Analysis error statistics estimation and a simple off-line ensemble AQ analysis

<u>Richard Ménard</u>, Martin Deshaies-Jacques, Jean-François Cossette, James Abu

Air Quality Research, Environment and Climate Change Canada (ECCC)

Banff BIRS, Banff, 23 March 2023

Applications to multiyear surface analysis of air quality using surface observations

History

- O₃, PM_{2.5} using CHRONOS 2002-2009
- O₃, PM_{2.5} using GEM-MACH 2009-2015
- O₃, PM_{2.5}, NO₂, SO₂, PM₁₀ since April 2015
- Multi-year data set (2002-2012) Robichaud and Ménard 2014, ACP)
- Operational surface analysis since 2013

- First part of this talk:
 - Optimize the analysis, by improving the estimation of observation and background error covariances
- Second part :
 - Minimal computation to rerun multiyear analyses off-line ensembles to provide error correlations

How do we know that our error covariances are the true error covariances ?

We need observations We derive here conditions in observation space only

Assuming observation and background errors are **uncorrelated The error covariances are the true error covariances**

i) $\tilde{\mathbf{R}} = \mathbf{R}$ *ii*) $\mathbf{H}\tilde{\mathbf{B}}\mathbf{H}^T = \mathbf{H}\mathbf{B}\mathbf{H}^T$

Is equivalent to the respecting the following conditions

A) $\mathbf{H}\tilde{\mathbf{K}} = \mathbf{H}\mathbf{K}$ The gain in observation space is the optimal Kalman gain

4

B)
$$\mathbf{H}\tilde{\mathbf{B}}\mathbf{H}^{T} + \tilde{\mathbf{R}} = \mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R} = \mathbb{E}[(O-B)(O-B)^{T}]$$

Innovation covariance matching / consistency

 Menard, R: Error covariance estimation methods based on analysis residuals: theoretical foundation and convergence properties derived from simplified observation networks. Q. J. Roy. Meteorol. Soc. 2016, 142, 257—273, doi:10.1002/gi2650

$B) \mid \tilde{\mathbf{D}} = \mathbf{H}\tilde{\mathbf{B}}\mathbf{H}^T + \tilde{\mathbf{R}}$

=
$$\mathbf{HBH}^{T} + \mathbf{R} = \mathbf{D} = \mathbb{E}[(O-B)(O-B)^{T}]$$

Innovation covariance matching / consistency

Global matching but indirect $\mathbb{E}[\chi^2] = \mathbb{E}[\mathbf{d}^T \, \tilde{\mathbf{D}}^{-1} \, \mathbf{d}] = \mathbb{E}[tr(\tilde{\mathbf{D}}^{-1} \mathbf{d}^T \mathbf{d})] = tr(\tilde{\mathbf{D}}^{-1} \mathbf{D}) = p$ *p* is the number of observations

or

$$\mathbb{E}[J_{\min}] = \frac{p}{2}$$

Or variance matching

$$diag(\tilde{\mathbf{D}}) = diag(\mathbf{D}) = \operatorname{var}(O - B)$$

A) $H\tilde{K} = HK$ The Kalman gain condition

True analysis error in observation space is minimized

Cross-validation can give a way to evaluate analysis error variance (without using a forecast)

 $\operatorname{var}(O-A)_{c} = tr(\mathbf{R} + \mathbf{H}_{c}\mathbf{A}\mathbf{H}_{c}^{T})$

From an orderly set of station ID number, select each kth station

A geometric view of the analysis

Hilbert spaces of random variables

Define an inner product of two (zero-mean) random variables X, Y as

$$\langle \mathbf{X}, \mathbf{Y} \rangle = \mathbb{E} \big[\mathbf{X} \, \mathbf{Y} \big]$$

Uncorrelated random variables X , Y represented as orthogonal vectors $\langle X, Y \rangle = 0$

Standard deviation is represented as the norm

$$\sqrt{\left\|\mathbf{X}\right\|_{2}} = \sqrt{\mathbb{E}[\mathbf{X}^{2}]}$$

Desrozier's et al (2005)

- Assumes the analysis is optimal, or that we know the background error covariance
- Assumes innovation covariance consistency
- Derive the observation error covariance

Cross-validation approach

- Assumes innovation covariance consistency
- Estimate covariance parameters to optimize the analysis error covariance
- Observations error covariance, background error covariance, and analysis error covariance

A geometric view of cross-validation

A geometric view of cross-validation

A geometric view of cross-validation

Diagnostics: A geometric view: Active observation space

Diagnostics: A geometric view: Active observation space

Ménard, R and M. Deshaies-Jacques. Evaluation of analysis by cross-validation. Part I: Using verification metrics. Atmosphere 2018, 9(3), 86, doi:<u>10.3390/atmos9030086</u>

Ménard, R and M. Deshaies-Jacques. Evaluation of analysis by cross-validation. Part II: Diagnostic and optimization of analysis error covariance. Atmosphere 2018, 9(2), 70; doi:<u>10.3390/atmos9020070</u>

Diagnostics: A geometric view: Active observation space

Diagnostics: A geometric view: Passive CV space

Marseille et al. 2016 diagnostic

Diagnostics: A geometric view: Passive CV space

and using $\mathbb{E}[(O - \hat{A})_c (O - \hat{A})_c^T] = \mathbf{H}_c \hat{\mathbf{A}} \mathbf{H}_c^T + \mathbf{R}_c$ we get the relation above $\mathbb{E}[(O - B)_c (O - B)_c^T] = \mathbf{H}_c \mathbf{B} \mathbf{H}_c^T + \mathbf{R}_c$

Adding physical/chemical content in the error statistics 2.2 Error variances by optimizing (minimizing) the analysis error

Adding physical/chemical content in the error statistics Background error variance functional mapping onto the grid

Conclusion/Summary

- Cross-validation can be used in conjunction with innovation covariance consistency
 Estimate an optimal analysis error variance, true observation error variance and true background error variance
- Geometric interpretation offer a way to Understand and synthesize the statistical diagnostics and their assumptions
- Next step is to develop an online estimation of covariance parameters
- Sina Voshtani presentation indicated that covariance parameter estimates still holds for satellite observations (spatial correlation of errors). Explain why this cross-validation method seems still work in th is context

End of presentation

Correlated observation and background errors

Correlated observation and background errors

