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Bayesian data assimilation (DA) methods

 Model:

Xp = Mpg—1(Xk—1, A) + Mk
state model param error

* Observation operator:

Vi = He(Xk) + €
obs state noise

e Bayes’ rule:

_ ply[x)p(x)
* These 3 components used to derive

a wide range of DA and inverse
modeling methods

* These can be categorized as 3 types
of estimates (Wiener, 1949):
prediction, filtering, smoothing
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Adopted from Carrassi et al. (2018).

For chemical DA reviews see:

- Sandu and Chai, 10.3390/atmos2030426, 2010
- Bocquet et al., 10.5194/acp-15-5325-2015, 2015
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- Elbern et al., 10.1093/acprof:0s0/9780198723844.003.0022, 2014




Bayesian data assimilation (DA) methods
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Bayesian data assimilation (DA) methods
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Solving for fully Bayesian solutions (i.e., pdfs) to nonlinear problems

 Calculations of the complete posterior distribution (not just the mean and covariance)
— Particle filters (sequential Monte Carlo)
— Markov Chain Monte Carlo (MCMC)
— While most DA approaches require x10 to x100 model runs, these approaches require thousands to
millions more simulations, and have thus been limited to low-dimensional systems.

Adopted from Carrassi et al. (2018)



Bayesian data assimilation (DA) methods: solve for features of the solution

e Kalman filter: sequential update
K, = PLH (HP{H] + R;) ",
x; = x;, + Ky (ye — Hixy),
P = (I, — K, H;)P:.
— Uses prior (Pf) and observation (R) errors, the model forecast (xf), and linearized (here, though not always)
observation operator (H)
— Explicitly estimates the analysis (x?) and its error (P?)
— Optimal Bayesian solution when the forecast model and observation operator are linear (i.e., B.L.U.E.)
— Equations above are for Kalman filter, there is also Kalman smoother..

e Variational: nonlinear minimization to find maximum likelihood estimate

X0 = argmin(J (Xk.o)) k=1,...,K.

1 o 1
T (xx0) = 5 Z lys — HiGei) e + 5 ; Ik = Mk (xk-1) g2 + 5 [|%0 — x| [5-s

k=0

— Also includes background (B), and model error (Q, i.e. model is a “weak constraint”)
— Posterior error can be estimated as Hessian at minimum, though some care required for numerical accuracy

(Bousserez et al., 2015)
Adopted from Carrassi et al. (2018)



Solving for Bayesian features: implementation methods

For most systems, directly calculating all terms in the KF or the analytic solution to
minimum of J(x) (possible for linear systems) is not computationally feasible

* Ensemble methods for Kalman filters and smoothers
— Stochastic (e.g., Evensen, 2003) and deterministic square-root (e.g., Bishop et al., 2001; Anderson
(2001) formulations
— Many variations (ETKF, LETKF, MLEF, EAKEF,...)
— Require careful localization and inflation
— Readily implemented in parallel with little modification to the standard forward model

* Adjoint-based methods for variation solutions
— Tangent linear and adjoint models used to calculate dJ/dx
— Deriving and maintaining these models is non-trivial
— Use strong-constraint formulation to keep dimension of x manageable (plus Q is hard to specify)

e Hybrid methods
— EnKF with hybridization of static and dynamic error covariance
— Ensemble of variational systems (EDA)
— Use of ensemble to estimate the tangent linear and adjoint models of 4D-Var (4D-EnVar)



Data assimilation and inverse modeling: considerations for chemical systems

* Diversity of scales and sources of uncertainty
— Short-lived, highly non-linear species (e.g. NOx, secondary aerosol),
strongly impacted by chemistry and emissions
— Short-lived, linear (e.g., primary aerosol), strongly impacted by
microphysics, sub-grid and BL dynamics
— Long-lived, linear (e.g., CO,, CH,) strongly impacted by initial /
boundary conditions and large-scale model transport error

envire
system

Variational Assimilation

The analysis is the state at
1, X%, obtained based only
on the observations at t,

Carrassi et al. (2018)




Data assimilation and inverse modeling: considerations for chemical systems

* Diversity of scales and sources of uncertainty
— Short-lived, highly non-linear species (e.g. NOx, secondary aerosol),
strongly impacted by chemistry and emissions
— Short-lived, linear (e.g., primary aerosol), strongly impacted by
microphysics, sub-grid and BL dynamics
— Long-lived, linear (e.g., CO,, CH,) strongly impacted by initial /
boundary conditions and large-scale model transport error

* Importance of emissions

— Recent emissions may nearly completely govern the observed state

for short-lived species

— Recent emissions may only barely govern the observed state for
long-lived species, but this is still what we care about most

— Often not normally distributed

— Most not evolved in time with the atmospheric model
— What do we actually seek for when we “solve for emissions”?
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Estimating emissions: short-lived species

For short-lived species, adjusting emissions at high time-resolution provides performance similar to what
might be expected from weak constraint 4D-Var

N2
&£

Adjustments to diurnal
variability of NOx emissions
allows for this peak to be
better simulated

- observed NO, [ug/m3]
- prior model
- posterior model
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Resler et al. (2010)
Care needs to be taken to not over-optimize emissions to compensate for transport error.

Relatedly, high time-resolution observations (e.g., TEMPO) could help improve transport (e.g., Liu et al., 2021).



Estimating emissions: long-lived species

Remote sensing observations of column CO,, CH, are often not dominated by local / immediate sources
—> this creates challenges for using these datasets for constraining emissions in short (i.e., less than
Wecht et al., 2014)

decadal) or regional inversions Emission Scaling Factors (Posterior / Prior): +2 Tg a”
- Begin with prior emissions estimates from a previous global- l

scale inversion (Turner et al., 2015) (Posterior / Prior)

Approaches for regional CH, inversions:
- lteratively optimize emissions vs boundary conditions (e.g.,

Approaches for global CO, inversions: 0.5

- Begin with initial conditions constrained by simplified method
(e.g., 3D-Var) or based on in situ measurements (Deng et al.,
2014)

- Begin from posterior concentration and error estimates from
prior inversion with PvKF as starting point for 4D-Var
(Voshtani et al., PhD Thesis, 2022)

0.0 _-
L (scaling fa

0.5

0.0
(scaling factors)
Josrs dn S

Tracer correlations: observed co-emitted plumes of short-lived
species (e.g., Kuhlmann et al., 2021) Turner et al. (2015)



Estimating emissions: updates to the 4D-Var methods

Can we reduce the dimension of emissions vector for linear problems for increased efficiency
and operational implementation? = Randomization methods (Bousserez et al., 2018; 2020)

Can we estimate the error in our solution when using sub-optimal methods? = Worden-
Sapper et al., in prep.

Can we solve problems where our prior emissions are biased? = Yu et al. (2021)

Can we make the inversion results for nonlinear systems more useful? = Sector based
inversions (Qu et al., 2022)




Dimension reduction

Motivation:

* Most inverse problem solutions lie in a small subspace
(dimension k<<n) where the data are informative.

« Solving for smaller problems allows fast computation
of the solution (sometimes analytically).

« Small problems allow us to relax assumptions on
linearity and/or distributions and explore full posterior
distributions (e.g., MCMC algorithm)

Problem:

« Optimizing the reduction requires access to second-
order information (e.g., posterior error covariance)

« Difficulty is finding scalable algorithms.

Bousserez



Previous studies

TransCom (Gurney et al., 2003):

» Geographical criteria.

» Allows analytical inversion.

« Suboptimal: no optimization w.r.t information
content.

Multi-scale (Bocquet et al., 2011):

+ Aggregation-based method.

« Optimal: maximizes DOFS of the inversion.
 Not scalable: requires the model Jacobian.

Clustering (Turner and Jacob, 2015):

» Gaussian-Mixture model exploiting prior
information to construct bases.

« Optimal: but optimality obtained only for this
specific class of basis functions.

+ Weak scalability: incremental method where
posterior errors are reevaluated for each added
basis.

 GMM
L with RIBFsI

Bousserez



Previous studies

Optimal projections scalably calculated for

high-dimensional problems (Bousserez and

Henze 2018):
Maximizes DOFs of the inversion (Bocquet et al., 2011)

« Optimal basis from SVD of the prior- precondltloned
Hessian, BY?H”R'HB!/? (Spantini et al., 2015).
Note: H from here out is Jacobian of linearized model

* SVD calculated scalably using randomization techniques
(Halko et al., 2011; Bui-Thanh et al., 2012)

Reduced-cost consruction of Jacobian
matrices (Nesser et al., 2021):

Approximate Jacobian calculated with adjoint-free
methods

SVD of prior-preconditioned Hessian computed
directly

« Error in the “optimal” projection solution owing to

the approximate Jacobian not well known
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Error estimation for sub-optimal aggregation schemes

Consider an inversion conducted on a non-optimally aggregated grid (or using a
reduced-rank Jacobian):

How much error is there in our solution (Zp;.
non-optimal aggregation (P) for k = 125 (Lproj,c)

compared to using the optimal rank k solution (Zlﬁgpt’k )?

Emissions of Methane in Prior Solution
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Prior emission, full Jacobian from Nesser et al. (2021)
Benjamin Worden-Sapper (in prep.)



Error estimation for sub-optimal aggregation schemes

Consider an inversion conducted on a non-optimally aggregated grid (or using a

reduced-rank Jacobian):
non-optimal aggregation (P) for k = 125

Emissions of Methane in Prior Solution
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Prior emission, full Jacobian from Nesser et al. (2021)

How much error is there in our solution (T}, 1)
. . LA
compared to using the optimal rank k solution (L ;¢ £ )?

EHxCoLpt,k: o xgroj,k:||2B—1 =7
Considering the symmetric projection with similar range, 15
P = Brf(rer)-'r
P = BY?rT(rrf)-'rBi/?

we can estimate the error owing to sub-optimality as:

|(I-P)B*H" (HBH"+R) " "HB"?||r
= Z s2(1 — uT Pu;)

1=1

where u; are left singular vectors of ()

Benjamin Worden-Sapper (in prep.)



Error estimation for sub-optimal aggregation schemes

We may not know the SVD of the prior preconditioned

Hessian (if we did, we would use it...).

But we do know the SVD of our projected problem.
Compared to the full SVD, it is lower. But functionally
lower in a way that depends only weakly on k.
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Error estimation for sub-optimal aggregation schemes

We may not know the SVD of the prior preconditioned

Hessian (if we did, we would use it...).
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Error estimation for sub-optimal aggregation schemes

We may not know the SVD of the prior preconditioned
Hessian (if we did, we would use it...).

But we do know the SVD of our projected problem.
Compared to the full SVD, it is lower. But functionally
lower in a way that depends only weakly on k.
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Error estimation for sub-optimal aggregation schemes

We can also functionally estimate the u Pu; terms

using the following:
g & Exponential Fit of Singular Vector Info Captured by the Aggregation

n
/ f(x)dx =k | True Values
0 bound f . ; 0.9 Algorithm Fit
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PP 3isk/n | & Ui 08 Actual ratio
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. oo , 07+ Estimate:
- estimate leading singular vector and value (e.g., Liao
and Sandu) or average of u! Pu; 06 —Co X
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3
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Benjamin Worden-Sapper (in prep.)



Error estimation for sub-optimal aggregation schemes

Emissions of Methane in Prior Solution 40

--------- estimated error to k
35 ——actual errorto k
--------- estimated total error
——actual total error

Emissions of Methane in Prior Solution

Emissions of Methane in Prior Solution

-140 -120 -100 -80 -60 -40
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approach closely estimates the error up to k as well as total

tested for a variety of sub-optimal aggregation schemes, and those which use prior (e.g., GMM model of Turner and
Jacob (2015)) have lower error

Note: projection error is also equal to the DOF "missed” owing to the sub-optimal projection

Benjamin Worden-Sapper (in prep.)



Error estimation for sub-optimal aggregation schemes

_ N 35
Emissions of Methane in Prior Solution
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30 ——actual error to k
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approach closely estimates the error up to k as well as total

tested for a variety of sub-optimal aggregation schemes, and those which use prior (e.g., GMM model of Turner and
Jacob (2015)) have lower error

Note: projection error is also equal to the DOF "missed” owing to the sub-optimal projection
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Inverse modeling when the prior emissions are biased

a) True emissions b) Prior emissions: uniform errors c) Prior emissions: variable errors

205 Gg/d

U cases ¢ . I | Vcases a1
o=
10 50 100 200  mg(CHs) m2d’

Yu et al. (2021)



Inverse modeling when the prior emissions are biased

Consider multiple ways of defining the control vector (x) for emissions adjustments in TROPOMI CH4 OSSE

V-SF Base-case SF X=S5 oX, Explore influence of spatial emission errors

on base-case SF inversion

V-flat Flat prior X = Xg qve S Identify constraints solely from TROPOMI
without bottom-up knowledge
V-AddBG  Background increment | x = so (0.5x, + 0.5 x5 40) | Identify missing sources k) All grid cells
. - o =
V- Observational guess X =15 o(Xg + XobsGuess) Resolve and optimize emission hotspots o ¥ 281 Gg/d
OBSGuess x o |
5 e
V-EH Enhancement X =2Xipc S+ Xq Identify missing sources = & x o ® ¥
©
E ¥ L
§ © -
S -
4
X Prior (U) X Prior (V) » g =
%* Optimized (U-SF) % Optimized (V-SF) A ' I i
A Optimized (V-flat) ¢ Optimized (V-OBSGuess) © Optimized (V-ensemble) 10 95 B 25

= Optimized (V-AddBG) ¢ Optimized (V-EH) RMSE (mg CH, m=2 ™)

Yu et al. (2021)



Inverse modeling when the prior emissions are biased

b) Emission magnitude bias (instrument error + model transport error)
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Xueying Yu et al. (2021)



Accounting for correlated co-emitted pollutants (using 4D-Var)

Transportation Energy

Assimilate:

NO 4 MOPITT CO

Sect.or-based emission SOZ CO
scaling factor

OMI NO,

cor

Similar ratio of NO,, SO, and CO emissions in the same sector, yet very different across sectors
-> Formulate inversion to adjust emissions by sector, rather than species

Zhen Qu, Daven K. Henze, Helen M. Worden, Zhe Jiang, Benjamin Gaubert, Nicolas Theys, Wei Wang
Geophys. Res. Lett., 2022, https://doi.org/10.1029/2021GL096009
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Compared to species-based inversions, sector-based constraints can be:
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Summary

Forward and inverse modeling methods to constrain emissions are being adapted to
handle large data volumes and high-resolution capabilities of geostationary satellites.

Multi-species, multi-instrument approaches can yield insight into air pollution processes
and sector-specific source activity.

Focus on emissions adjustments leads to important considerations regarding aggregation
or emissions reduction, optimization of scaling factors or sector activity rates.

Hybrid approaches that blend 4D-Var, mass-balance, and ensemble approaches exist within
a variety of modeling frameworks (GEOS-Chem, WRF-Chem, CMAQ....) and could be made
tractable in operational settings.



