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Motivation: Addressing Variance Loss in Data Assimilation

Data Assimilation as a Discrete Problem
Daley (1991), Kalnay (2003), Evensen (2009), etc.

Pk+1 = Mk+1,k (Mk+1,kPk)T + Qk .

1. Variance Inflation
Maybeck (1982) Ch. 9.2, Anderson and Anderson

(1999), Mitchell and Houtekamer (2000), etc.

2. Numerical Discretization Errors
Ménard et al. (2000), Ménard and Chang (2000),

Lyster et al. (2004), Pannekoucke et al. (2016,

2021), Ménard et al. (2021).

Continuum Analysis of

Covariance Propagation

Return to the continuum in an

effort to uncover the underlying

cause of variance loss in the

propagation step.
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An Exploration of Covariance Propagation in Advective Systems

Part I: Analyze the continuum covariance propagation and uncover a

discontinuous change in dynamics,

Part II: Derive the dynamics approximated by numerical schemes along the

covariance diagonal.
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———————————————————————————–

Part I:

Continuum Covariance Propagation

———————————————————————————–
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Part I: Generalized Advective Dynamics

Define q = q(x , t) for x ∈ S2
r with q0 stochastic with mean q0, v = v(x , t) the

(deterministic) velocity field, and b = b(x , t) a (deterministic) scalar,

qt + v · ∇q + bq = 0,

q(x , t0) = q0(x).

Let E{·} denote the expectation operator, and define the covariance

P = P(x1, x2, t) = E
{[
q(x1, t)− q(x1, t)

][
q(x2, t)− q(x2, t)

]}
,

Continuum Covariance Evolution Equation

Pt + v1 ·∇1 P + v2 ·∇2 P + (b1 + b2)P = 0,

P(x1, x2, t0) = P0(x1, x2).
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Part I: Dynamics Along the Hyperplane x1 = x2

(P t f )(x1) =

∫
S2
r

P(x1, x2, t)f (x2)dx2, f ∈ L2(S2
r )

Pt + v1 ·∇1 P + v2 ·∇2 P + (b1 + b2)P = 0,

P(x1, x2, t0) = P0(x1, x2)

↙
spatially correlated (continuous) q0

P0(x1, x2) = σ0(x1)C0(x1, x2)σ0(x2)

↓

σ2
t + v · ∇σ2 + 2bσ2 = 0,
σ2(x , t0) = P0(x , x)

Variance Equation

P(x1, x2, t) = σ(x1, t)C(x1, x2, t)σ(x2, t)

(P t f )(x1) =
∫
S2
r
P(x1, x2, t)f (x2)dx2

↘
spatially uncorrelated q0

P0(x1, x2) = Pc
0 (x1)δ(x1, x2)

↓

Pc
t + v · ∇Pc + (2b −∇ · v)Pc = 0,

Pc(x , t0) = Pc
0 (x)

Continuous Spectrum Equation

P(x1, x2, t) = Pc(x1, t)δ(x1, x2)

(P t f )(x1) = Pc(x1, t)f (x1)
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Part I: Variances Extracted from Full Rank Covariance Propagation

Figure 1: Exact solutions to the variance equation (σ2, black dashed) and

continuous spectrum equation (Pc , brown solid) at time T (slightly after a

full period) for a spatially-varying initial condition. The state dynamics

satisfy the continuity equation (b = vx) with velocity v(x) = sin(x) + 2.

The variance, σ2

(black dashed),

and continuous

spectrum, Pc

(brown solid), are

distinct when the

velocity field varies

in space.
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Part I: Variances Extracted from Full Rank Covariance Propagation

Figure 2: Diagonals extracted from covariances matrices propagated forward

to time T (slightly after a full period) using the Crank-Nicolson finite

difference scheme for covariances with different initial correlation lengths

(linearly proportional to c in legend).

As correlation

lengths shrink, the

numerically

propagated

diagonals are

approximating

something, though

it is unclear what

is being

approximated.
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Part I: Concluding Thoughts, Insights, and Lingering Questions

• Key Insight: The discontinuous change in the continuum dynamics causes

problems when propagating covariance diagonals in discrete space.

• Both spurious loss and gain of variance are observed.

• What is M(MP)T trying to approximate along the covariance diagonal?
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———————————————————————————–

Part II:

Error Analysis of M(MP)T

———————————————————————————–
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Part II: M(MP)T and the Covariance Diagonal

Covariance propagation,

Pk+1 = Mk+1,k (Mk+1,kPk)T

How does approximating the covariance diagonal with off-diagonal elements impact the

dynamics being approximated along the diagonal?
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Part II: Semi-Discretization for the Covariance Diagonal Propagation

Consider the generalized advection equation in flux form on the unit circle (S1
1 ), v > 0,

qt + (vq)x + (b − vx)q = 0

Apply a first-order upwind spatial discretization for xi = i∆x , i = 1, 2, ...,N, ∆x = 2π
N ,

d

dt
qi (t) =

1

∆x

[
vi−1(t)qi−1(t)− vi (t)qi (t)

]
−
[
bi (t)− (vx)i (t)

]
qi (t).

Define Pi ,j(t) = E
{

[qi (t)− qi (t)][qj(t)− qj(t)]
}

and take i = j ,

d

dt
Pi ,i (t) =

1

∆x

{
vi−1(t)

[
Pi−1,i (t) + Pi ,i−1(t)

]
−2vi (t)Pi ,i (t)

}
−2
[
bi (t)−(vx)i (t)

]
Pi ,i (t).

averaging across the diagonal to approximate Pi−1/2,i−1/2(t)
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Part II: Approximated Dynamics Along the Covariance Diagonal

Variance Equation

σ2
t = −

(
vσ2

)
x
−
(
2b − vx

)
σ2

Continuous Spectrum Equation

Pc
t = −

(
vPc

)
x
−
(
2b − 2vx

)
Pc

First-Order Upwind:

d

dt
P(xi , xi , t) = −(vP)x |x1=x2=xi

[
1− ∆x2

8L2(xi , t)

]
−
[
2b(xi , t)− 2vx(xi , t)

]
P(xi , xi , t)

− vx(xi , t)P(xi , xi , t)

[
1− ∆x2

8L2(xi , t)

]
− 1

∆x

∆x2

4L2(xi , t)
v(xi , t)P(xi , xi , t)

+ G̃u(xi , t) + H̃u(xi , t).
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Part II: Approximated Dynamics for First- and Second-Order Schemes

First-Order Upwind:

d

dt
P(xi , xi , t) = −(vP)x |x1=x2=xi

[
1− ∆x2

8L2(xi , t)

]
−
[
2b(xi , t)− 2vx(xi , t)

]
P(xi , xi , t)

− vx(xi , t)P(xi , xi , t)

[
1− ∆x2

8L2(xi , t)

]
− 1

∆x

∆x2

4L2(xi , t)
v(xi , t)P(xi , xi , t)

+ G̃u(xi , t) + H̃u(xi , t).

Second-Order Centered Difference:

d

dt
P(xi , xi , t) =− (vP)x |x1=x2=xi

[
1− ∆x2

8L2(xi , t)

]
−
[
2b(xi , t)− 2vx(xi , t)

]
P(xi , xi , t)

− vx(xi , t)P(xi , xi , t)

[
1− ∆x2

8L2(xi , t)

]
+ G̃c(xi , t) + H̃c(xi , t)
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Part II: Significance of ∆x2/8L2(x, t)

Figure 3: Time series snapshots of the ratio ∆x2/8L2(x , t) for different

initial correlation lengths and grid lengths (uniform discretization of the

unit circle).

Correlation lengths L(x , t)

satisfy

Lt + vLx − vxL = 0.

For the first-order upwind

discretization, the term

− 1
∆x

∆x2

4L2(xi ,t)
v(xi , t)P(xi , xi , t)

can become large even when
∆x2

8L2(xi ,t)
is small.
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Part II: Higher Order Average Approximations

Figure 4: Time series snapshots of higher order average approximations (dashed)

compared to the exact solution (solid).

Higher order

average

approximations

do not always

result in better

approximations

of the

covariance

diagonal.
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Part II: Concluding Thoughts, Lingering Questions, and Further Investigation

• Key Insight: Approximating the diagonal with

off-diagonal elements changes the dynamics

approximated along the covariance diagonal.

• For advective systems, the approximated

dynamics depend on ratio of the grid resolution

to the correlation length, ∆x
L .

• What does this suggest about covariance

propagation practiced in current data

assimilation schemes?

Pk+1 = Mk+1,k(Mk+1,kPk)T
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Motivation Spurious Loss of Variance in 2D Transport ModelAUGUST 2000 2659M É N A R D E T A L .

FIG. 1. Forecast error variance after 4 days, starting from unit
variance. (a) The variance obtained from using M(MP)T, and (b) the
variance obtained by using the advection equation for variance.

skill (i.e., lower analysis error variance) in jet regions,
for instance, than what was actually supported by com-
parison with a control dataset. Spurious results of this
type will be shown later in this section.
To understand this problem, let us first consider the

evolution of the covariance function corresponding to
the continuum dynamics (2.9). In the absense of random
forcing f, the covariance function obeys generalized ad-
vection dynamics in a four-dimensional space (Cohn
1993), twice that of the spatial dimension of the trans-
port problem (2.9):

]P
1 V · = P 1 V · = P 5 0, (3.4)1 1 2 2]t

where P 5 P(x1, x2, t) is the covariance function of
two points, x1 5 (l1, f 1) and x2 5 (l2, f 2). Here V1
5 [u(x1, t), y(x1, t)] is the wind vector at the point x1,
and similarly for V2, and =1, =2 are the horizontal gra-
dient operators with respect to the points x1 and x2.
Since the operators V1 · =1 and V2 · =2 commute, the
resolvent operator of (3.4) is the product of two resol-
vent operators, one solving the advection problem with
respect to x1 and the other with respect to x2 (Cohn
1993, appendix B), which is in fact operator splitting.
If we were to discretize each of these resolvents as a
discrete operator Mk, we would get 5 Mk(Mk )Tf aP Pk11 k

with and stored as matrices, which is preciselya fP Pk k11
the discrete Kalman filter covariance evolution equation.
If, on the other hand, we were to discretize (3.4) directly,
we would in general obtain a different and possiblymore
accurate result. For example, solving a two-dimensional
advection equation by using operator splitting with one-
dimensional advection schemes is known to have ad-
verse consequences in general (e.g., Lin and Rood 1996,
section 2). Solving the two-dimensional equation in a
manner that obeys more directly the physics generally
leads to superior results.
To assess the numerical accuracy of the covariance

computed from Mk(Mk )T, we use some properties ofaPk

the analytical solution of the continuum covariance evo-
lution equation (3.4). Equation (3.4) can be solved by
the method of characteristics. Its solution has the prop-
erty that the covariance between a pair of material par-
ticles is conserved during transport (Cohn 1993); that
is, the covariance function is a Lagrangian-conserved
quantity. Consequently, the variance V(x, t)[ P(x, x, t),
which is the covariance of a material particle with itself,
is conserved along the particle trajectory. That is to say,
the variance obeys the advection dynamics:

]V
1 V · =V 5 0. (3.5)

]t

Let us compare the variance obtained from Mk(Mk )TaPk

with the variance obtained using the advection dynamics
(3.5) directly. Using a spatially uniform initial variance
field V [ 1, an integration on the 1100-K isentropic
surface was performed in pure transport mode, that is,

with no data assimilation, using the GEOS DAS winds
from 0000 UTC 6 September to 0000 UTC 10 Septem-
ber 1992. A first-order autoregressive (FOAR) corre-
lation model [see Eq. (5.2)] with a length scale of 3600
km was used as the initial correlation. This length scale
is typical and a discussion on how it was obtained will
be given in Part II. According to the Lagrangian con-
servative property, the variance should remain uniform
and of unit value regardless of the advecting wind field.
The results are displayed in Fig. 1. In Fig. 1a the var-
iance obtained from Mk(Mk )T is depicted. We observeaPk

a significant decrease in magnitude from unity, espe-
cially in the southern midlatitudes with values below
0.5. Figure 1b displays the variance obtained by apply-
ing the discrete transport model directly to the advection
equation (3.5). A departure from unity of at most 3%
is seen. These results show that the standard covariance
evolution equation (2.19) used in discrete Kalman fil-
tering can give rise to a significant and spurious loss of
variance.
To shed some light on this loss of variance, let us

take a closer look at the Mk(Mk )T computation, inaPk

which the covariance evolution is obtained by applying
the transport model on each column of P and then on
each row. Each column or row of P represents the co-
variance between a grid point and all the other grid
points of the domain. These columns and rows have
generally a near-zero value away from the diagonal,
which rises rapidly over a relatively short distance to-
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Figure 1 from Ménard et al. (2000),

illustrating the variances σ2(x , t) asso-

ciated with the covariance P(x1, x2, t)

on an isentropic surface of Earth’s at-

mosphere governed by

Pt + v1 ·∇1 P + v2 ·∇2 P = 0.

(a) variance extracted from the discrete

covariance propagation M(MP)T , (b)

variance obtained by solving the associ-

ated equation for the variance,

σ2
t + v · ∇σ2 = 0, σ2

0 = 1.
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Motivation: Spurious Loss of Variance in 3D Transport Model

Figure 5: Figure 5

from Ménard et al.

(2021) depicting

the total error

variance as a

function of time for

different ensemble

experiments in a

3D chemical

transport model

(chemistry turned

off, advection only).
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Part I: The Hyperplane x1 = x2 is a Characteristic Surface

The characteristic equations for x1 and x2 both satisfy

dx
dt

= v(x , t),

x(t0) = s,

where x i = x(t; s i ) for the initial coordinate s i , i = 1, 2.

If s1 = s2, then for t ≥ t0

x1 = x(t; s1) = x(t; s2) = x2,

solutions that start on the hyperplane x1 = x2 remain on this hyperplane for all time.

As a result, there is a discontinuous change in covariance dynamics as initial

correlation lengths tend to zero.
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Part I: The Fundamental Solution Operator

We can write solutions to the state equation as

q(x , t) = (Mtq0)(x),

whereMt : L2(S2
r ) 7→ L2(S2

r ) is the fundamental solution operator

(Mt f )(x) =

∫
S2
r

M(x , t; ξ)f (ξ)dξ, f ∈ L2(S2
r ),

whose kernel M = M(x , t; ξ) satisfies

Mt + v · ∇M + bM = 0,

M(x , t0; ξ) = δ(x , ξ).

We can also define the adjoint fundamental solution operator,M∗
t : L2(S2

r ) 7→ L2(S2
r ), defined by

(M∗
t f , g)2 = (f ,Mtg)2 ∀f , g ∈ L2(S2

r ),

which is also an integral operator,

(M∗
t f )(ξ) =

∫
S2
r

M∗(ξ; x , t)f (x)dx , f ∈ L2(S2
r ).
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Part I: Continuum Covariance Propagation (Operator Formulation)

We can express the covariance P(x1, x2, t) in terms of the kernels M and M∗,

P(x1, x2, t) =

∫
S2
r

∫
S2
r

M(x1, t; ξ1)P0(ξ1, ξ2)M∗(ξ2; x2, t)dξ2dξ1,

or simply

P t =MtP0M∗
t ,

where P t : L2(S2
r ) 7→ L2(S2

r ) is the covariance operator,

(P t f )(x1) =

∫
S2
r

P(x1, x2, t)f (x2)dx2, f ∈ L2(S2
r ),

where at t = t0 we have

(P0f )(x1) =

∫
S2
r

P0(x1, x2)f (x2)dx2, f ∈ L2(S2
r ).
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Part II: Expanding the Averaging Term

d

dt
Pi ,i (t) =

1

∆x

{
vi−1(t)

[
Pi−1,i (t) + Pi ,i−1(t)

]
− 2vi (t)Pi ,i (t)

}
−2
[
bi (t)−(vx)i (t)

]
Pi ,i (t).

The natural choice is to expand about the half-grid point xi−1/2, xi−1/2.

P(xi−1, xi , t) +P(xi , xi−1, t) = 2P(xi−1/2, xi−1/2, t) +

(
∆x

2

)2

P2(xi−1/2, t) +O(∆x3).

P2(x , t) =

[
∂2P

∂x2
1

− 2
∂2P

∂x1∂x2
+
∂2P

∂x2
1

]
x1=x2=x

= P(x , x , t) log
[
P(x , x , t)

]
xx
− P(x , x , t)

L2(x , t)︸ ︷︷ ︸
correlation length
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Part II: Semi-Discretization in Advection Form (Upwind)

Suppose we consider the state equation in advection form,

qt + vqx + bq = 0,

and discretize qx using a first-order upwind scheme,

d

dt
qi (t) =

vi (t)

∆x
[qi−1(t)− qi (t)]− bi (t)qi (t).

The semi-discretization for the covariance diagonal is then,

d

dt
Pi ,i (t) =

vi (t)

∆x

{[
Pi−1,i (t) + Pi ,i−1(t)

]
− 2Pi ,i (t)

}
− 2bi (t)Pi ,i (t)

The approximated dynamics (after expanding the averaging term) are

d

dt
P(xi , xi , t) =− v(xi , t)Px(xi , xi , t)

[
1− ∆x2

8L2(xi , t)

]
− 2b(xi , t)P(xi , xi , t)

− 1

∆x

∆x2

4L2(xi , t)
v(xi , t)P(xi , xi , t) + Au(xi , t) + Bu(xi , t)
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