Covariance Propagation in Data Assimilation: A Continuum Analysis of Advective Systems

Shay Gilpin ${ }^{1}$, Tomoko Matsuo ${ }^{2,1}$, Stephen E. Cohn ${ }^{3}$

${ }^{1}$ Department of Applied Mathematics, University of Colorado, Boulder, ${ }^{2}$ Smead Aerospace Engineering Sciences, University of Colorado, Boulder, ${ }^{3}$ Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Mathematical Approaches of Atmospheric Chemical Constituent Data Assimilation and Inverse Modeling Workshop, March 19-24, 2023

Motivation: Addressing Variance Loss in Data Assimilation

Data Assimilation as a Discrete Problem

Daley (1991), Kalnay (2003), Evensen (2009), etc.

$$
\boldsymbol{P}_{k+1}=\boldsymbol{M}_{k+1, k}\left(\boldsymbol{M}_{k+1, k} \boldsymbol{P}_{k}\right)^{T}+\boldsymbol{Q}_{k}
$$

Motivation: Addressing Variance Loss in Data Assimilation

Data Assimilation as a Discrete Problem

Daley (1991), Kalnay (2003), Evensen (2009), etc.

$$
\boldsymbol{P}_{k+1}=\boldsymbol{M}_{k+1, k}\left(\boldsymbol{M}_{k+1, k} \boldsymbol{P}_{k}\right)^{T}+\boldsymbol{Q}_{k} .
$$

1. Variance Inflation

Maybeck (1982) Ch. 9.2, Anderson and Anderson (1999), Mitchell and Houtekamer (2000), etc.

Motivation: Addressing Variance Loss in Data Assimilation

Data Assimilation as a Discrete Problem

Daley (1991), Kalnay (2003), Evensen (2009), etc.

$$
\boldsymbol{P}_{k+1}=\boldsymbol{M}_{k+1, k}\left(\boldsymbol{M}_{k+1, k} \boldsymbol{P}_{k}\right)^{T}+\boldsymbol{Q}_{k}
$$

1. Variance Inflation

Maybeck (1982) Ch. 9.2, Anderson and Anderson (1999), Mitchell and Houtekamer (2000), etc.

2. Numerical Discretization Errors

Ménard et al. (2000), Ménard and Chang (2000), Lyster et al. (2004), Pannekoucke et al. (2016, 2021), Ménard et al. (2021).

Motivation: Addressing Variance Loss in Data Assimilation

Data Assimilation as a Discrete Problem

Daley (1991), Kalnay (2003), Evensen (2009), etc.

$$
\boldsymbol{P}_{k+1}=\boldsymbol{M}_{k+1, k}\left(\boldsymbol{M}_{k+1, k} \boldsymbol{P}_{k}\right)^{T}+\boldsymbol{Q}_{k} .
$$

1. Variance Inflation

Maybeck (1982) Ch. 9.2, Anderson and Anderson (1999), Mitchell and Houtekamer (2000), etc.
2. Numerical Discretization Errors

Ménard et al. (2000), Ménard and Chang (2000), Lyster et al. (2004), Pannekoucke et al. (2016, 2021), Ménard et al. (2021).

Continuum Analysis of

 Covariance PropagationReturn to the continuum in an effort to uncover the underlying cause of variance loss in the propagation step.

An Exploration of Covariance Propagation in Advective Systems

Part I: Analyze the continuum covariance propagation and uncover a discontinuous change in dynamics,

Part II: Derive the dynamics approximated by numerical schemes along the covariance diagonal.

Part I:

Continuum Covariance Propagation

Part I: Generalized Advective Dynamics

Define $q=q(\boldsymbol{x}, t)$ for $\boldsymbol{x} \in S_{r}^{2}$ with q_{0} stochastic with mean $\bar{q}_{0}, \boldsymbol{v}=\boldsymbol{v}(\boldsymbol{x}, t)$ the (deterministic) velocity field, and $b=b(\boldsymbol{x}, t)$ a (deterministic) scalar,

$$
\begin{gathered}
q_{t}+\boldsymbol{v} \cdot \nabla q+b q=0, \\
q\left(\boldsymbol{x}, t_{0}\right)=q_{0}(\boldsymbol{x}) .
\end{gathered}
$$

Part I: Generalized Advective Dynamics

Define $q=q(\boldsymbol{x}, t)$ for $\boldsymbol{x} \in S_{r}^{2}$ with q_{0} stochastic with mean $\bar{q}_{0}, \boldsymbol{v}=\boldsymbol{v}(\boldsymbol{x}, t)$ the (deterministic) velocity field, and $b=b(\boldsymbol{x}, t)$ a (deterministic) scalar,

$$
\begin{gathered}
q_{t}+\boldsymbol{v} \cdot \nabla q+b q=0 \\
q\left(\boldsymbol{x}, t_{0}\right)=q_{0}(\boldsymbol{x})
\end{gathered}
$$

Let $\mathbb{E}\{\cdot\}$ denote the expectation operator, and define the covariance $P=P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t\right)=\mathbb{E}\left\{\left[q\left(\boldsymbol{x}_{1}, t\right)-\overline{q\left(\boldsymbol{x}_{1}, t\right)}\right]\left[q\left(\boldsymbol{x}_{2}, t\right)-\overline{q\left(\boldsymbol{x}_{2}, t\right)}\right]\right\}$,

$$
\begin{gathered}
\text { Continuum Covariance Evolution Equation } \\
P_{t}+\boldsymbol{v}_{1} \cdot \nabla_{1} P+\boldsymbol{v}_{2} \cdot \nabla_{2} P+\left(b_{1}+b_{2}\right) P=0 \\
P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t_{0}\right)=P_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)
\end{gathered}
$$

Part I: Dynamics Along the Hyperplane $x_{1}=x_{2}$

$$
\begin{gathered}
\left(\mathcal{P}_{t} f\right)\left(\boldsymbol{x}_{1}\right)=\int_{S_{r}^{2}} P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t\right) f\left(\boldsymbol{x}_{2}\right) d \boldsymbol{x}_{2}, f \in L^{2}\left(S_{r}^{2}\right) \\
P_{t}+\boldsymbol{v}_{1} \cdot \nabla_{1} P+\boldsymbol{v}_{2} \cdot \nabla_{2} P+\left(b_{1}+b_{2}\right) P=0 \\
P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t_{0}\right)=P_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)
\end{gathered}
$$

Part I: Dynamics Along the Hyperplane $x_{1}=x_{2}$

$$
\begin{gathered}
\left(\mathcal{P}_{t} f\right)\left(\boldsymbol{x}_{1}\right)=\int_{S_{r}^{2}} P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t\right) f\left(\boldsymbol{x}_{2}\right) d \boldsymbol{x}_{2}, f \in L^{2}\left(S_{r}^{2}\right) \\
P_{t}+\boldsymbol{v}_{1} \cdot \nabla_{1} P+\boldsymbol{v}_{2} \cdot \nabla_{2} P+\left(b_{1}+b_{2}\right) P=0 \\
P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t_{0}\right)=P_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)
\end{gathered}
$$

spatially correlated (continuous) q_{0}
$P_{0}\left(x_{1}, x_{2}\right)=\sigma_{0}\left(x_{1}\right) C_{0}\left(x_{1}, x_{2}\right) \sigma_{0}\left(x_{2}\right)$

Part I: Dynamics Along the Hyperplane $x_{1}=x_{2}$

$$
\begin{gathered}
\left(\mathcal{P}_{t} f\right)\left(\boldsymbol{x}_{1}\right)=\int_{S_{r}^{2}} P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t\right) f\left(\boldsymbol{x}_{2}\right) d \boldsymbol{x}_{2}, f \in L^{2}\left(S_{r}^{2}\right) \\
P_{t}+\boldsymbol{v}_{1} \cdot \nabla_{1} P+\boldsymbol{v}_{2} \cdot \nabla_{2} P+\left(b_{1}+b_{2}\right) P=0 \\
P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t_{0}\right)=P_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)
\end{gathered}
$$

spatially correlated (continuous) q_{0}

$$
P_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\sigma_{0}\left(\boldsymbol{x}_{1}\right) C_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \sigma_{0}\left(\boldsymbol{x}_{2}\right)
$$

$$
\sigma_{t}^{2}+\boldsymbol{v} \cdot \nabla \sigma^{2}+2 b \sigma^{2}=0
$$

$$
\sigma^{2}\left(\boldsymbol{x}, t_{0}\right)=P_{0}(\boldsymbol{x}, \boldsymbol{x})
$$

Variance Equation

$$
\begin{gathered}
P\left(x_{1}, x_{2}, t\right)=\sigma\left(x_{1}, t\right) C\left(x_{1}, x_{2}, t\right) \sigma\left(x_{2}, t\right) \\
\left(\mathcal{P}_{t} f\right)\left(x_{1}\right)=\int_{S_{r}^{2}} P\left(x_{1}, x_{2}, t\right) f\left(x_{2}\right) d x_{2}
\end{gathered}
$$

Part I: Dynamics Along the Hyperplane $x_{1}=x_{2}$

$$
\begin{gathered}
\left(\mathcal{P}_{t} f\right)\left(\boldsymbol{x}_{1}\right)=\int_{S_{r}^{2}} P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t\right) f\left(\boldsymbol{x}_{2}\right) d \boldsymbol{x}_{2}, f \in L^{2}\left(S_{r}^{2}\right) \\
P_{t}+\boldsymbol{v}_{1} \cdot \nabla_{1} P+\boldsymbol{v}_{2} \cdot \nabla_{2} P+\left(b_{1}+b_{2}\right) P=0 \\
P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t_{0}\right)=P_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)
\end{gathered}
$$

spatially correlated (continuous) q_{0}
$P_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\sigma_{0}\left(\boldsymbol{x}_{1}\right) C_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \sigma_{0}\left(\boldsymbol{x}_{2}\right)$

$$
\sigma_{t}^{2}+\boldsymbol{v} \cdot \nabla \sigma^{2}+2 b \sigma^{2}=0
$$

$$
\sigma^{2}\left(\boldsymbol{x}, t_{0}\right)=P_{0}(\boldsymbol{x}, \boldsymbol{x})
$$

Variance Equation

$$
\begin{gathered}
P\left(x_{1}, x_{2}, t\right)=\sigma\left(x_{1}, t\right) C\left(x_{1}, x_{2}, t\right) \sigma\left(x_{2}, t\right) \\
\left(\mathcal{P}_{t} f\right)\left(x_{1}\right)=\int_{S_{r}^{2}} P\left(x_{1}, x_{2}, t\right) f\left(x_{2}\right) d x_{2}
\end{gathered}
$$

Part I: Dynamics Along the Hyperplane $x_{1}=x_{2}$

$$
\begin{gathered}
\left(\mathcal{P}_{t} f\right)\left(\boldsymbol{x}_{1}\right)=\int_{S_{r}^{2}} P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t\right) f\left(\boldsymbol{x}_{2}\right) d \boldsymbol{x}_{2}, f \in L^{2}\left(S_{r}^{2}\right) \\
P_{t}+\boldsymbol{v}_{1} \cdot \nabla_{1} P+\boldsymbol{v}_{2} \cdot \nabla_{2} P+\left(b_{1}+b_{2}\right) P=0 \\
P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t_{0}\right)=P_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)
\end{gathered}
$$

spatially correlated (continuous) q_{0}

$$
\begin{gathered}
P_{0}\left(x_{1}, \boldsymbol{x}_{2}\right)=\sigma_{0}\left(\boldsymbol{x}_{1}\right) C_{0}\left(x_{1}, x_{2}\right) \sigma_{0}\left(x_{2}\right) \\
\downarrow \\
\sigma_{t}^{2}+\boldsymbol{v} \cdot \nabla \sigma^{2}+2 b \sigma^{2}=0 \\
\sigma^{2}\left(\boldsymbol{x}, t_{0}\right)=P_{0}(\boldsymbol{x}, \boldsymbol{x})
\end{gathered}
$$

Variance Equation

$$
\begin{gathered}
P\left(x_{1}, x_{2}, t\right)=\sigma\left(x_{1}, t\right) C\left(x_{1}, x_{2}, t\right) \sigma\left(x_{2}, t\right) \\
\left(\mathcal{P}_{t} f\right)\left(x_{1}\right)=\int_{S_{r}^{2}} P\left(x_{1}, x_{2}, t\right) f\left(x_{2}\right) d x_{2}
\end{gathered}
$$

$$
\begin{gathered}
\text { spatially uncorrelated } q_{0} \\
P_{0}\left(\boldsymbol{x}_{1}, x_{2}\right)=P_{0}^{c}\left(\boldsymbol{x}_{1}\right) \delta\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \\
\downarrow \\
P_{t}^{c}+\boldsymbol{v} \cdot \nabla P^{c}+(2 b-\nabla \cdot \boldsymbol{v}) P^{c}=0 \\
P^{c}\left(\boldsymbol{x}, t_{0}\right)=P_{0}^{c}(\boldsymbol{x})
\end{gathered}
$$

Continuous Spectrum Equation

$$
\begin{gathered}
P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t\right)=P^{c}\left(\boldsymbol{x}_{1}, t\right) \delta\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \\
\left(\mathcal{P}_{t} f\right)\left(\boldsymbol{x}_{1}\right)=P^{c}\left(\boldsymbol{x}_{1}, t\right) f\left(\boldsymbol{x}_{1}\right)
\end{gathered}
$$

Part I: Dynamics Along the Hyperplane $x_{1}=x_{2}$

$$
\begin{gathered}
\left(\mathcal{P}_{t} f\right)\left(\boldsymbol{x}_{1}\right)=\int_{S_{r}^{2}} P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t\right) f\left(\boldsymbol{x}_{2}\right) d \boldsymbol{x}_{2}, f \in L^{2}\left(S_{r}^{2}\right) \\
P_{t}+\boldsymbol{v}_{1} \cdot \nabla_{1} P+\boldsymbol{v}_{2} \cdot \nabla_{2} P+\left(b_{1}+b_{2}\right) P=0 \\
P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t_{0}\right)=P_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)
\end{gathered}
$$

spatially correlated (continuous) q_{0}

$$
\begin{gathered}
P_{0}\left(x_{1}, x_{2}\right)=\sigma_{0}\left(\boldsymbol{x}_{1}\right) C_{0}\left(\boldsymbol{x}_{1}, x_{2}\right) \sigma_{0}\left(x_{2}\right) \\
\downarrow \\
\sigma_{t}^{2}+\boldsymbol{v} \cdot \nabla \sigma^{2}+2 b \sigma^{2}=0 \\
\sigma^{2}\left(\boldsymbol{x}, t_{0}\right)=P_{0}(\boldsymbol{x}, \boldsymbol{x})
\end{gathered}
$$

Variance Equation

$$
\begin{gathered}
P\left(x_{1}, x_{2}, t\right)=\sigma\left(x_{1}, t\right) C\left(x_{1}, x_{2}, t\right) \sigma\left(x_{2}, t\right) \\
\left(\mathcal{P}_{t} f\right)\left(x_{1}\right)=\int_{S_{r}^{2}} P\left(x_{1}, x_{2}, t\right) f\left(x_{2}\right) d x_{2}
\end{gathered}
$$

$$
\begin{gathered}
\text { spatially uncorrelated } q_{0} \\
P_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=P_{0}^{c}\left(\boldsymbol{x}_{1}\right) \delta\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \\
\downarrow \\
P_{t}^{c}+\boldsymbol{v} \cdot \nabla P^{c}+(2 b-\nabla \cdot \boldsymbol{v}) P^{c}=0 \\
P^{c}\left(\boldsymbol{x}, t_{0}\right)=P_{0}^{c}(\boldsymbol{x})
\end{gathered}
$$

Continuous Spectrum Equation

$$
\begin{gathered}
P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t\right)=P^{c}\left(\boldsymbol{x}_{1}, t\right) \delta\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \\
\left(\boldsymbol{\mathcal { P }}_{t} f\right)\left(\boldsymbol{x}_{1}\right)=P^{c}\left(\boldsymbol{x}_{1}, t\right) f\left(\boldsymbol{x}_{1}\right)
\end{gathered}
$$

Part I: Variances Extracted from Full Rank Covariance Propagation

Covariance (CN M) Diagonals for $C_{0}=\mathrm{GC}, \sigma_{0}(x)=\sin (3 x) / 3+1$, as $c \rightarrow 0$ at Final Time (T=3.979)

Figure 1: Exact solutions to the variance equation (σ^{2}, black dashed) and continuous spectrum equation (P^{c}, brown solid) at time T (slightly after a full period) for a spatially-varying initial condition. The state dynamics satisfy the continuity equation $\left(b=v_{x}\right)$ with velocity $v(x)=\sin (x)+2$.

The variance, σ^{2} (black dashed), and continuous spectrum, P^{c} (brown solid), are distinct when the velocity field varies in space.

Part I: Variances Extracted from Full Rank Covariance Propagation

Covariance (CN M) Diagonals for $C_{0}=\mathrm{GC}, \sigma_{0}(x)=\sin (3 x) / 3+1$, as $c \rightarrow 0$ at Final Time (T=3.979)

Figure 2: Diagonals extracted from covariances matrices propagated forward to time T (slightly after a full period) using the Crank-Nicolson finite difference scheme for covariances with different initial correlation lengths (linearly proportional to c in legend).

As correlation lengths shrink, the numerically propagated diagonals are approximating something, though it is unclear what is being approximated.

Part I: Concluding Thoughts, Insights, and Lingering Questions

- Key Insight: The discontinuous change in the continuum dynamics causes problems when propagating covariance diagonals in discrete space.
- Both spurious loss and gain of variance are observed.
- What is $M(M P)^{\top}$ trying to approximate along the covariance diagonal?

Part II:

Error Analysis of $M(M P)^{T}$

Part II: $M(M P)^{T}$ and the Covariance Diagonal

$$
\begin{gathered}
\text { Covariance propagation, } \\
\boldsymbol{P}_{k+1}=\boldsymbol{M}_{k+1, k}\left(\boldsymbol{M}_{k+1, k} \boldsymbol{P}_{k}\right)^{T}
\end{gathered}
$$

Part II: $M(M P)^{T}$ and the Covariance Diagonal

$$
\begin{gathered}
\text { Covariance propagation, } \\
\boldsymbol{P}_{k+1}=\boldsymbol{M}_{k+1, k}\left(\boldsymbol{M}_{k+1, k} \boldsymbol{P}_{k}\right)^{T}
\end{gathered}
$$

How does approximating the covariance diagonal with off-diagonal elements impact the dynamics being approximated along the diagonal?

Part II: Semi-Discretization for the Covariance Diagonal Propagation

Consider the generalized advection equation in flux form on the unit circle $\left(S_{1}^{1}\right), v>0$,

$$
q_{t}+(v q)_{x}+\left(b-v_{x}\right) q=0
$$

Part II: Semi-Discretization for the Covariance Diagonal Propagation

Consider the generalized advection equation in flux form on the unit circle $\left(S_{1}^{1}\right), v>0$,

$$
q_{t}+(v q)_{x}+\left(b-v_{x}\right) q=0
$$

Apply a first-order upwind spatial discretization for $x_{i}=i \Delta x, i=1,2, \ldots, N, \Delta x=\frac{2 \pi}{N}$,

$$
\frac{d}{d t} q_{i}(t)=\frac{1}{\Delta x}\left[v_{i-1}(t) q_{i-1}(t)-v_{i}(t) q_{i}(t)\right]-\left[b_{i}(t)-\left(v_{x}\right)_{i}(t)\right] q_{i}(t)
$$

Part II: Semi-Discretization for the Covariance Diagonal Propagation

Consider the generalized advection equation in flux form on the unit circle $\left(S_{1}^{1}\right), v>0$,

$$
q_{t}+(v q)_{x}+\left(b-v_{x}\right) q=0
$$

Apply a first-order upwind spatial discretization for $x_{i}=i \Delta x, i=1,2, \ldots, N, \Delta x=\frac{2 \pi}{N}$,

$$
\frac{d}{d t} q_{i}(t)=\frac{1}{\Delta x}\left[v_{i-1}(t) q_{i-1}(t)-v_{i}(t) q_{i}(t)\right]-\left[b_{i}(t)-\left(v_{x}\right)_{i}(t)\right] q_{i}(t)
$$

Define $P_{i, j}(t)=\mathbb{E}\left\{\left[q_{i}(t)-\bar{q}_{i}(t)\right]\left[q_{j}(t)-\bar{q}_{j}(t)\right]\right\}$ and take $i=j$,

$$
\frac{d}{d t} P_{i, i}(t)=\frac{1}{\Delta x}\left\{v_{i-1}(t)\left[P_{i-1, i}(t)+P_{i, i-1}(t)\right]-2 v_{i}(t) P_{i, i}(t)\right\}-2\left[b_{i}(t)-\left(v_{x}\right)_{i}(t)\right] P_{i, i}(t)
$$

Part II: Semi-Discretization for the Covariance Diagonal Propagation

Consider the generalized advection equation in flux form on the unit circle $\left(S_{1}^{1}\right)$,

$$
q_{t}+(v q)_{x}+\left(b-v_{x}\right) q=0
$$

Apply a first-order upwind spatial discretization for $x_{i}=i \Delta x, i=1,2, \ldots, N, \Delta x=\frac{2 \pi}{N}$,

$$
\frac{d}{d t} q_{i}(t)=\frac{1}{\Delta x}\left[v_{i-1}(t) q_{i-1}(t)-v_{i}(t) q_{i}(t)\right]-\left[b_{i}(t)-\left(v_{x}\right)_{i}(t)\right] q_{i}(t)
$$

Define $P_{i, j}(t)=\mathbb{E}\left\{\left[q_{i}(t)-\bar{q}_{i}(t)\right]\left[q_{j}(t)-\bar{q}_{j}(t)\right]\right\}$ and take $i=j$

$$
\frac{d}{d t} P_{i, i}(t)=\frac{1}{\Delta x}\left\{v_{i-1}(t)\left[P_{i-1, i}(t)+P_{i, i-1}(t)\right]-2 v_{i}(t) P_{i, i}(t)\right\}-2\left[b_{i}(t)-\left(v_{x}\right)_{i}(t)\right] P_{i, i}(t)
$$

Averaging across the diagonal to approximate $P_{i-1 / 2, i-1 / 2}(t)$

Part II: Approximated Dynamics Along the Covariance Diagonal

$$
\begin{gathered}
\text { Variance Equation } \\
\sigma_{t}^{2}=-\left(v \sigma^{2}\right)_{x}-\left(2 b-v_{x}\right) \sigma^{2}
\end{gathered}
$$

Continuous Spectrum Equation
$P_{t}^{c}=-\left(v P^{c}\right)_{x}-\left(2 b-2 v_{x}\right) P^{c}$

Part II: Approximated Dynamics Along the Covariance Diagonal

$$
\begin{gathered}
\text { Variance Equation } \\
\sigma_{t}^{2}=-\left(v \sigma^{2}\right)_{x}-\left(2 b-v_{x}\right) \sigma^{2}
\end{gathered}
$$

$$
P_{t}^{c}=-\left(v P^{c}\right)_{x}-\left(2 b-2 v_{x}\right) P^{c}
$$

First-Order Upwind:

$$
\begin{aligned}
\frac{d}{d t} P\left(x_{i}, x_{i}, t\right) & =-\left.(v P)_{x}\right|_{x_{1}=x_{2}=x_{i}}\left[1-\frac{\Delta x^{2}}{8 L^{2}\left(x_{i}, t\right)}\right]-\left[2 b\left(x_{i}, t\right)-2 v_{x}\left(x_{i}, t\right)\right] P\left(x_{i}, x_{i}, t\right) \\
& -v_{x}\left(x_{i}, t\right) P\left(x_{i}, x_{i}, t\right)\left[1-\frac{\Delta x^{2}}{8 L^{2}\left(x_{i}, t\right)}\right]-\frac{1}{\Delta x} \frac{\Delta x^{2}}{4 L^{2}\left(x_{i}, t\right)} v\left(x_{i}, t\right) P\left(x_{i}, x_{i}, t\right) \\
& +\tilde{G}_{u}\left(x_{i}, t\right)+\tilde{H}_{u}\left(x_{i}, t\right) .
\end{aligned}
$$

Part II: Approximated Dynamics for First- and Second-Order Schemes

First-Order Upwind:

$$
\begin{aligned}
\frac{d}{d t} P\left(x_{i}, x_{i}, t\right) & =-\left.(v P)_{x}\right|_{x_{1}=x_{2}=x_{i}}\left[1-\frac{\Delta x^{2}}{8 L^{2}\left(x_{i}, t\right)}\right]-\left[2 b\left(x_{i}, t\right)-2 v_{x}\left(x_{i}, t\right)\right] P\left(x_{i}, x_{i}, t\right) \\
& -v_{x}\left(x_{i}, t\right) P\left(x_{i}, x_{i}, t\right)\left[1-\frac{\Delta x^{2}}{8 L^{2}\left(x_{i}, t\right)}\right]-\frac{1}{\Delta x} \frac{\Delta x^{2}}{4 L^{2}\left(x_{i}, t\right)} v\left(x_{i}, t\right) P\left(x_{i}, x_{i}, t\right) \\
& +\tilde{G}_{u}\left(x_{i}, t\right)+\tilde{H}_{u}\left(x_{i}, t\right)
\end{aligned}
$$

Second-Order Centered Difference:

$$
\begin{aligned}
\frac{d}{d t} P\left(x_{i}, x_{i}, t\right)= & -\left.(v P)_{x}\right|_{x_{1}=x_{2}=x_{i}}\left[1-\frac{\Delta x^{2}}{8 L^{2}\left(x_{i}, t\right)}\right]-\left[2 b\left(x_{i}, t\right)-2 v_{x}\left(x_{i}, t\right)\right] P\left(x_{i}, x_{i}, t\right) \\
& -v_{x}\left(x_{i}, t\right) P\left(x_{i}, x_{i}, t\right)\left[1-\frac{\Delta x^{2}}{8 L^{2}\left(x_{i}, t\right)}\right] \\
& +\tilde{G}_{c}\left(x_{i}, t\right)+\tilde{H}_{c}\left(x_{i}, t\right)
\end{aligned}
$$

Part II: Significance of $\Delta x^{2} / 8 L^{2}(x, t)$

Solutions $\frac{\Delta x^{2}}{8 L^{2}(x, t)}$ for $L_{t}+v L_{x}-v^{\prime} L=0, L_{0}=c \sqrt{0.3}, v=\sin (x)+2, T=2 \pi / \sqrt{3}$

Figure 3: Time series snapshots of the ratio $\Delta x^{2} / 8 L^{2}(x, t)$ for different initial correlation lengths and grid lengths (uniform discretization of the unit circle).

Correlation lengths $L(x, t)$ satisfy

$$
L_{t}+v L_{x}-v_{x} L=0
$$

For the first-order upwind discretization, the term $-\frac{1}{\Delta x} \frac{\Delta x^{2}}{4 L^{2}\left(x_{i}, t\right)} v\left(x_{i}, t\right) P\left(x_{i}, x_{i}, t\right)$ can become large even when $\frac{\Delta x^{2}}{8 L^{2}\left(x_{i}, t\right)}$ is small.

Part II: Higher Order Average Approximations

Linear Combinations of $P_{i, i+1}+P_{i+1, i}, P_{1}\left(x_{i+1 / 2}, t\right), P_{2}\left(x_{i+1 / 2}, t\right)$ vs. $2 \sigma^{2}\left(x_{i+1 / 2}, t\right)$ (exact, solid) for $\sigma_{0}^{2}=1, v=\sin (x)+2$, FOAR Correlation Function

Figure 4: Time series snapshots of higher order average approximations (dashed)
Higher order average approximations do not always result in better approximations of the covariance diagonal. compared to the exact solution (solid).

Part II: Concluding Thoughts, Lingering Questions, and Further Investigation

- Key Insight: Approximating the diagonal with off-diagonal elements changes the dynamics

$$
\boldsymbol{P}_{k+1}=\boldsymbol{M}_{k+1, k}\left(\boldsymbol{M}_{k+1, k} \boldsymbol{P}_{k}\right)^{T}
$$ approximated along the covariance diagonal.

- For advective systems, the approximated dynamics depend on ratio of the grid resolution to the correlation length, $\frac{\Delta x}{L}$.
- What does this suggest about covariance propagation practiced in current data assimilation schemes?

Acknowledgements and Questions

For more information or further discussion, contact Shay at shay.gilpin@colorado.edu
Relevant work:
Gilpin, Matsuo, and Cohn, (2022): Continuum covariance propagation for understanding variance loss in advective systems, SIAM/ASA JUQ.

The presenter would like to thank the National Science Foundation (NSF) for supporting this work through the NSF Graduate Research Fellowship.

Extra Slides

Motivation Spurious Loss of Variance in 2D Transport Model

a) variance from $M(M P)^{\top}$

b) variance forecast

Figure 1 from Ménard et al. (2000), illustrating the variances $\sigma^{2}(\boldsymbol{x}, t)$ associated with the covariance $P\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, t\right)$ on an isentropic surface of Earth's atmosphere governed by

$$
P_{t}+\boldsymbol{v}_{1} \cdot \nabla_{1} P+\boldsymbol{v}_{2} \cdot \nabla_{2} P=0
$$

(a) variance extracted from the discrete covariance propagation $M(M P)^{T}$, (b) variance obtained by solving the associated equation for the variance,

$$
\sigma_{t}^{2}+\boldsymbol{v} \cdot \nabla \sigma^{2}=0, \sigma_{0}^{2}=1
$$

Motivation: Spurious Loss of Variance in 3D Transport Model

Figure 5: Figure 5 from Ménard et al. (2021) depicting the total error variance as a function of time for different ensemble experiments in a $3 D$ chemical transport model (chemistry turned off, advection only).

FIGURE 5 Total error variance evolution using ERA-Interim winds for different initial correlation length using 20 and 100 members

Part I: The Hyperplane $x_{1}=x_{2}$ is a Characteristic Surface

The characteristic equations for \boldsymbol{x}_{1} and \boldsymbol{x}_{2} both satisfy

$$
\begin{gathered}
\frac{d \boldsymbol{x}}{d t}=\boldsymbol{v}(\boldsymbol{x}, t), \\
\boldsymbol{x}\left(t_{0}\right)=\boldsymbol{s}
\end{gathered}
$$

where $\boldsymbol{x}_{i}=\boldsymbol{x}\left(t ; \boldsymbol{s}_{i}\right)$ for the initial coordinate $\boldsymbol{s}_{i}, i=1,2$.

Part I: The Hyperplane $x_{1}=x_{2}$ is a Characteristic Surface

The characteristic equations for \boldsymbol{x}_{1} and \boldsymbol{x}_{2} both satisfy

$$
\begin{gathered}
\frac{d \boldsymbol{x}}{d t}=\boldsymbol{v}(\boldsymbol{x}, t) \\
\boldsymbol{x}\left(t_{0}\right)=\boldsymbol{s}
\end{gathered}
$$

where $\boldsymbol{x}_{i}=\boldsymbol{x}\left(t ; \boldsymbol{s}_{i}\right)$ for the initial coordinate $\boldsymbol{s}_{i}, i=1,2$.
If $\boldsymbol{s}_{1}=\boldsymbol{s}_{2}$, then for $t \geq t_{0}$

$$
\boldsymbol{x}_{1}=\boldsymbol{x}\left(t ; \boldsymbol{s}_{1}\right)=\boldsymbol{x}\left(t ; \boldsymbol{s}_{2}\right)=\boldsymbol{x}_{2}
$$

solutions that start on the hyperplane $\boldsymbol{x}_{1}=\boldsymbol{x}_{2}$ remain on this hyperplane for all time.
As a result, there is a discontinuous change in covariance dynamics as initial correlation lengths tend to zero.

Part I: The Fundamental Solution Operator

We can write solutions to the state equation as

$$
q(x, t)=\left(\mathcal{M}_{t} q_{0}\right)(x),
$$

where $\mathcal{M}_{t}: L^{2}\left(S_{r}^{2}\right) \mapsto L^{2}\left(S_{r}^{2}\right)$ is the fundamental solution operator

$$
\left(\mathcal{M}_{t} f\right)(x)=\int_{S_{r}^{2}} M(x, t ; \xi) f(\xi) d \xi, \quad f \in L^{2}\left(S_{r}^{2}\right),
$$

whose kernel $M=M(\boldsymbol{x}, t ; \boldsymbol{\xi})$ satisfies

$$
\begin{gathered}
M_{t}+v \cdot \nabla M+b M=0, \\
M\left(x, t_{0} ; \boldsymbol{\xi}\right)=\delta(x, \boldsymbol{\xi}) .
\end{gathered}
$$

Part I: The Fundamental Solution Operator

We can write solutions to the state equation as

$$
q(x, t)=\left(\mathcal{M}_{t} q_{0}\right)(x)
$$

where $\mathcal{M}_{t}: L^{2}\left(S_{r}^{2}\right) \mapsto L^{2}\left(S_{r}^{2}\right)$ is the fundamental solution operator

$$
\left(\mathcal{M}_{t} f\right)(x)=\int_{S_{r}^{2}} M(x, t ; \boldsymbol{\xi}) f(\boldsymbol{\xi}) d \boldsymbol{\xi}, \quad f \in L^{2}\left(S_{r}^{2}\right),
$$

whose kernel $M=M(\boldsymbol{x}, t ; \boldsymbol{\xi})$ satisfies

$$
\begin{gathered}
M_{t}+v \cdot \nabla M+b M=0, \\
M\left(x, t_{0} ; \xi\right)=\delta(x, \xi) .
\end{gathered}
$$

We can also define the adjoint fundamental solution operator, $\mathcal{M}_{t}^{*}: L^{2}\left(S_{r}^{2}\right) \mapsto L^{2}\left(S_{r}^{2}\right)$, defined by

$$
\left(\mathcal{M}_{t}^{*} f, g\right)_{2}=\left(f, \mathcal{M}_{t} g\right)_{2} \quad \forall f, g \in L^{2}\left(S_{r}^{2}\right),
$$

which is also an integral operator,

$$
\left(\mathcal{M}_{t}^{*} f\right)(\xi)=\int_{S_{r}^{2}} M^{*}(\xi ; x, t) f(x) d x, \quad f \in L^{2}\left(S_{r}^{2}\right)
$$

Part I: Continuum Covariance Propagation (Operator Formulation)

We can express the covariance $P\left(x_{1}, x_{2}, t\right)$ in terms of the kernels M and M^{*},

$$
P\left(x_{1}, \boldsymbol{x}_{2}, t\right)=\int_{S_{r}^{2}} \int_{S_{r}^{2}} M\left(\boldsymbol{x}_{1}, t ; \boldsymbol{\xi}_{1}\right) P_{0}\left(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}\right) M^{*}\left(\boldsymbol{\xi}_{2} ; \boldsymbol{x}_{2}, t\right) d \boldsymbol{\xi}_{2} d \xi_{1}
$$

Part I: Continuum Covariance Propagation (Operator Formulation)

We can express the covariance $P\left(x_{1}, x_{2}, t\right)$ in terms of the kernels M and M^{*},

$$
P\left(x_{1}, \boldsymbol{x}_{2}, t\right)=\int_{S_{r}^{2}} \int_{S_{r}^{2}} M\left(\boldsymbol{x}_{1}, t ; \xi_{1}\right) P_{0}\left(\xi_{1}, \boldsymbol{\xi}_{2}\right) M^{*}\left(\xi_{2} ; x_{2}, t\right) d \xi_{2} d \xi_{1},
$$

or simply

$$
\mathcal{P}_{t}=\mathcal{M}_{t} \mathcal{P}_{0} \mathcal{M}_{t}^{*}
$$

where $\mathcal{P}_{t}: L^{2}\left(S_{r}^{2}\right) \mapsto L^{2}\left(S_{r}^{2}\right)$ is the covariance operator,

$$
\left(\mathcal{P}_{t} f\right)\left(x_{1}\right)=\int_{S_{r}^{2}} P\left(x_{1}, x_{2}, t\right) f\left(x_{2}\right) d x_{2}, \quad f \in L^{2}\left(S_{r}^{2}\right),
$$

where at $t=t_{0}$ we have

$$
\left(\mathcal{P}_{0} f\right)\left(x_{1}\right)=\int_{S_{r}^{2}} P_{0}\left(x_{1}, x_{2}\right) f\left(x_{2}\right) d x_{2}, \quad f \in L^{2}\left(S_{r}^{2}\right) .
$$

Part II: Expanding the Averaging Term

$$
\frac{d}{d t} P_{i, i}(t)=\frac{1}{\Delta x}\left\{v_{i-1}(t)\left[P_{i-1, i}(t)+P_{i, i-1}(t)\right]-2 v_{i}(t) P_{i, i}(t)\right\}-2\left[b_{i}(t)-\left(v_{x}\right)_{i}(t)\right] P_{i, i}(t) .
$$

The natural choice is to expand about the half-grid point $x_{i-1 / 2}, x_{i-1 / 2}$.

Part II: Expanding the Averaging Term

$$
\frac{d}{d t} P_{i, i}(t)=\frac{1}{\Delta x}\left\{v_{i-1}(t)\left[P_{i-1, i}(t)+P_{i, i-1}(t)\right]-2 v_{i}(t) P_{i, i}(t)\right\}-2\left[b_{i}(t)-\left(v_{x}\right)_{i}(t)\right] P_{i, i}(t)
$$

The natural choice is to expand about the half-grid point $x_{i-1 / 2}, x_{i-1 / 2}$.

$$
\begin{aligned}
& P\left(x_{i-1}, x_{i}, t\right)+P\left(x_{i}, x_{i-1}, t\right)=2 P\left(x_{i-1 / 2}, x_{i-1 / 2}, t\right)+\left(\frac{\Delta x}{2}\right)^{2} P_{2}\left(x_{i-1 / 2}, t\right)+\mathcal{O}\left(\Delta x^{3}\right) \\
& P_{2}(x, t)=\left[\frac{\partial^{2} P}{\partial x_{1}^{2}}-2 \frac{\partial^{2} P}{\partial x_{1} \partial x_{2}}+\frac{\partial^{2} P}{\partial x_{1}^{2}}\right]_{x_{1}=x_{2}=x}=P(x, x, t) \log [P(x, x, t)]_{x x}-\underbrace{\frac{P(x, x, t)}{L^{2}(x, t)}}_{\text {correlation length }}
\end{aligned}
$$

Part II: Semi-Discretization in Advection Form (Upwind)

Suppose we consider the state equation in advection form,

$$
q_{t}+v q_{x}+b q=0
$$

and discretize q_{x} using a first-order upwind scheme,

$$
\frac{d}{d t} q_{i}(t)=\frac{v_{i}(t)}{\Delta x}\left[q_{i-1}(t)-q_{i}(t)\right]-b_{i}(t) q_{i}(t)
$$

Part II: Semi-Discretization in Advection Form (Upwind)

Suppose we consider the state equation in advection form,

$$
q_{t}+v q_{x}+b q=0
$$

and discretize q_{x} using a first-order upwind scheme,

$$
\frac{d}{d t} q_{i}(t)=\frac{v_{i}(t)}{\Delta x}\left[q_{i-1}(t)-q_{i}(t)\right]-b_{i}(t) q_{i}(t)
$$

The semi-discretization for the covariance diagonal is then,

$$
\frac{d}{d t} P_{i, i}(t)=\frac{v_{i}(t)}{\Delta x}\left\{\left[P_{i-1, i}(t)+P_{i, i-1}(t)\right]-2 P_{i, i}(t)\right\}-2 b_{i}(t) P_{i, i}(t)
$$

Part II: Semi-Discretization in Advection Form (Upwind)

Suppose we consider the state equation in advection form,

$$
q_{t}+v q_{x}+b q=0
$$

and discretize q_{x} using a first-order upwind scheme,

$$
\frac{d}{d t} q_{i}(t)=\frac{v_{i}(t)}{\Delta x}\left[q_{i-1}(t)-q_{i}(t)\right]-b_{i}(t) q_{i}(t)
$$

The semi-discretization for the covariance diagonal is then,

$$
\frac{d}{d t} P_{i, i}(t)=\frac{v_{i}(t)}{\Delta x}\left\{\left[P_{i-1, i}(t)+P_{i, i-1}(t)\right]-2 P_{i, i}(t)\right\}-2 b_{i}(t) P_{i, i}(t)
$$

The approximated dynamics (after expanding the averaging term) are

$$
\begin{aligned}
\frac{d}{d t} P\left(x_{i}, x_{i}, t\right)= & -v\left(x_{i}, t\right) P_{x}\left(x_{i}, x_{i}, t\right)\left[1-\frac{\Delta x^{2}}{8 L^{2}\left(x_{i}, t\right)}\right]-2 b\left(x_{i}, t\right) P\left(x_{i}, x_{i}, t\right) \\
& -\frac{1}{\Delta x} \frac{\Delta x^{2}}{4 L^{2}\left(x_{i}, t\right)} v\left(x_{i}, t\right) P\left(x_{i}, x_{i}, t\right)+A_{u}\left(x_{i}, t\right)+B_{u}\left(x_{i}, t\right)
\end{aligned}
$$

