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Atmospheric Carbon Data Assimilation and Flux Inversion
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The Earth’s Energy Budget
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* Radiative Forcing = human impact on Earth’s energy budget since
pre-industrial times. Units are Watts/meter?. Based on NOAA
network measurements.

www.esrl.noaa.gov/gmd/aggi

Annual Greenhouse Gas Index (AGGI)

The CO, contribution is rapidly increasing.

The GWP-100 of CH, is 28-36, but there is less
of it in the atmosphere.

Using Climate-Chemistry Models (IPCC):
AT (CO,) =0.75( 0.25 - 1.25) °C
AT (CH,) =0.5 (0.25-0.8)°C **

**Includes chemical effects on other radiative
forcers. CH,; has an atmospheric lifetime of
~9-10 yrs.


http://www.esrl.noaa.gov/gmd/aggi

The Paris Agreement 5-Year Global Stocktake
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Figure 2 How science can drive climate policy and climate policy drive science. Note: the figure presents
the main topics that have been considered at SBSTA 47 in Bonn (e.g. GCOS - IP and climate indicators,

CEOS - ECV inventory, WMO - Regional Climate Centres).

Source: GCOS Planning Document, https://library.wmao.int/doc_num.php?explnum_id=5417

Stocktake every 5 years to
assess progress towards
climate goals, and to inform
more ambitious nationally
determined contributions
(NDCs) for the next 5 years.
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The Global Methane Pledge

Reduce Anthropogenic Emissions of CH,; by 30% below 2020 levels by 2030

LAUNCH OF THE GLOBAL METHANE PLEDGE .. e
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European Union United States

Some Major CH, Emitting Countries have not joined pledge



Most of the Reductions Will Need to Come From Oil & Gas
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How Much Could Be Mitigated?

50-77% Relative to 2030 (Ocko et al., 2021)
45% Below Present (IEA)



A Wide Range of Human and Natural Activities Emit CH,

A Plausible CH, Budget ca. 2015

29%

Wiaste 13%

Sources =~ Chemical Destruction
(Mostly Reaction with OH)

Anthropogenic Emissions
TgCH,/yr

400 (69%)

Fossil =215 (37%)

Microbial = 185 (32%)

Methane Pledge Cuts = 120
(only about % of Fossil Emissions

can be cut with current methane

pledge signatories)
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Earth System Services: For How Long?
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Methane - Climate Feedbacks

The amount of carbon in Arctic permafrost soils is
~4x what humans have already emitted.

Arctic CH, emissions could double over this century
with accelerating increases next century.

Monitoring observations suggest large emission
increases are not happening......yet.

Are tropical wetlands drying up or expanding?
9
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Monitoring Atmospheric GHGs: In Situ Measurements
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Monitoring Related Atmospheric Species Can Help Us to

Understand the Methane Budget.

Global Monthly Mean CH4
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Monitoring Related Atmospheric Species Can Help Us to

Understand the GHG Budgets.
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13CH, observations could help us
separate fossil fuel and microbial
emissions.

What do isotopes tell us?
1) Fossil fuel emissions are larger than
estimates from bottom-up inventories

(but.... uncertainty!)

2) Most of the growth in atmospheric CH,
is due to microbial sources

Other possible constraints:
Ethane, *CH,;, Methyl Chloroform
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Satellite and In situ Data are
Complementary
Satellite Retrievals:

High Spatiotemporal resolution but
Lower Precision, Possible Biases

In Situ Data:
Low Spatiotemporal Resolution but High
Precision, Arctic Coverage, High Surface

Sensitivity
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Methane Observations From Space

High resolution space-based data can help us to identify strong-emitters.

Monthly averages derived from TROPOMI
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CHa column-averaged concentration
in excess of local background level
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¥ Background:
- | ©2020 Google Map Data

But we need to know something about winds to get emissions from this data.

http://www.tropomi.eu/data-products/methane

https://www.ghgsat.com/en/
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http://www.tropomi.eu/data-products/methane

Uncertainty: The other half of the answer!

Internal Uncertainty

Gives us information about how observations changed prior
estimates and reduce prior uncertainty

External Uncertainty

We don’t know some parameters, so we make assumptions
rather than estimating them.

15



Estimated Internal Uncertainty (EnKF with In Situ Observations)
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1) The posterior mean estimate is higher
than the prior.

2) Estimates have larger interannual
variability.

3) Estimated posterior 1-c values are
reduced compared to the prior.
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The OCO-2 MIP (log-likelihood weighted)

Fossil Fuel Emissions not estimated
Bars are model ranges reflecting different transport, priors, errors etc. (e.g. External Uncertainties)

Comparisons with prior estimates give insights into internal uncertainty
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Uncertainties Associated with the use of 13CH, in CH, Flux Inversions

* Source Signatures and their spatial variability are imperfectly known

* Significant uncertainty in the distribution of natural CH, producing
environments (e.g. wetlands)

 Atmospheric chemical sinks fractionate - how well do we know the
distributions of OH and CI?

* Large range in fractionation factor of the OH loss, how well do we know
the Cl fractionation factor?

18



Can we reduce external uncertainty using observations?
Example: The Average High Latitude Annual Cycle of CH,
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Another Example: The Latitudinal Gradient

BCH,
1010 -
It’s difficult to match the observed
e N-S gradient of 3CH,.
A combination of the “Static”
1006 1 wetland distribution and the
E “Alternate” OH fractionation factor
& . may produce the best match with
the observed N-S gradient.
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Uncertainty in Partitioning Between Fossil and Microbial Emissions

Using CarbonTracker-CH,
Joint CH,-13CH, CH, Only Alternate OH Fractionation
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But...
1) If tropospheric Cl is less than we’ve assumed, then fossil emissions will be higher and

microbial emissions lower
2) The wetland prior can also affect the partitioning
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Advancing Transport Model Simulations
CH, 050120

* |Is the NOAA UFS (driven with the GEFSv12 reanalysis) a good
model for studying the budgets of GHGs?

* Does it simulate observed spatial and temporal variability?

* Does increased spatiotemporal resolution can help us to better
simulate GHG observations?

 Can we use the GEFSv12 reanalysis ensemble to better estimate
transport model error?
A CH, “forecast”

e Can we use the UFS DA tools estimate the atmospheric states and
fluxes of CO, and CH,?

* What benefits would there be if we integrate a LSM with a
detailed treatment of vegetation and carbon exchanges to the
UFS?

22



500 hPa, 1 week

Departure from 400 ppm

4037
3.560

' 3.082

- 2.604

-2.127
-1649

1171
0.694

0.216

The Experiment:

Constant CO, field (400 ppm)
No sources/sinks/deposition

These errors are similar to
the gradients we hope to use
to learn about emissions.

Could this affect AQ
simulations also?
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The Global Observing System (WMO)
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Application to Predictability at S2S Timescales

Rainforest-initiated wet season onset over the
Southern Amazon, Wright et al., PNAS, 2017

What controls the onset of the rainy season in
the Amazon?

The onset of the rainy season occurs 2-3 months
before the southward migration of the ITCZ.

Answer: The Biosphere!

Late dry season transpiration pumps moisture
into the atmosphere, initiating deep convection
and moisture transport from the tropical

Atlantic.

RH, 6D: TES
850 hPa winds, moisture flux
convergence (kg m2d1): ERA-I
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Thanks for your attention!
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