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Introduction

• Specification of error covariances can impact the quality of the 

analyses

– Background error covariances 𝐁

– Observation error covariances 𝐑

• Difficult to accurately specifying error covariances ෩𝐁 and ෩𝐑

– Helpful to have methods to diagnose and/or tune the error covariances

• For simplicity, we focus on tuning variances only

෩𝐁′ = 𝑠b෩𝐁 ෩𝐑′ = 𝑠o෩𝐑
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Observation-Space Residuals

• The innovation vector 𝐝 does not depend on the true 

variables

• However, 𝐁 and 𝐑 are not separate in 𝐃

– Want modelled quantities ෩𝐁 and ෩𝐑

𝐝 = 𝐲 − 𝐻 𝐱b ≈ 𝛜o − 𝐇𝛜b 𝐃 = cov(𝐝, 𝐝) = 𝐇𝐁𝐇T + 𝐑

observations background linear obs.
operator
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Hollingsworth and Lönnberg

• Assumes we can attribute all spatial correlations in the innovation to 

the background

– ෩𝐑 assumes diagonal

– ෩𝐁 terms are fit to the observed innovation at nonzero spatial separation

– Extrapolation to zero spatial separation

Bouttier, F., and P. Courtier. "Data assimilation concepts and methods March 

1999." Meteorological training course lecture series. ECMWF 718 (2002): 59.
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The Desroziers and Ivanov 2001 Method (DI01)

• For variational assimilation systems

• Iterative scheme:

• Has been used in a NWP assimilation system, but difficult to implement due 

to high computational cost

E 𝐽b 𝐱a = 1
2Tr[𝐇

෩𝐁𝐇T෩𝐃−1E 𝐃 ෩𝐃−1]
E 𝐃 =෩𝐃 1

2Tr[𝐇
෩𝐁𝐇T෩𝐃−1]

E 𝐽o 𝐱a = 1
2Tr[

෩𝐑෩𝐃−1E 𝐃 ෩𝐃−1]
E 𝐃 =෩𝐃 1

2Tr[
෩𝐑෩𝐃−1]

(𝑠b
DI01)𝑖+1=

Tr[𝐇෩𝐁𝑖𝐇
T෩𝐃𝑖

−1𝐃෩𝐃𝑖
−1]

Tr[𝐇෩𝐁𝑖𝐇
T෩𝐃𝑖

−1]
(𝑠o

DI01)𝑖+1=
Tr[෩𝐑𝑖

෩𝐃𝑖
−1𝐃෩𝐃𝑖

−1]

Tr[෩𝐑𝑖
෩𝐃𝑖
−1]

innovation covariance 
consistency E 𝐃 = ෩𝐃
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The Desroziers et al. 2005 Method (D05)

• Iterative scheme:

• Typically much less computationally demanding than DI01

(𝑠b
D05)𝑖+1=

Tr[𝐇෩𝐁𝑖𝐇
T෩𝐃𝑖

−1𝐃]

Tr[𝐇෩𝐁𝑖𝐇
T]

(𝑠o
D05)𝑖+1=

Tr[෩𝐑𝑖
෩𝐃𝑖
−1𝐃]

Tr[෩𝐑𝑖]

E[(H 𝐱a − H 𝐱b )𝐝T] = 𝐇෩𝐁𝐇T෩𝐃−1E 𝐃
E 𝐃 =෩𝐃

𝐇෩𝐁𝐇T

E[(𝐲 − H 𝐱a )𝐝T] = ෩𝐑෩𝐃−1E 𝐃
E 𝐃 =෩𝐃

෩𝐑
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Method Comparisons

• Different methods can produce very different results

• For DI01 and D05, not evident exactly how 𝐁 and 𝐑 are 

being separated

• Mathematical formalism needed for:

– Direct comparison between methods

▪ Why do they work?

– Understanding different regimes for each method:

▪ When do each method give reasonable results or fail?
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Filtering and the Analysis

• Transform to basis that simultaneously diagonalizes and 𝐇෩𝐁𝐇T and ෩𝐑

• Construct operators:

෨𝐅 that dampens modes prominent in ෩𝐑 as compared to 𝐇෩𝐁𝐇T

𝐈 − ෨𝐅 that dampens modes prominent in 𝐇෩𝐁𝐇T as compared ෩𝐑

𝐇𝐱a = 𝐈 − ෨𝐅 𝐇𝐱b + ෨𝐅𝐲 = 𝐇𝐱b + ෨𝐅𝐝

𝜙 =
spectra of ෩𝐑

spectra of 𝐇෩𝐁𝐇T

wavenumber

1D periodic domain of length 𝐿 =
40,000 km, observations Δ𝑥 = 40 km
apart. 𝐿b = 800 km and 𝐿o = 0
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Filtering of Error Covariances

observed covariances

𝐃𝐵 ≡ ෨𝐅𝐃෨𝐅T

𝐃𝑅 ≡ (𝐈 − ෨𝐅)𝐃(𝐈 − ෨𝐅)T

modelled covariances

෩𝐃𝐵 ≡ ෨𝐅෩𝐃෨𝐅T

෩𝐃𝑅 ≡ (𝐈 − ෨𝐅)෩𝐃(𝐈 − ෨𝐅)T

𝐃 = 𝐇𝐁𝐇T + 𝐑

෨𝐅 𝐈 − ෨𝐅

𝐃𝐵 ≈ 𝐇𝐁𝐇T 𝐃𝑅 ≈ 𝐑
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Vectorization of Matrices

𝐀 = vec(𝐀) =

𝐇𝐁𝐇T

𝐃 = 𝐇𝐁𝐇T + 𝐑

𝐑

𝐃

Frobenius inner product: 𝐀, 𝐁 = vec(𝐀) ∙ vec(𝐁) = Tr[𝐀T𝐁]
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Linear Least-Squares Solution

𝐲 = 𝐌𝑥 + 𝛜, cov 𝛜, 𝛜 = 𝐂

linear least-squares solution is ො𝑥 =
𝐌T𝐂−1𝐲

𝐌T𝐂−1𝐌

𝑠o
DI01 =

vec ෩𝐃𝑅
T
(෩𝐃𝑅 ⊗ ෩𝐑)−1vec(𝐃𝑅)

vec ෩𝐃𝑅
T
(෩𝐃𝑅 ⊗ ෩𝐑)−1vec(෩𝐃𝑅)

covariance observed datamodel
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Linear Least-Squares Solution

𝑠o
DI01 =

vec ෩𝐃𝑅
T
(෩𝐃𝑅 ⊗ ෩𝐑)−1vec(𝐃𝑅)

vec ෩𝐃𝑅
T
(෩𝐃𝑅 ⊗ ෩𝐑)−1vec(෩𝐃𝑅)

covariance observed datamodel

𝐽𝑅
DI01 ≡ 1

2 𝑆o෩𝐃𝑅−𝐃𝑅 (෩𝐃𝑅⊗෩𝐑)−1
2

minimize
w.r.t.
𝑆o

𝐽o =
1
2 𝐝−𝐇∆𝐱 ෩𝐑−1

2
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𝑠b
DI01 =

vec ෩𝐃𝐵
T
(෩𝐃𝐵 ⊗ (𝐇෩𝐁𝐇T))−1vec(𝐃𝐵)

vec ෩𝐃𝐵
T
(෩𝐃𝐵 ⊗ (𝐇෩𝐁𝐇T))−1vec(෩𝐃𝐵)

𝑠o
DI01 =

vec ෩𝐃𝑅
T
(෩𝐃𝑅 ⊗ ෩𝐑)−1vec(𝐃𝑅)

vec ෩𝐃𝑅
T
(෩𝐃𝑅 ⊗ ෩𝐑)−1vec(෩𝐃𝑅)

𝑠b
D05 =

vec ෩𝐃𝐵
T
(෩𝐁𝐵 ⊗ 𝐈)−1vec(𝐃𝐵)

vec ෩𝐃𝐵
T
(෩𝐁𝐵 ⊗ 𝐈)−1vec(෩𝐃𝐵)

𝑠o
D05 =

vec ෩𝐃𝑅
T
(෩𝐑𝑅 ⊗ 𝐈)−1vec(𝐃𝑅)

vec ෩𝐃𝑅
T
(෩𝐑𝑅 ⊗ 𝐈)−1vec(෩𝐃𝑅)

𝐽𝐵
DI01 ≡ 1

2 𝑆b෩𝐃𝐵−𝐃𝐵 (෩𝐃𝐵⊗(𝐇෩𝐁𝐇T))−1
2

minimize
w.r.t.
𝑆b

𝐽𝑅
DI01 ≡ 1

2
𝑆o෩𝐃𝑅−𝐃𝑅 (෩𝐃𝑅⊗෩𝐑)−1

2

minimize
w.r.t.
𝑆o

𝐽𝐵
D05 ≡ 1

2 𝑆b෩𝐃𝐵−𝐃𝐵 (෩𝐁𝐵⊗𝐈)−1
2

minimize
w.r.t.
𝑆b

𝐽𝑅
D05 ≡ 1

2
𝑆o෩𝐃𝑅−𝐃𝑅 (෩𝐑𝑅⊗𝐈)−1

2

minimize
w.r.t.
𝑆o
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Geometric Interpretations

𝐇෩𝐁𝐇T

෩𝐑

෩𝐃

𝐃

ෝ𝐮෩𝐁, ෩𝐃

ෝ𝐮෩𝐁, 𝐃

𝑠b
DI01 =

ෝ𝐮෩𝐁, 𝐃 (෩𝐃⊗෩𝐃)−1

ෝ𝐮෩𝐁, ෩𝐃 (෩𝐃⊗෩𝐃)−1

𝑠o
DI01 =

ෝ𝐮෩𝐑, 𝐃 (෩𝐃⊗෩𝐃)−1

ෝ𝐮෩𝐑, ෩𝐃 (෩𝐃⊗෩𝐃)−1

𝑠b
D05 =

ෝ𝐮෩𝐁, 𝐃 (෩𝐃⊗𝐈)−𝟏

ෝ𝐮෩𝐁, ෩𝐃 (෩𝐃⊗𝐈)−𝟏

𝑠o
D05 =

ෝ𝐮෩𝐑, 𝐃 (෩𝐃⊗𝐈)−𝟏

ෝ𝐮෩𝐑, ෩𝐃 (෩𝐃⊗𝐈)−𝟏

ෝ𝐮෩𝐑, ෩𝐃ෝ𝐮෩𝐑, 𝐃

𝐇෩𝐁𝐇T, ෩𝐑 = 𝟎
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Geometric Interpretations

𝐇෩𝐁𝐇T
෩𝐑

෩𝐃

𝐃

ෝ𝐮෩𝐁, ෩𝐃

ෝ𝐮෩𝐁, 𝐃

𝑠b
DI01 =

ෝ𝐮෩𝐁, 𝐃 (෩𝐃⊗෩𝐃)−1

ෝ𝐮෩𝐁, ෩𝐃 (෩𝐃⊗෩𝐃)−1

𝑠o
DI01 =

ෝ𝐮෩𝐑, 𝐃 (෩𝐃⊗෩𝐃)−1

ෝ𝐮෩𝐑, ෩𝐃 (෩𝐃⊗෩𝐃)−1

𝑠b
D05 =

ෝ𝐮෩𝐁, 𝐃 (෩𝐃⊗𝐈)−𝟏

ෝ𝐮෩𝐁, ෩𝐃 (෩𝐃⊗𝐈)−𝟏

𝑠o
D05 =

ෝ𝐮෩𝐑, 𝐃 (෩𝐃⊗𝐈)−𝟏

ෝ𝐮෩𝐑, ෩𝐃 (෩𝐃⊗𝐈)−𝟏

ෝ𝐮෩𝐑, ෩𝐃

ෝ𝐮෩𝐑, 𝐃

𝐇෩𝐁𝐇T, ෩𝐑 ≠ 𝟎
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Spectral Distinctiveness of Filters

𝐿b = 800 km

𝐿b = 120 km

𝜃 ෩𝐵, ෨𝑅 = 88°

𝜃 ෩𝐵, ෨𝑅 = 78°
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Error Covariance Filtering Efficiency

𝐿b = 1,000 km

𝐿 = 40,000 km, ෤𝜎b
2 = ෤𝜎o

2 , 𝐿o = 0

𝐿b = 100 km
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Statistical Properties

E[𝑠b
DI01]

𝑠b
t = 1 +

𝑠o
t

𝑠b
t − 1

𝐇෩𝐁𝐇T, ෩𝐑
(෩𝐃⊗෩𝐃)−1

𝐇෩𝐁𝐇T, ෩𝐃
(෩𝐃⊗෩𝐃)−1

E[𝑠o
DI01]

𝑠o
t = 1 +

𝑠b
t

𝑠o
t − 1

𝐇෩𝐁𝐇T, ෩𝐑
(෩𝐃⊗෩𝐃)−1

෩𝐑, ෩𝐃
(෩𝐃⊗෩𝐃)−1

V
𝑠b
DI01

𝑠b
t =

2Tr 𝐇෩𝐁𝐇T෩𝐃−1 𝐇෩𝐁𝐇T +
𝑠o
t

𝑠b
t
෩𝐑 ෩𝐃−1

2

Tr 𝐇෩𝐁𝐇T෩𝐃−1 2
V

𝑠o
DI01

𝑠o
t =

2Tr ෩𝐑෩𝐃−1 𝑠b
t

𝑠o
t 𝐇෩𝐁𝐇

T + ෩𝐑 ෩𝐃−1

2

Tr ෩𝐑෩𝐃−1 2

*case where correlations are properly specified
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Evaluating Expected Performance

• Case 1:

– Model error covariances with 𝐿b = 1,000 km

– Using observed innovations, calculated 

𝑠b
DI01 = 2.6 and 𝑠o

DI01 = 1.3

• Case 2:

– Model error covariances with 𝐿b = 250 km

– Using observed innovations, calculated 

𝑠b
DI01 = 3.3 and 𝑠o

DI01 = 1.1

5810-point Lebedev grid, Δ𝑥 ~ 100 km − 330 km

Model error covariances ෤𝜎b
2 = ෤𝜎o

2 and 𝐿o = 0

𝜃 ෨𝐵, ෨𝑅 = 83°
RMSE 𝑠b

DI01 ≈ 17%

RMSE 𝑠o
DI01 ≈ 4%

𝜃 ෨𝐵, ෨𝑅 = 26°
RMSE 𝑠b

DI01 ≈ 35%

RMSE 𝑠o
DI01 ≈ 84%
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Generalized Algorithm

• DI01 and D05 part of a larger class of algorithm, each 

defined by their choice of weights

• Weighting of (෩𝐃𝐵 ⊗ ෩𝐃𝐵)
−1 and (෩𝐃𝑅 ⊗ ෩𝐃𝑅)

−1gives 

algorithm to satisfy the 𝜒2 diagnostic with Ƹ𝑠b = Ƹ𝑠o

Ƹ𝑠b =
vec ෩𝐃𝐵

T
(𝐖1⊗𝐖2)vec(𝐃𝐵)

vec ෩𝐃𝐵
T
(𝐖1⊗𝐖2)vec(෩𝐃𝐵)

Ƹ𝑠o =
vec ෩𝐃𝑅

T
(𝐖1⊗𝐖2)vec(𝐃𝑅)

vec ෩𝐃𝑅
T
(𝐖1⊗𝐖2)vec(෩𝐃𝑅)
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Weighting in Least-Squares Fitting

• If 𝐝 ∼ 𝒩(𝟎,𝐃), then the sample covariance 𝐒 follows a 

Wishart distribution with 𝑉 𝑆𝑖,𝑗 ∝ 𝐷𝑖,𝑗
2 + 𝐷𝑖,𝑖𝐷𝑗,𝑗

Method 𝑱𝑩 weighting 𝑱𝑹 weighting

DI01 (෩𝐃𝐵 ⊗ (𝐇෩𝐁𝐇T))−1 (෩𝐃𝑅 ⊗ ෩𝐑)−1

D05 (෩𝐁𝐵 ⊗ 𝐈)−1 (෩𝐑𝑅 ⊗ 𝐈)−1

𝜒2 (෩𝐃𝐵 ⊗ ෩𝐃𝐵)
−1 (෩𝐃𝑅 ⊗ ෩𝐃𝑅)

−1
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Comparisons Between Methods

1D periodic domain
𝐿 = 40,000 km, Δ𝑥 = 40 km , 𝐿o = 0

1D periodic domain
𝐿 = 40,000 km, 𝐿b = 600 km , 𝐿o = 0
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Conclusions

• DI01, D05, and HL all fit modelled to observation error covariances

– Fitting is explicit for HL, implicit for DI01 and D05

• Conceptually, DI01 and D05 only differ by the weighting of the cost functions

– Numerical differences between DI01 and D05 are important

• Performance of DI01 and D05 can be quantified through geometric quantities like 𝜃 ෨𝐵, ෨𝑅

• Analytic results for error covariances scaling statistics

Sitwell, Michael, and Richard Ménard. "Framework for the comparison of a 

priori and a posteriori error variance estimation and tuning schemes." Quarterly 

Journal of the Royal Meteorological Society 146.731 (2020): 2547-2575.
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Extra Slides
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Spectral Distinctiveness of Filters

𝐇෩𝐁𝐇T, ෩𝐑
(෩𝐃⊗෩𝐃)−1

= Tr[ ෨𝐅(𝐈 − ෨𝐅)] =෍

𝑖

𝜙𝑖
(1 + 𝜙𝑖)

2

cos 𝜃 ෨𝐵, ෨𝑅 =
𝐇෩𝐁𝐇T, ෩𝐑

(෩𝐃⊗෩𝐃)−1

𝐇෩𝐁𝐇T
(෩𝐃⊗෩𝐃)−1

× ෩𝐑
(෩𝐃⊗෩𝐃)−1

𝐇෩𝐁𝐇T
(෩𝐃⊗෩𝐃)−1
2

= Tr[ ෨𝐅 ෨𝐅] =෍

𝑖

1

(1 + 𝜙𝑖)
2

෩𝐑
(෩𝐃⊗෩𝐃)−1
2

= Tr[(𝐈 − ෨𝐅)(𝐈 − ෨𝐅)] =෍

𝑖

𝜙𝑖
2

(1 + 𝜙𝑖)
2

𝐿b = 800 km

𝐿b = 120 km
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Limiting Cases

• 1D periodic domain with 𝐿b → ∞, 𝐿o → 0:

– Only one overlapping wavenumber

• 𝐇෩𝐁𝐇T ∝ ෩𝐑:

– ෨𝐅 and 𝐈 + ෨𝐅 have flat spectra

cos 𝜃 ෨𝐵, ෨𝑅 =
1

1 + 1
𝜙0

2
𝐿
Δ𝑥 − 1 + 1

𝜃 ෨𝐵, ෨𝑅

Δ𝑥→0
90°

𝜃 ෨𝐵, ෨𝑅 = 0°
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Angles Between Error Covariances

1D periodic domain
𝐿 = 40,000 km, ෤𝜎b

2 = ෤𝜎o
2 , 𝐿o = 0

5810-point Lebedev grid, Δ𝑥 ~ 100 km − 330 km

෤𝜎b
2 = ෤𝜎o

2 , 𝐿o = 0
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Angles Between Error Covariances

1D periodic domain
𝐿 = 40,000 km, ෤𝜎b

2 = ෤𝜎o
2 , 𝐿o = 0



Page 29 – 4/16/14

𝜒2 Diagnostic

𝜒2 diagnostic satisfied if ෩𝐃,𝐃
(෩𝐃⊗෩𝐃)−1

= ෩𝐃
(෩𝐃⊗෩𝐃)−1
2

= 𝑁obs

𝐃

෩𝐃

𝐃 − ෩𝐃

𝐃 − ෩𝐃
(෩𝐃⊗෩𝐃)−1
2

= 𝐃 (෩𝐃⊗෩𝐃)−1
2 − ෩𝐃

(෩𝐃⊗෩𝐃)−1
2

• Weighting of (෩𝐃𝐵 ⊗ ෩𝐃𝐵)
−1 and (෩𝐃𝑅 ⊗ ෩𝐃𝑅)

−1gives 

algorithm to satisfy the 𝜒2 diagnostic with Ƹ𝑠b = Ƹ𝑠o
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• First minimize 𝐽𝐵
HL =

1

2
𝑠b𝐕 ∘ ෩𝐃 − 𝐕 ∘ 𝐃

(෩𝚺b
2⊗෩𝚺b

2)−1
2

• Then minimize 𝐽𝑅
HL =

1

2
𝐈 ∘ (𝑠b

HL𝐇෩𝐁𝐇T + 𝑠o෩𝐑) − 𝐈 ∘ 𝐃
(෩𝚺o

2⊗෩𝚺o
2)−1

2

𝐕 ≡

0 1 1
1 0 1 ⋯
1 1 0

⋮ ⋱

minimize w.r.t. 𝑆b

𝑠b
HL =

𝐕 ∘ ෩𝐃, 𝐕 ∘ 𝐃
(෩𝚺b

2⊗෩𝚺b
2)−1

𝐕 ∘ ෩𝐃
(෩𝚺b

2⊗෩𝚺b
2)−1

2

minimize w.r.t. 𝑆o

𝑠o
HL =

𝐈 ∘ ෩𝐑, 𝐈 ∘ (𝐃 − 𝑠b
HL𝐇෩𝐁𝐇T)

(෩𝚺o
2⊗෩𝚺o

2)−1

𝐈 ∘ ෩𝐑
(෩𝚺o

2⊗෩𝚺o
2)−1

2
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Comparisons Between Methods

1D periodic domain
𝐿 = 40,000 km, Δ𝑥 = 40 km , 𝐿o = 40 km
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