# Quantum Spread Complexity in Neutrino Oscillations

Workshop on Quantum Information Theory in Quantum Field Theory and Cosmology, BIRS, Alberta

5 June 2023

# Khushboo Dixit

# Based on the preprint arXiv:2305.17025 by Khushboo Dixit, S. Shajidul Haque, Soebur Razzaque



Centre for Astro-Particle Physics (CAPP) & Department⊡of Physics < ≧ > < ≧ > - ≅ | = < つ < ⊘ University of Johannesburg, South Africa

### Plan of this talk



- 2 Neutrino Oscillation
- 3 Spread Complexity
- 4 Spread Complexity in neutrino oscillations
- 5 Summary & Conclusions

#### Motivation

- Quantum computational complexity estimates the difficulty of constructing quantum states from elementary operations, a problem of prime importance for quantum computation.
- It can also serve to study a completely different physical problem that of information processing inside black holes.
- Extends the connection between geometry and information. Growth of complexity is equal to the growth of black hole interiors. [Susskind et al., (2014)]
- It would be intriguing to investigate what characteristics complexity shows in other natural processes of evolution.
- Neutrinos have shown features such as entanglement and nonlocal correlations that proves their efficiency to perform QIP tasks.
   [blasone et al., (2009)], [Formaggio et al., (2016)]
- It gives us motivation to see how complex is an evolution of neutrino system and if complexity can also probe any open issue in the neutrino sector.

#### Neutrino-properties

• Postulated first by Wolfgang Pauli to explain how beta decay could conserve energy, momentum and angular momentum(spin)

$$n 
ightarrow p + e^- + ar{
u}_e$$

- Spin half, very small mass, no electric charge
- Come in three flavours  $\rightarrow \nu_e, \ \nu_{\mu}, \ \nu_{ au}$
- Interact only via weak interaction
- Neutrinos  $\rightarrow$  Left-handed, Anti-neutrinos  $\rightarrow$  Right-handed

### Neutrino Oscillations

- About 65 billion ( $6.5 \times 10^{10}$ ) neutrinos coming from Sun's interior pass through 1 square centimeter per second. Homestake experiment's observed value was 1/3 of the predicted flux. This lead Pontecorvo to suggest neutrino oscillations.
- Up-down asymmetry of atmospheric muon neutrino flux by IMB and KamioKande experiments gave additional hint of neutrino oscillations. (*T. Kajita* (SK), *A. McDonald* (SNO), 2015)



 Experiments : Solar (e.g. Homestake, Gallex/SAGE, SNO), Atmospheric (e.g. Super Kamiokande), Reactor (e.g. CHOOZ, KamLAND, Daya-Bay, RENO), Accelerator (e.g. T2K, MINOS, NOνA, DUNE (upcoming))

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆□>

#### Quantum mechanics in neutrino oscillations

- The three flavor states (eigenstates of weak interaction, which are detectable in lab) of neutrinos,  $\nu_e, \nu_\mu$  and  $\nu_\tau$  mix via a 3 × 3 unitary matrix to form the three mass eigenstates (which are the propagation eigenstates)  $\nu_1, \nu_2$  and  $\nu_3$ . Neutrino oscillations occur only if the three corresponding masses,  $m_1, m_2$  and  $m_3$ , are non-degenerate.
- In three flavor neutrino oscillation Propagation states  $\rightarrow \{|\nu_1\rangle, |\nu_2\rangle, |\nu_3\rangle\};$ Flavor states  $\rightarrow \{|\nu_e\rangle, |\nu_{\mu}\rangle, |\nu_{\tau}\rangle\}$
- The general state of a neutrino can be expressed in flavor basis as:

$$|\Psi(t)
angle = 
u_e(t) \ket{
u_e} + 
u_\mu(t) \ket{
u_\mu} + 
u_ au(t) \ket{
u_ au}$$

• Same state in propagation basis looks like:

$$\ket{\Psi(t)}=
u_1(t)\ket{
u_1}+
u_2(t)\ket{
u_2}+
u_3(t)\ket{
u_3}$$

• The coefficients in two representations are connected by a unitary matrix

$$\begin{pmatrix} \nu_e(t) \\ \nu_\mu(t) \\ \nu_\tau(t) \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_1(t) \\ \nu_2(t) \\ \nu_3(t) \end{pmatrix}$$

or,

$$\nu_{\alpha}(t) = \mathbf{U}\nu_{i}(t). \tag{1}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆□>

#### Quantum mechanics in neutrino oscillations

• A convenient parametrization for **U** or  $U(\theta_{12}, \theta_{23}, \theta_{13}, \delta)$  is given by the PMNS matrix

$$U(\theta_{12},\theta_{23},\theta_{13},\delta) = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{23}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{13}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

- where  $c_{ij} = \cos \theta_{ij}$ ,  $s_{ij} = \sin \theta_{ij}$ ,  $\theta_{ij}$  being the mixing angles and  $\delta$  the CP (Charge-Parity) violating phase.
- The mass eigenstates evolve as

$$\begin{pmatrix} \nu_1(t) \\ \nu_2(t) \\ \nu_3(t) \end{pmatrix} = \begin{pmatrix} e^{-iE_1t} & 0 & 0 \\ 0 & e^{-iE_2t} & 0 \\ 0 & 0 & e^{-iE_3t} \end{pmatrix} \begin{pmatrix} \nu_1(0) \\ \nu_2(0) \\ \nu_3(0) \end{pmatrix},$$

or,

$$\nu_{\mathbf{m}}(t) = \mathbf{E}\nu_{\mathbf{m}}(0) \tag{2}$$

• From 1 and 2,  $\nu_{f}(t) = \mathbf{U} \ \mathbf{E} \mathbf{U}^{-1} \ \nu_{f}(0) = \mathbf{U}_{f} \ \nu_{f}(0)$ .

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{i>j} Re(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2\left(1.27 \frac{\Delta_{ij} L}{E}\right) + 2 \sum_{i>j} Im(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin\left(2.54 \frac{\Delta_{ij} L}{E}\right)$$
(3)

where  $\Delta_{ij} = m_j^2 - m_i^2 \equiv E_j - E_i$ .

#### Problems not resolved yet ...

- Neutrino mass hierarchy problem *i.e.*, whether  $m_1 \leq m_2 \leq m_3$  or  $m_3 \leq m_1 \leq m_2$  ).
- CP violation ( $\delta \neq 0$ ).  $P(\nu_{\alpha} \rightarrow \nu_{\beta}) \neq P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})$
- Absolute mass



#### Neutrino experimental facilities

We included accelerator  $\nu_{\mu}$ - neutrino experimental conditions in our study such as

DUNE (L = 1300 Km, E = 1 - 10 GeV, A =  $1.7 \times 10^{-13}$  eV) NOvA (L = 810 Km, E = 1 - 4 GeV, A =  $1.7 \times 10^{-13}$  eV) T2K (L = 295 Km, E = 0.1 - 1 GeV, A =  $1.01 \times 10^{-13}$  eV)

 $(L \rightarrow \text{baseline}, E \rightarrow \text{neutrino-energy}, A \rightarrow \text{matter density potential})$ 

Source: www.fnal.gov/



◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ の々⊙

#### Matter effects on neutrino oscillations



(a) The Feynman diagrams for charged current inter- (b) The Feynman diagram for neutral actions rent interactions

$$H_f = UH_m U^{-1} + V \ diag(1,0,0) + V_{Z_0} \ \mathbb{1}_{3 \times 3}.$$

where,  $V \rightarrow$  matter density potential due to coherent-forward scattering of  $\nu_e$  with  $e^-$  present in the matter.

◆□▶ ◆□▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

# Complexity

- How difficult is it to construct a desired target state with the elementary operations (gates) at your end?
- Or, the minimum number of unitaries required to construct a "target state" through a "reference state".
- For a system  $|\phi(s)
  angle$ , if

$$|U_1 U_2 U_3 U_2 |\phi(s)\rangle = U_3 U_1 U_2 U_1 (U_1)^3 U_2 |\phi(s)\rangle \,,$$

then the complexity = 4.

#### Complexity of spread of states Balasubramanian et al., PRD 106, 046007 (2022)

- The complexity of the state can be defined by minimizing the spread of the wavefunction over all possible bases.
- This minimum is uniquely attained by an orthonormal basis produced by applying the Gram-Schmidt procedure.

Schrodinger equation for a system represented by  $|\psi(t)
angle$ 

$$irac{\partial}{\partial t}\ket{\psi(t)}=H\ket{\psi(t)}$$

Then, the time evolution of the state  $|\psi(t)\rangle$  is obtained as

$$|\psi(t)
angle = e^{-iHt} |\psi(0)
angle$$
.

One can also write

$$|\psi(t)\rangle = \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} H^n |\psi(0)\rangle = \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} |\psi_n\rangle ,$$

where,  $|\psi_n\rangle = H^n |\psi(0)\rangle$ . Hence, we can see that the time evolved system-state  $|\psi(t)\rangle$  is represented as superposition of infinite  $|\psi_n\rangle$  states.

#### Complexity of spread of states

We have  $|\psi_n\rangle = H^n |\psi(0)\rangle$ . These states  $\{|\psi_0\rangle, |\psi_1\rangle, |\psi_2\rangle, \dots\}$  are not orthonomalized. Gram-Schmidt procedure to obtain an ordered orthonomalized basis

$$\begin{split} |K_0\rangle &= |\psi_0\rangle ,\\ |K_1\rangle &= |\psi_1\rangle - \frac{\langle K_0|\psi_1\rangle}{\langle K_0|K_0\rangle} \left|K_0\right\rangle ,\\ |K_2\rangle &= |\psi_2\rangle - \frac{\langle K_0|\psi_2\rangle}{\langle K_0|K_0\rangle} \left|K_0\right\rangle - \frac{\langle K_1|\psi_2\rangle}{\langle K_1|K_1\rangle} \left|K_1\right\rangle , \ \text{and so on.} \end{split}$$

$$\mathcal{K} = \{ | K_n \rangle, n = 0, 1, 2 \dots \} \Rightarrow$$
 Krylov basis

**Cost function to quantify the complexity** (Balasubramanian et al., PRD 106, 046007 (2022)) For a time evolved state  $|\psi(t)\rangle$  and the Krylov basis defined as  $\{|K_n\rangle\}$ , the cost function is

$$\chi = \sum_{n=0}^{\infty} n |\langle K_n | \psi(t) \rangle|^2,$$

where n = 0, 1, 2... For such Krylov basis the above defined cost function becomes minimum.

#### Spread complexity in two flavor neutrino oscillations

The evolution of flavor states can be represented by Schrodinger equation as

$$i\frac{\partial}{\partial t}\begin{pmatrix} |\nu_{e}(t)\rangle\\ |\nu_{\mu}(t)\rangle \end{pmatrix} = H_{f}\begin{pmatrix} |\nu_{e}(t)\rangle\\ |\nu_{\mu}(t)\rangle \end{pmatrix}$$
(4)

where  $H_f = UH_m U^{-1}$ , U being the mixing matrix and  $H_m$  is the Hamiltonian (diagonal) that governs the time evolution of neutrino mass eigenstate

$$\begin{split} H_m &= \begin{pmatrix} E_1 & 0\\ 0 & E_2 \end{pmatrix}, \qquad U = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix}.\\ &|\nu_e(0)\rangle &= \begin{pmatrix} 1\\ 0 \end{pmatrix}, \qquad |\nu_\mu(0)\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix} \end{split}$$

We have

$$\{|\psi_n\rangle\} = \begin{cases} |\nu_e(0)\rangle, H_f |\nu_e(0)\rangle, H_f^2 |\nu_e(0)\rangle \dots \} & \text{for initial } \nu_e \text{ flavor} \\ \{|\nu_\mu(0)\rangle, H_f |\nu_\mu(0)\rangle, H_f^2 |\nu_\mu(0)\rangle \dots \} & \text{for initial } \nu_\mu \text{ flavor} \end{cases}$$

After applying Gram-Schmidt procedure we get  $\{|K_n\rangle\} = \{|K_0\rangle, |K_1\rangle\}$ , *i.e.*,

$$\{|K_n\rangle\} = \begin{cases} \{|K_0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, |K_1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}\} = \{|\nu_e\rangle, |\nu_\mu\rangle\} & \text{for initial } \nu_e \\ \{|K_0\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}, |K_1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}\} = \{|\nu_\mu\rangle, |\nu_e\rangle\} & \text{for initial } \nu_\mu \end{cases}$$

### Spread complexity in two flavor neutrino oscillations

For a time evolved state  $|\nu_{e}(t)\rangle = \begin{pmatrix} A_{ee}(t) \\ A_{e\mu}(t) \end{pmatrix} = \begin{pmatrix} \cos^{2}\theta e^{-iE_{1}t} + \sin^{2}\theta e^{-iE_{2}t} \\ \sin\theta\cos\theta(e^{-iE_{2}t} - e^{-iE_{1}t}) \end{pmatrix}$ (with  $\{|K_{n}\rangle\} = \{|\nu_{e}(0)\rangle, |\nu_{\mu}(0)\rangle\}$ )

$$\chi_e = \sum_{n=0}^{1} n |\langle K_n | \nu_e(t) \rangle|^2 = P_{e\mu}$$

Similarly, for state  $|\nu_{\mu}(t)\rangle = (A_{\mu e}(t), A_{\mu \mu}(t))^{T}$  (with  $\{|K_{n}\rangle\} = \{|\nu_{\mu}(0)\rangle, |\nu_{e}(0)\rangle\}$ )

$$\chi_{\mu} = P_{\mu e}$$

- The more the oscillation probability of neutrino flavor, the more complex the evolution of the neutrino flavor state.
- Since P<sub>eµ</sub> = P<sub>µe</sub> for standard vacuum oscillations, the complexity embedded in this system comes out to be same for both cases of initial flavor, *i.e.*, complexity of the system doesn't depend on the initial flavor of neutrino.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ●□ ● ●

#### Spread complexity in three flavor neutrino oscillations

We have three types of initial states as  $|\nu_e\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$ ,  $|\nu_{\mu}\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$ ,  $|\nu_{\tau}\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$  with Hamiltonian  $H_f = UH_m U^{-1}$ ,  $H_m = diag(0, \Delta m_{21}^2, \Delta m_{31}^2)$  and  $U \rightarrow 3 \times 3$  PMNS mixing matrix

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{13}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Here, Krylov basis  $\neq$  flavor basis.

• For initial  $|\nu_e\rangle$  state  $|K_0\rangle \equiv |\nu_e\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$ , other states spanning the Krylov basis take the form

$$\begin{split} |K_{1}\rangle &= N_{1} \begin{pmatrix} 0\\ a_{1}\\ a_{2} \end{pmatrix} = N_{1} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) U_{e2}^{*} U_{\mu 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) U_{e3}^{*} U_{\mu 3}\\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) U_{e2}^{*} U_{\tau 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) U_{e3}^{*} U_{\tau 3} \end{pmatrix}, \\ |K_{2}\rangle &= N_{2} \begin{pmatrix} 0\\ b_{1}\\ b_{2} \end{pmatrix} = N_{2} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{e2}^{*} U_{\mu 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{e3}^{*} U_{\mu 3} \\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{e2}^{*} U_{\tau 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{31}^{2}}{2E} - A\right) U_{e3}^{*} U_{\tau 3} \end{pmatrix} \end{split}$$

#### Spread complexity in three flavor neutrino oscillations

$$\begin{split} \chi_{e} &= P_{e\mu}(t) (N_{1}^{2}|a_{1}|^{2} + 2N_{2}^{2}|b_{1}|^{2}) + P_{e\tau}(t) (N_{1}^{2}|a_{2}|^{2} + 2N_{2}^{2}|b_{2}|^{2}) + 2\Re(N_{1}^{2}a_{1}^{*}a_{2}A_{e\mu}(t)A_{e\tau}(t)^{*}) \\ &+ 4\Re(N_{2}^{2}b_{1}^{*}b_{2}A_{e\mu}(t)A_{e\tau}(t)^{*}) \end{split}$$

with

$$A = \frac{\begin{pmatrix} \left(\Delta m_{21}^2\right)^3 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left(\Delta m_{31}^2\right)^3 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) \\ - \left(\Delta m_{21}^2\right) \left(\Delta m_{31}^2\right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2 \left(\Delta m_{21}^2 + \Delta m_{31}^2\right) \end{pmatrix}}{\left(\Delta m_{21}^2\right)^2 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left(\Delta m_{31}^2\right)^2 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) - 2 \left(\Delta m_{21}^2\right) \left(\Delta m_{31}^2\right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2}$$

# Effects of different oscillation parameters



Figure: Complexity plotted with respect to the distance L over energy E traveled by neutrinos in vacuum and in case if the initial flavor is  $\nu_e$  (blue solid line),  $\nu_{\mu}$  (red dashed line) and  $\nu_{\tau}$  (green dot-dashed line) for CP-violating phase  $\delta = 0^{\circ}$ . Here, mixing parameters  $\theta_{12} = 33.64^{\circ}$ ,  $\theta_{13} = 8.53^{\circ}$ ,  $\theta_{23} = 47.63^{\circ}$ ,  $\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2$  and  $\Delta m_{31}^2 = 2.45 \times 10^{-3} \text{ eV}^2$  are considered.

- The rapid oscillation pattern seen in the left panel (zoomed-in in the right panel) is due to  $\Delta m_{31}^2$  mass-squared difference in the oscillation phase, while the longer oscillation pattern is due to  $\Delta m_{21}^2$  in the oscillation phase. The oscillation length is  $\sim 10^3$  km at E = 1 GeV for  $\Delta m_{31}^2$  and  $\sim 3 \times 10^4$  km at E = 1 GeV for  $\Delta m_{21}^2$ .
- In the general case the complexity is maximum if the neutrino is produced initially as  $\nu_e$ , however, this happens only at a very large L/E value of  $\sim 1.6 \times 10^4$  km/GeV.
- In current experimental setups (right panel), which covers roughly one oscillation length for  $\Delta m_{31}^2$ , the initial  $\nu_e$  flavor provides the least complexity among all neutrino flavors.

### Effects of *CP*-violating parameter $\delta$



Figure: Complexities and 1- $P_{\alpha\alpha}$  with respect to L/E.

- Complexity mimics the features of the total oscillation probability  $1 P_{\alpha\alpha}$ .
- However, it is visible that  $\chi_{\alpha}$  for all three flavors provide more information regarding the *CP*-violating phase  $\delta$ .



Figure: Complexity for small L/E range (upper panels), large L/E range (lower panels) with respect to L/E for initial flavor is  $\nu_e$  (left),  $\nu_{\mu}$  (middle) and  $\nu_{\tau}$  (right) for different values of the *CP*-phase  $\delta$  depicted by different colors.

- For large L/E range the complexities are maximized and the corresponding δ = +90° or −90° for χ<sub>μ</sub> and χ<sub>τ</sub>, and at δ = ±90° for χ<sub>e</sub> where CP is maximally violated.
- In the limited L/E range  $\chi_{\mu}$  and  $\chi_{\tau}$  are maximized at  $\delta = -90^{\circ}$  (red-dashed line) and at  $\delta = +90^{\circ}$  (red-solid line), respectively. However,  $\chi_e$  is maximized at  $\delta = +135^{\circ}$  and at  $-45^{\circ}$ .

• For any initial flavor  $\nu_{\alpha}$ 

$$egin{array}{l} |\mathcal{K}_0
angle_{lpha}^{matter} &= |\mathcal{K}_0
angle_{lpha}^{ extsf{vacuum}} \ |\mathcal{K}_1
angle_{lpha}^{matter} &= |\mathcal{K}_1
angle_{lpha}^{ extsf{vacuum}} \,, \end{array}$$

•  $|K_2\rangle$  contains the effects of constant matter density

$$|K_2\rangle_e = N_{2e}^m(0, b_1^m, b_2^m)^T$$

where,

$$b_{1}^{m} = \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} + \mathbf{V} - B_{e}\right) U_{e2}^{*} U_{\mu 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{31}^{2}}{2E} + \mathbf{V} - B_{e}\right) U_{e3}^{*} U_{\mu 3},$$
  
$$b_{2}^{m} = \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} + \mathbf{V} - B_{e}\right) U_{e2}^{*} U_{\tau 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{31}^{2}}{2E} + \mathbf{V} - B_{e}\right) U_{e3}^{*} U_{\tau 3}.$$

• Similarly, for the initial  $u_{\mu}$  flavor

$$|K_2\rangle_{\mu} = N_{2\mu}^m (d_1^m, 0, d_2^m)^T,$$

where,

$$\begin{split} d_1^m &= \left(\frac{\Delta m_{21}^2}{2E}\right) \left(\frac{\Delta m_{21}^2}{2E} + \mathbf{V} - B_\mu\right) U_{e2} U_{\mu 2}^* + \left(\frac{\Delta m_{31}^2}{2E}\right) \left(\frac{\Delta m_{31}^2}{2E} + \mathbf{V} - B_\mu\right) U_{e3} U_{\mu 3}^* \\ d_2^m &= \left(\frac{\Delta m_{21}^2}{2E}\right) \left(\frac{\Delta m_{21}^2}{2E} - B_\mu\right) U_{\mu 2}^* U_{\tau 2} + \left(\frac{\Delta m_{31}^2}{2E}\right) \left(\frac{\Delta m_{31}^2}{2E} - B_\mu\right) U_{\mu 3}^* U_{\tau 3}, \end{split}$$



Figure: Cost function  $\chi_e$  (left),  $\chi_{\mu}$  (middle) and  $\chi_{\tau}$  (right) w. r. t. neutrino-energy *E* is shown. Here, *L* = 810 km,  $\delta = -90^{\circ}$  and higher octant of  $\theta_{23}$  is considered. Solid and dashed curves represent the case of vacuum and matter oscillations, respectively.  $V = 1.01 \times 10^{-13}$  eV.

• Matter effect increases complexity of the system in all cases of initial flavors of the neutrino, most significantly for  $\nu_e$  as expected.

#### Spread complexity in neutrino oscillation experiments



Figure: T2K: Cost function (upper panel) and 1- $P_{\alpha\alpha}$  (lower panel) in the plane of  $E - \delta$  in case of initial flavor  $\nu_e$  (left),  $\nu_{\mu}$  (middle) and  $\nu_{\tau}$  (right). Here, L = 295 km and mixing parameters  $\theta_{12} = 33.64^{\circ}$ ,  $\theta_{13} = 8.53^{\circ}$ ,  $\theta_{23} = 47.63^{\circ}$ ,  $\Delta m^2_{21} = 7.53 \times 10^{-5} \text{ eV}^2$  and  $\Delta m^2_{31} = 2.45 \times 10^{-3} \text{ eV}^2$  are considered.

◆□▶ ◆□▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

Spread Complexity in neutrino oscillations



Figure: NO $\nu$ A: Cost function (upper panel) and 1- $P_{\alpha\alpha}$  (lower panel) in the plane of  $E - \delta$  in case of initial flavor  $\nu_e$  (left),  $\nu_{\mu}$  (middle) and  $\nu_{\tau}$  (right). Here, L = 810 km, and higher octant of  $\theta_{23}$  (47.63°) is considered.

- For both the experiments, the maxima of  $\chi_{\mu}$  and  $\chi_{\tau}$  are found at  $\delta \approx -\pi/2$  and  $\delta = \pi/2$ , respectively.
- This means that the matter effect just enhances the magnitude of complexities, however, the characteristics of  $\chi_{\alpha}$  with respect to  $\delta$  are almost similar for both T2K and NOvA experiments.

◆□▶ ◆□▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

- In the T2K and NOvA experimental setups, where only  $\nu_\mu$  beams are produced, the only relevant complexity is  $\chi_\mu.$
- For both the T2K and NOvA  $\chi_{\mu}$  is maximized at  $\delta \approx -1.5$  radian at the relevant experimental energies. The T2K best-fit value of  $\delta = -2.14^{+0.90}_{-0.60}$  radian is consistent with this expectation.
- The NOvA best-fit, however, is at  $\delta \approx 2.58$  radian which is far away from the maximum  $\chi_{\mu}$  in the lower-half plane of  $\delta$  but is still within a region of high  $\chi_{\mu}$  value in the upper-half plane of  $\delta$ .
- $P_{\mu e}$ , which is the only oscillation probability accessible to the T2K and NOvA setups, it becomes maximum at  $\delta \approx -1.5$  radian. This is compatible with T2K best-fit but is in odd with the NOvA best-fit.
- Complexity provides correct prediction for the  $\delta$  in experimental setups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

#### Effects of neutrino mass ordering



Figure: NOvA: Complexity with respect to neutrino-energy *E* in case of initial flavor  $\nu_e$  (left),  $\nu_{\mu}$  (middle) and  $\nu_{\tau}$  (right) with *L* = 810 km and  $\delta = -90^{\circ}$ . The upper and lower panel represent the case of vacuum and matter oscillations, respectively. Solid curves are associated with NH and dashed curves depict the IH.

• Complexity can distinguish between the effects due to normal (NH)  $(+\Delta_{31})$  and inverted hierarchy (IH)  $(-\Delta_{31})$  in the presence of non-zero matter potential.

#### Summary & Conclusions

- We examined the spread complexity of neutrino states in two- and three-flavor oscillation scenarios.
- In the two-flavor scenario, complexity and transition probabilities yield equivalent information.
- In case of three-flavor oscillation, initial flavor state evolves into two mixed final states. Hence, the complexity contains additional information regarding open issues related to neutrinos, compared to the total oscillation probability.
- Remarkably, we found that the complexity is maximized for a value of the phase angle for which CP is also maximally violated. T2K experimental data also favors this phase angle, which is obtained from flavor transition.
- Quantum spread complexity emerges as a potent and novel quantity for investigating neutrino
  oscillations. It successfully reproduces existing results, also demonstrates the potential to serve
  as a theoretical tool for predicting new outcomes in future experiments.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

# Thank you for your attention!

# BACKUP SLIDES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ◆○◆

# Comparing the effects of neutrino mass ordering for neutrinos & antineutrinos

For antineutrino  $\rightarrow \{V \rightarrow -V, \delta \rightarrow -\delta\}$ 



Figure: NOvA: Complexities and  $P_{\mu e}$  with respect to neutrino-energy *E* where red and blue curves represent neutrino and antineutrino case, respectively, with solid (normal ordering) and dashed (inverted ordering) lines. Here L = 810 km and  $\delta = -90^{\circ}$  are considered.

- For both neutrino and antineutrino, the effects of NH and IH are significantly distinguishable for all three flavors.
- In case of χ<sub>e</sub>, red-solid line (neutrinos for NH) and blue-dashed line (antineutrinos for IH) exhibit more complexity, *i.e.*, complete swap between the NH (IH) hierarchy and ν (ν̄).
- For  $\chi_{\mu}$  and  $\chi_{\tau}$  the maximum is achieved in case of neutrinos with NH and Antineutrinos with IH, respectively.

# Spread complexity in three flavor (vacuum) neutrino oscillations

• Similarly, for initial  $|
u_{\mu}
angle$ ,  $|K_{0}
angle\equiv|
u_{\mu}
angle=(0,1,0)^{T}$ , then we get

$$\begin{split} |K_{1}\rangle &= N_{1\mu} \begin{pmatrix} c_{1} \\ 0 \\ c_{2} \end{pmatrix} = N_{1\mu} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) U_{\mu 2}^{*} U_{e2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) U_{\mu 3}^{*} U_{e3} \\ 0 \\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) U_{\mu 2}^{*} U_{\tau 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) U_{\mu 3}^{*} U_{\tau 3} \end{pmatrix}, \\ K_{2}\rangle &= N_{2\mu} \begin{pmatrix} d_{1} \\ 0 \\ d_{2} \end{pmatrix} = N_{2\mu} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{\mu 2}^{*} U_{e2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{\mu 3}^{*} U_{e3} \\ 0 \\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{\mu 2}^{*} U_{\tau 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{31}^{2}}{2E} - A\right) U_{\mu 3}^{*} U_{\tau 3} \end{pmatrix} \end{split}$$

$$\begin{split} \chi_{\mu} &= P_{\mu e}(t) (N_{1 \mu}^2 |c_1|^2 + 2 N_{2 \mu}^2 |d_1|^2) + P_{\mu \tau}(t) (N_{1 \mu}^2 |c_2|^2 + 2 N_{2 \mu}^2 |d_2|^2) + 2 \Re (N_{1 \mu}^2 c_1^* c_2 A_{\mu e}(t) A_{\mu \tau}(t)^*) \\ &+ 4 \Re (N_{2 \mu}^2 d_1^* d_2 A_{\mu e}(t) A_{\mu \tau}(t)^*). \end{split}$$

### Spread complexity in three flavor neutrino oscillations

• In case of 
$$|K_0
angle\equiv |
u_{ au}
angle=(0,0,1)^T$$
,

$$\begin{split} |K_{1}\rangle &= N_{1\tau} (\mathbf{e}_{1}, \mathbf{e}_{2}, 0)^{T} = N_{1\tau} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) U_{\tau^{2}}^{*} U_{e2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) U_{\tau^{3}}^{*} U_{e3} \\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) U_{\tau^{2}}^{*} U_{\mu^{2}} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) U_{\tau^{3}}^{*} U_{\mu^{3}} \end{pmatrix}, \\ |K_{2}\rangle &= N_{2\tau} (f_{1}, f_{2}, 0)^{T} = N_{2\tau} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{\tau^{2}}^{*} U_{e2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{31}^{2}}{2E} - A\right) U_{\tau^{3}}^{*} U_{\mu^{2}} \\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{\tau^{2}}^{*} U_{\mu^{2}} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{31}^{2}}{2E} - A\right) U_{\tau^{3}}^{*} U_{\mu^{3}} \\ 0 \end{pmatrix} \end{split}$$

$$\begin{split} \chi_{\tau} &= P_{\tau e}(t) (N_1^2 |\mathbf{e}_1|^2 + 2N_2^2 |f_1|^2) + P_{\tau \mu}(t) (N_1^2 |\mathbf{e}_2|^2 + 2N_2^2 |f_2|^2) + 2\Re (N_1^2 \mathbf{e}_1^* \mathbf{e}_2 A_{\tau e}(t) A_{\tau \mu}(t)^*) \\ &+ 4\Re (N_2^2 f_1^* f_2 A_{\tau e}(t) A_{\tau \mu}(t)^*). \end{split}$$

Here,

$$A = \frac{\left[ \left( \Delta m_{21}^2 \right)^3 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left( \Delta m_{31}^2 \right)^3 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) - \left( \Delta m_{21}^2 \right) \left( \Delta m_{21}^2 \right) \left( \Delta m_{31}^2 \right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2 \left( \Delta m_{21}^2 + \Delta m_{31}^2 \right) \right]}{\left( \Delta m_{21}^2 \right)^2 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left( \Delta m_{31}^2 \right)^2 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) - 2 \left( \Delta m_{21}^2 \right) \left( \Delta m_{31}^2 \right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2}$$

# Spread complexity in three flavor neutrino oscillations

$$N_{1\alpha} = \left( \left( \frac{\Delta m_{21}^2}{2E} \right)^2 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left( \frac{\Delta m_{31}^2}{2E} \right)^2 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) - 2 \left( \frac{\Delta m_{21}^2}{2E} \right) \left( \frac{\Delta m_{31}^2}{2E} \right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2 \right)^{-1/2},$$

$$\begin{split} N_{2\alpha} &= \left( \left( \frac{\Delta m_{21}^2}{2E} \right)^2 \left( \frac{\Delta m_{21}^2}{2E} - A \right)^2 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) \\ &+ \left( \frac{\Delta m_{31}^2}{2E} \right)^2 \left( \frac{\Delta m_{31}^2}{2E} - A \right)^2 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) \\ &- 2 \left( \frac{\Delta m_{21}^2}{2E} \right) \left( \frac{\Delta m_{31}^2}{2E} \right) \left( \frac{\Delta m_{21}^2}{2E} - A \right) \left( \frac{\Delta m_{31}^2}{2E} - A \right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2 \right)^{-1/2} \end{split}$$

$$\begin{split} B_{e} &= \left[ \left( \Delta m_{21}^{2} \right)^{2} \left( \Delta m_{21}^{2} + 2EV \right) |U_{e2}|^{2} (1 - |U_{e2}|^{2}) + \left( \Delta m_{31}^{2} \right)^{2} \left( \Delta m_{31}^{2} + 2EV \right) |U_{e3}|^{2} \\ &\left( 1 - |U_{e3}|^{2} \right) - \left( \Delta m_{21}^{2} \right) \left( \Delta m_{31}^{2} \right) |U_{e2}|^{2} |U_{e3}|^{2} \left( (\Delta m_{21}^{2} + 2EV) + (\Delta m_{31}^{2} + 2EV) \right) \right] \\ &\left[ 2E \left[ \left( \Delta m_{21}^{2} \right)^{2} |U_{e2}|^{2} (1 - |U_{e2}|^{2}) + \left( \Delta m_{31}^{2} \right)^{2} |U_{e3}|^{2} (1 - |U_{e3}|^{2}) \\ &- 2 \left( \Delta m_{21}^{2} \right) \left( \Delta m_{31}^{2} \right) |U_{e2}|^{2} |U_{e3}|^{2} \right] \right]^{-1}. \end{split}$$

For initial  $\nu_{\mu}$  and  $\nu_{\tau}$  state the constant  ${\it B}_{\alpha}$  is

$$\begin{split} B_{\alpha} &= \left[ \left( \Delta m_{21}^2 \right)^3 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left( \Delta m_{31}^2 \right)^3 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) - \left( \Delta m_{21}^2 \right) \left( \Delta m_{31}^2 \right) \right. \\ &\left. \left. \left| U_{\alpha 2} \right|^2 |U_{\alpha 3}|^2 \left( \Delta m_{21}^2 + \Delta m_{31}^2 \right) + 2EV \left( \left( \Delta m_{21}^2 \right)^2 |U_{e2}|^2 |U_{\alpha 2}|^2 + \left( \Delta m_{31}^2 \right)^2 |U_{e3}|^2 |U_{\alpha 3}|^2 \right) \right. \\ &\left. + 2 \left( \Delta m_{21}^2 \right) \left( \Delta m_{31}^2 \right) \Re (U_{e2}^* U_{\alpha 2} U_{e3} U_{\alpha 3}^*) \right) \right] \left[ 2E \left[ \left( \Delta m_{21}^2 \right)^2 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left( \Delta m_{31}^2 \right)^2 \right. \\ &\left. \left. \left| U_{\alpha 3} \right|^2 (1 - |U_{\alpha 3}|^2) - 2 \left( \Delta m_{21}^2 \right) \left( \Delta m_{31}^2 \right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2 \right] \right]^{-1}, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ◆○◆

$$\begin{split} N_{2e}^{m} &= \left( \left( \frac{\Delta m_{21}^{2}}{2E} \right)^{2} |U_{e2}|^{2} (1 - |U_{e2}|^{2}) \left[ \left( \frac{\Delta m_{21}^{2}}{2E} + V - B_{e} \right)^{2} \right] \\ &+ \left( \frac{\Delta m_{31}^{2}}{2E} \right)^{2} |U_{e3}|^{2} (1 - |U_{e3}|^{2}) \left[ \left( \frac{\Delta m_{31}^{2}}{2E} + V - B_{e} \right)^{2} \right] \\ &- 2 \left( \frac{\Delta m_{21}^{2}}{2E} \right) \left( \frac{\Delta m_{31}^{2}}{2E} \right) \left( \frac{\Delta m_{21}^{2}}{2E} + V - B_{e} \right) \left( \frac{\Delta m_{31}^{2}}{2E} + V - B_{e} \right) |U_{e2}|^{2} |U_{e3}|^{2} \right)^{-1/2}, \\ N_{2\mu}^{m} &= \left( \left( \frac{\Delta m_{21}^{2}}{2E} \right)^{2} |U_{\mu 2}|^{2} \left[ \left( \frac{\Delta m_{21}^{2}}{2E} + V - B_{\mu} \right)^{2} |U_{e2}|^{2} + \left( \frac{\Delta m_{21}^{2}}{2E} - B_{\mu} \right)^{2} |U_{\tau 2}|^{2} \right] \\ &+ \left( \frac{\Delta m_{31}^{2}}{2E} \right)^{2} |U_{\mu 3}|^{2} \left[ \left( \frac{\Delta m_{31}^{2}}{2E} + V - B_{\mu} \right)^{2} |U_{e3}|^{2} + \left( \frac{\Delta m_{31}^{2}}{2E} - B_{\mu} \right)^{2} |U_{\tau 3}|^{2} \right] \\ &+ 2 \left( \frac{\Delta m_{21}^{2}}{2E} \right) \left( \frac{\Delta m_{31}^{2}}{2E} \right) \left[ \left( \frac{\Delta m_{21}^{2}}{2E} + V - B_{\mu} \right) \left( \frac{\Delta m_{31}^{2}}{2E} - B_{\mu} \right) \Re (U_{\mu 2}^{*} U_{e2} U_{\mu 3} U_{e3}^{*}) \right] \right)^{-1/2}, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ◆○◆



Figure: T2K: Cost function (upper panel) and 1- $P_{\alpha\alpha}$  (lower panel) in the plane of  $E - \delta$  in case of initial flavor  $\nu_e$  (left),  $\nu_{\mu}$  (middle) and  $\nu_{\tau}$  (right). Here, L = 295 km is considered.