial flavor ν_{e} (left), ν_{μ} (middle) and ν_{τ} (right). Here, $L=810 \mathrm{~km}$, and higher octant of $\theta_{23}\left(47.63^{\circ}\right)$ is considered.

- For both the experiments, the maxima of χ_{μ} and χ_{τ} are found at $\delta \approx-\pi / 2$ and $\delta=\pi / 2$, respectively.
- This means that the matter effect just enhances the magnitude of complexities, however, the characteristics of χ_{α} with respect to δ are almost similar for both T2K and NOvA experiments.
- In the T2K and NOvA experimental setups, where only ν_{μ} beams are produced, the only relevant complexity is χ_{μ}.
- For both the T2K and NOvA χ_{μ} is maximized at $\delta \approx-1.5$ radian at the relevant experimental energies. The T2K best-fit value of $\delta=-2.14_{-0.69}^{+0.90}$ radian is consistent with this expectation.
- The NOvA best-fit, however, is at $\delta \approx 2.58$ radian which is far away from the maximum χ_{μ} in the lower-half plane of δ but is still within a region of high χ_{μ} value in the upper-half plane of δ.
- $P_{\mu e}$, which is the only oscillation probability accessible to the T2K and NOvA setups, it becomes maximum at $\delta \approx-1.5$ radian. This is compatible with T2K best-fit but is in odd with the NOvA best-fit.
- Complexity provides correct prediction for the δ in experimental setups.

Effects of neutrino mass ordering

Figure: NOvA: Complexity with respect to neutrino-energy E in case of initial flavor ν_{e} (left), ν_{μ} (middle) and ν_{τ} (right) with $L=810 \mathrm{~km}$ and $\delta=-90^{\circ}$. The upper and lower panel represent the case of vacuum and matter oscillations, respectively. Solid curves are associated with NH and dashed curves depict the IH .

- Complexity can distinguish between the effects due to normal (NH) ($+\Delta_{31}$) and inverted hierarchy $(\mathrm{IH})\left(-\Delta_{31}\right)$ in the presence of non-zero matter potential.

Summary \& Conclusions

- We examined the spread complexity of neutrino states in two- and three-flavor oscillation scenarios.
- In the two-flavor scenario, complexity and transition probabilities yield equivalent information.
- In case of three-flavor oscillation, initial flavor state evolves into two mixed final states. Hence, the complexity contains additional information regarding open issues related to neutrinos, compared to the total oscillation probability.
- Remarkably, we found that the complexity is maximized for a value of the phase angle for which CP is also maximally violated. T2K experimental data also favors this phase angle, which is obtained from flavor transition.
- Quantum spread complexity emerges as a potent and novel quantity for investigating neutrino oscillations. It successfully reproduces existing results, also demonstrates the potential to serve as a theoretical tool for predicting new outcomes in future experiments.

Thank you for your attention!

BACKUP SLIDES

Comparing the effects of neutrino mass ordering for neutrinos \& antineutrinos

For antineutrino $\rightarrow\{V \rightarrow-V, \delta \rightarrow-\delta\}$

Figure: NOvA: Complexities and $P_{\mu e}$ with respect to neutrino-energy E where red and blue curves represent neutrino and antineutrino case, respectively, with solid (normal ordering) and dashed (inverted ordering) lines. Here $L=810 \mathrm{~km}$ and $\delta=-90^{\circ}$ are considered.

- For both neutrino and antineutrino, the effects of NH and IH are significantly distinguishable for all three flavors.
- In case of χ_{e}, red-solid line (neutrinos for NH) and blue-dashed line (antineutrinos for IH) exhibit more complexity, i.e., complete swap between the $\mathrm{NH}(\mathrm{IH})$ hierarchy and $\nu(\bar{\nu})$.
- For χ_{μ} and χ_{τ} the maximum is achieved in case of neutrinos with NH and Antineutrinos with IH, respectively.

Spread complexity in three flavor (vacuum) neutrino oscillations

- Similarly, for initial $\left|\nu_{\mu}\right\rangle,\left|K_{0}\right\rangle \equiv\left|\nu_{\mu}\right\rangle=(0,1,0)^{T}$, then we get

$$
\begin{gathered}
\left|K_{1}\right\rangle=N_{1 \mu}\left(\begin{array}{c}
c_{1} \\
0 \\
c_{2}
\end{array}\right)=N_{1 \mu}\binom{\left(\frac{\Delta m_{21}^{2}}{2 E}\right) U_{\mu 2}^{*} U_{e 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right) U_{\mu 3}^{*} U_{e 3}}{\left(\frac{\Delta m_{21}^{2}}{2 E}\right) U_{\mu 2}^{*} U_{\tau 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right) U_{\mu 3}^{*} U_{\tau 3}} \\
\left|K_{2}\right\rangle=N_{2 \mu}\left(\begin{array}{c}
d_{1} \\
0 \\
d_{2}
\end{array}\right)=N_{2 \mu}\left(\begin{array}{c}
\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}-A\right) U_{\mu 2}^{*} U_{e 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}-A\right) U_{\mu 3}^{*} U_{e 3} \\
0 \\
\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}-A\right) U_{\mu 2}^{*} U_{\tau 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}-A\right) U_{\mu 3}^{*} U_{\tau 3}
\end{array}\right) \\
\begin{aligned}
\chi_{\mu}=P_{\mu e}(t)\left(N_{1 \mu}^{2}\left|c_{1}\right|^{2}+2 N_{2 \mu}^{2}\left|d_{1}\right|^{2}\right) & +P_{\mu \tau}(t)\left(N_{1 \mu}^{2}\left|c_{2}\right|^{2}+2 N_{2 \mu}^{2}\left|d_{2}\right|^{2}\right)+2 \Re\left(N_{1 \mu}^{2} c_{1}^{*} c_{2} A_{\mu e}(t) A_{\mu \tau}(t)^{*}\right) \\
& +4 \Re\left(N_{2 \mu}^{2} d_{1}^{*} d_{2} A_{\mu e}(t) A_{\mu \tau}(t)^{*}\right)
\end{aligned}
\end{gathered}
$$

Spread complexity in three flavor neutrino oscillations

- In case of $\left|K_{0}\right\rangle \equiv\left|\nu_{\tau}\right\rangle=(0,0,1)^{T}$,

$$
\left.\begin{array}{c}
\left|K_{1}\right\rangle=N_{1 \tau}\left(e_{1}, e_{2}, 0\right)^{T}=N_{1 \tau}\left(\begin{array}{c}
\left(\frac{\Delta m_{21}^{2}}{2 E}\right) \\
\left(\frac{\Delta m_{21}^{2}}{2 E}\right) U_{\tau 2}^{*} U_{e 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right) U_{\tau 2}^{*} U_{\mu 3}^{*} U_{e 3} \\
0
\end{array}\right) \\
\left.\left\lvert\, \frac{\Delta m_{31}^{2}}{2 E}\right.\right) U_{\tau 3}^{*} U_{\mu 3}
\end{array}\right), ~ \begin{gathered}
\left(\begin{array}{c}
\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}-A\right) U_{\tau 2}^{*} U_{e 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}-A\right) U_{\tau 3}^{*} U_{e 3} \\
\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}-A\right) U_{\tau 2}^{*} U_{\mu 2}+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}-A\right) U_{\tau 3}^{*} U_{\mu 3} \\
0
\end{array}\right) \\
\begin{aligned}
\chi_{\tau}=P_{2}, f_{2}(t)\left(N_{1}^{2}\left|e_{1}\right|^{2}+2 N_{2}^{2}\left|f_{1}\right|^{2}\right) & +P_{\tau \mu}(t)\left(N_{1}^{2}\left|e_{2}\right|^{2}+2 N_{2}^{2}\left|f_{2}\right|^{2}\right)+2 \Re\left(N_{1}^{2} e_{1}^{*} e_{2} A_{\tau e}(t) A_{\tau \mu}(t)^{*}\right) \\
& +4 \Re\left(N_{2}^{2} f_{1}^{*} f_{2} A_{\tau e}(t) A_{\tau \mu}(t)^{*}\right)
\end{aligned}
\end{gathered}
$$

Here,

$$
A=\frac{\left[\begin{array}{r}
\left(\Delta m_{21}^{2}\right)^{3}\left|U_{\alpha 2}\right|^{2}\left(1-\left|U_{\alpha 2}\right|^{2}\right)+\left(\Delta m_{31}^{2}\right)^{3}\left|U_{\alpha 3}\right|^{2}\left(1-\left|U_{\alpha 3}\right|^{2}\right) \\
-\left(\Delta m_{21}^{2}\right)\left(\Delta m_{31}^{2}\right)\left|U_{\alpha 2}\right|^{2}\left|U_{\alpha 3}\right|^{2}\left(\Delta m_{21}^{2}+\Delta m_{31}^{2}\right)
\end{array}\right]}{\left(\Delta m_{21}^{2}\right)^{2}\left|U_{\alpha 2}\right|^{2}\left(1-\left|U_{\alpha 2}\right|^{2}\right)+\left(\Delta m_{31}^{2}\right)^{2}\left|U_{\alpha 3}\right|^{2}\left(1-\left|U_{\alpha 3}\right|^{2}\right)-2\left(\Delta m_{21}^{2}\right)\left(\Delta m_{31}^{2}\right)\left|U_{\alpha 2}\right|^{2}\left|U_{\alpha 3}\right|^{2}}
$$

Spread complexity in three flavor neutrino oscillations

$$
\begin{aligned}
N_{1 \alpha}= & \left(\left(\frac{\Delta m_{21}^{2}}{2 E}\right)^{2}\left|U_{\alpha 2}\right|^{2}\left(1-\left|U_{\alpha 2}\right|^{2}\right)+\left(\frac{\Delta m_{31}^{2}}{2 E}\right)^{2}\left|U_{\alpha 3}\right|^{2}\left(1-\left|U_{\alpha 3}\right|^{2}\right)\right. \\
& \left.-2\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left|U_{\alpha 2}\right|^{2}\left|U_{\alpha 3}\right|^{2}\right)^{-1 / 2}, \\
N_{2 \alpha}= & \left(\left(\frac{\Delta m_{21}^{2}}{2 E}\right)^{2}\left(\frac{\Delta m_{21}^{2}}{2 E}-A\right)^{2}\left|U_{\alpha 2}\right|^{2}\left(1-\left|U_{\alpha 2}\right|^{2}\right)\right. \\
+ & \left(\frac{\Delta m_{31}^{2}}{2 E}\right)^{2}\left(\frac{\Delta m_{31}^{2}}{2 E}-A\right)^{2}\left|U_{\alpha 3}\right|^{2}\left(1-\left|U_{\alpha 3}\right|^{2}\right) \\
& \left.-2\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}-A\right)\left(\frac{\Delta m_{31}^{2}}{2 E}-A\right)\left|U_{\alpha 2}\right|^{2}\left|U_{\alpha 3}\right|^{2}\right)^{-1 / 2}
\end{aligned}
$$

Matter effects on complexity

$$
\begin{aligned}
B_{e}= & {\left[\left(\Delta m_{21}^{2}\right)^{2}\left(\Delta m_{21}^{2}+2 E V\right)\left|U_{e 2}\right|^{2}\left(1-\left|U_{e 2}\right|^{2}\right)+\left(\Delta m_{31}^{2}\right)^{2}\left(\Delta m_{31}^{2}+2 E V\right)\left|U_{e 3}\right|^{2}\right.} \\
& \left.\left(1-\left|U_{e 3}\right|^{2}\right)-\left(\Delta m_{21}^{2}\right)\left(\Delta m_{31}^{2}\right)\left|U_{e 2}\right|^{2}\left|U_{e 3}\right|^{2}\left(\left(\Delta m_{21}^{2}+2 E V\right)+\left(\Delta m_{31}^{2}+2 E V\right)\right)\right] \\
& {\left[2 E \left[\left(\Delta m_{21}^{2}\right)^{2}\left|U_{e 2}\right|^{2}\left(1-\left|U_{e 2}\right|^{2}\right)+\left(\Delta m_{31}^{2}\right)^{2}\left|U_{e 3}\right|^{2}\left(1-\left|U_{e 3}\right|^{2}\right)\right.\right.} \\
& \left.\left.-2\left(\Delta m_{21}^{2}\right)\left(\Delta m_{31}^{2}\right)\left|U_{e 2}\right|^{2}\left|U_{e 3}\right|^{2}\right]\right]^{-1} .
\end{aligned}
$$

For initial ν_{μ} and ν_{τ} state the constant B_{α} is

$$
\begin{aligned}
B_{\alpha}= & {\left[\left(\Delta m_{21}^{2}\right)^{3}\left|U_{\alpha 2}\right|^{2}\left(1-\left|U_{\alpha 2}\right|^{2}\right)+\left(\Delta m_{31}^{2}\right)^{3}\left|U_{\alpha 3}\right|^{2}\left(1-\left|U_{\alpha 3}\right|^{2}\right)-\left(\Delta m_{21}^{2}\right)\left(\Delta m_{31}^{2}\right)\right.} \\
& \left|U_{\alpha 2}\right|^{2}\left|U_{\alpha 3}\right|^{2}\left(\Delta m_{21}^{2}+\Delta m_{31}^{2}\right)+2 E V\left(\left(\Delta m_{21}^{2}\right)^{2}\left|U_{e 2}\right|^{2}\left|U_{\alpha 2}\right|^{2}+\left(\Delta m_{31}^{2}\right)^{2}\left|U_{e 3}\right|^{2}\left|U_{\alpha 3}\right|^{2}\right. \\
& \left.\left.+2\left(\Delta m_{21}^{2}\right)\left(\Delta m_{31}^{2}\right) \Re\left(U_{e 2}^{*} U_{\alpha 2} U_{e 3} U_{\alpha 3}^{*}\right)\right)\right]\left[2 E \left[\left(\Delta m_{21}^{2}\right)^{2}\left|U_{\alpha 2}\right|^{2}\left(1-\left|U_{\alpha 2}\right|^{2}\right)+\left(\Delta m_{31}^{2}\right)^{2}\right.\right. \\
& \left.\left.\left|U_{\alpha 3}\right|^{2}\left(1-\left|U_{\alpha 3}\right|^{2}\right)-2\left(\Delta m_{21}^{2}\right)\left(\Delta m_{31}^{2}\right)\left|U_{\alpha 2}\right|^{2}\left|U_{\alpha 3}\right|^{2}\right]\right]^{-1},
\end{aligned}
$$

Matter effects on complexity

$$
\begin{aligned}
N_{2 e}^{m}= & \left(\left(\frac{\Delta m_{21}^{2}}{2 E}\right)^{2}\left|U_{e 2}\right|^{2}\left(1-\left|U_{e 2}\right|^{2}\right)\left[\left(\frac{\Delta m_{21}^{2}}{2 E}+V-B_{e}\right)^{2}\right]\right. \\
& +\left(\frac{\Delta m_{31}^{2}}{2 E}\right)^{2}\left|U_{e 3}\right|^{2}\left(1-\left|U_{e 3}\right|^{2}\right)\left[\left(\frac{\Delta m_{31}^{2}}{2 E}+V-B_{e}\right)^{2}\right] \\
& \left.-2\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left(\frac{\Delta m_{21}^{2}}{2 E}+V-B_{e}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}+V-B_{e}\right)\left|U_{e 2}\right|^{2}\left|U_{e 3}\right|^{2}\right)^{-1 / 2}, \\
N_{2 \mu}^{m}= & \left(\left(\frac{\Delta m_{21}^{2}}{2 E}\right)^{2}\left|U_{\mu 2}\right|^{2}\left[\left(\frac{\Delta m_{21}^{2}}{2 E}+V-B_{\mu}\right)^{2}\left|U_{e 2}\right|^{2}+\left(\frac{\Delta m_{21}^{2}}{2 E}-B_{\mu}\right)^{2}\left|U_{\tau 2}\right|^{2}\right]\right. \\
& +\left(\frac{\Delta m_{31}^{2}}{2 E}\right)^{2}\left|U_{\mu 3}\right|^{2}\left[\left(\frac{\Delta m_{31}^{2}}{2 E}+V-B_{\mu}\right)^{2}\left|U_{e 3}\right|^{2}+\left(\frac{\Delta m_{31}^{2}}{2 E}-B_{\mu}\right)^{2}\left|U_{\tau 3}\right|^{2}\right] \\
& +2\left(\frac{\Delta m_{21}^{2}}{2 E}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}\right)\left[\left(\frac{\Delta m_{21}^{2}}{2 E}+V-B_{\mu}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}+V-B_{\mu}\right) \Re\left(U_{\mu 2}^{*} U_{e 2} U_{\mu 3} U_{e 3}^{*}\right)\right. \\
& \left.\left.+\left(\frac{\Delta m_{21}^{2}}{2 E}-B_{\mu}\right)\left(\frac{\Delta m_{31}^{2}}{2 E}-B_{\mu}\right) \Re\left(U_{\mu 2}^{*} U_{\tau 2} U_{\mu 3} U_{\tau 3}^{*}\right)\right]\right)^{-1 / 2},
\end{aligned}
$$

Figure: T2K: Cost function (upper panel) and 1-P $P_{\alpha \alpha}$ (lower panel) in the plane of $E-\delta$ in case of initial flavor ν_{e} (left), ν_{μ} (middle) and ν_{τ} (right). Here, $L=295 \mathrm{~km}$ is considered.

