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Continuum Analysis of
Covariance Propagation

Return to the continuum in an
effort to uncover the underlying
cause of variance loss in the

propagation step.




An Exploration of Covariance Propagation in Advective Systems

Part I: Analyze the continuum covariance propagation and uncover a
discontinuous change in dynamics,

Part Il: Derive the dynamics approximated by numerical schemes along the
covariance diagonal.
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Let E{-} denote the expectation operator, and define the covariance
P = P(x1,x2,t) = E{[q(x1,t) — q(x1,t)] [a(x2, t) — q(x2,1)] },

Continuum Covariance Evolution Equation

P:+v1:ViP+vy:-Vy P+ (b + b)P =0,

P(x1, x2, to) = Po(x1, x2).
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Part I: Variances Extracted from Full Rank Covariance Propagation

Covariance (CN M) Diagonals for Cy = GC, 0p(x) =sin(3x)/3 + 1, as ¢ - 0 at Final Time (T=3.979)
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Figure 1: Exact solutions to the variance equation (o2, black dashed) and
continuous spectrum equation (P¢, brown solid) at time T (slightly after a
full period) for a spatially-varying initial condition. The state dynamics
satisfy the continuity equation (b = vy) with velocity v(x) = sin(x) + 2.

The variance, o2

(black dashed),
and continuous
spectrum, P¢
(brown solid), are
distinct when the
velocity field varies
in space.
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Figure 2: Diagonals extracted from covariances matrices propagated forward
to time T (slightly after a full period) using the Crank-Nicolson finite
difference scheme for covariances with different initial correlation lengths
(linearly proportional to ¢ in legend).

As correlation
lengths shrink, the
numerically
propagated
diagonals are
approximating
something, though
it is unclear what
is being
approximated.



Part I: Concluding Thoughts, Insights, and Lingering Questions

e Key Insight: The discontinuous change in the continuum dynamics causes
problems when propagating covariance diagonals in discrete space.

e Both spurious loss and gain of variance are observed.

e What is M(MP)T trying to approximate along the covariance diagonal?



Part II:
Error Analysis of M(MP)T



Part Il: M(MP)" and the Covariance Diagonal

Covariance propagation,

Pii1 =M1k (Mii1kPi)"
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Part Il: M(MP)" and the Covariance Diagonal

Covariance propagation,

Pii1 =M1k (Mii1kPi)"

How does approximating the covariance diagonal with off-diagonal elements impact the
dynamics being approximated along the diagonal?
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Part Il: Semi-Discretization for the Covariance Diagonal Propagation

Consider the generalized advection equation in flux form on the unit circle (S}),

gt + (va)x + (b —v)g =0

Apply a first-order upwind spatial discretization for x; = iAx, i =1,2,....; N, Ax = zﬁ

%qi(f) = i[%‘—l(t)qi—l(f) —vi(t)qi(t)] — [bi(t) — (va)i(t)] qi(2).

Define P;j(t) = E{[qi(t) — g;(t)][q;(t) — q;(t)]} and take i = j

%P;V,'(t) = i{vi—l(t)[Pi—l,i(t) + P/’;_l(t)] —2V,‘(t)P,‘7,'(t)}—2[b,‘(t)—(vx),‘(t)] P,",'(t).

Averaging across the diagonal to approximate P;_y /5 ;_1/(t)
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Part Il: Approximated Dynamics Along the Covariance Diagonal

Variance Equation Continuous Spectrum Equation

a? = —(vaz)x — (2b — VX)U2 P = —(vPC)X — (2b — 2VX) =

12



Part Il: Approximated Dynamics Along the Covariance Diagonal

Variance Equation Continuous Spectrum Equation

o7 = —(vo?), — (2b— v)o? Pf = —(vP%), — (2b—2vy) P€

First-Order Upwind:

d Ax?
EP(X,',X,',t) = _(VP)X‘X1:X2=X,' 1-— m — [2b(X,,t) _2VX(Xi7t)] P(X,’,Xht)
Ax? 1 Ax?
— Vx\Xi, iy Xis T 510/ Nl T A A T iyt’D iy Xi, t
vie(Xi, t)P(xi, x;, t) [1 8L2(x,-,t)] AX4L2(X,-,t)V(X VP(xi, xi, t)

+ GU(X,', t) + Hu(X,', t).
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Part Il: Approximated Dynamics for First- and Second-Order Schemes

First-Order Upwind:

D b1, ) = —(vP)s] 1B T b, £) — 2w £)] PO i £)
p Xy Xi, = VIP ) x| x1=x0=x; 8L2(X,‘,t) iy x\Xi's iy Xis
Ax? 1 Ax?
— (X, t)P(Xi, xiy t) |1 — —5——~ | — 75— VX, t) P(xi, xi,
vie(Xi, ) P(xi, X t)[ 8L2(X,-,t)] AX4L2(X,-,t)V(X t)P(xi, xi, t)
+éu(x,, )+H (xi, t).
Second-Order Centered Difference:
9 Pl 1) = — (V)] 1 BT b, ) — 2w 6] P i )
- iy Xi = - X |x1=Xx0=x; ~— 5o/ | — iy L) — £Vx\Xi, Xiy Xi,
dt X,,X,, v 1 2 i 8[_2(X,',t) X

A 2
— vx(xi, t)P(x;, xi, t) [1 X ]

8L2(x;, t)

+ Ge(xi, t) + He(xi, t)
13



Part I1: Significance of Ax2/8L?(x, t)

Solutions

Ax?

8L2(x, t)

forLe+vLy—VL=0, Lo=cV0.3,v=sin(x)+2, T= 2n/V3

nx=200 (Ax =0.0314)

nx=500 (Ax =0.0126)

0.10 t(a) (b)
K008 Correlation lengths L(x, t)
il 0.06 .
2 oos satisfy
E 002
0.00 — — ’Lt-i-VLX— VXLZO.‘
159 (d)
wn . .
%1,0 For the first-order upwind
Fos \ S discretization, the term
= 1 Ax?
00\\ e N T ] —Hmv(xi,t)/:’(x;,x;,t)
0 n an 0 n 2n can become large even when
—t=0 t=T/4 t=T/2 == t=5T/6 - Ax?BL2=0.1 —— Ax?BL?=1

Ax? :
W is small.

Figure 3: Time series snapshots of the ratio Ax?/8L%(x, t) for different
initial correlation lengths and grid lengths (uniform discretization of the

oo 14
unit circle).



Part Il: Higher Order Average Approximations

Linear Combinations of P; j4+1 + Pi+1,is P1(Xi+ 122, t), P2(Xi+ 122, t) VS. 202(x; 4172, t) (exact, solid)
for 08 =1, v=sin(x) + 2, FOAR Correlation Function

Piis1+Pisai Piiv1+Pis1,i— AxPy Pii+1+Pivy,i—AX?Py/4 Pii+1+Pisi— OxPL = DX2Po/4
_175]@ [(6) (©) (d)
o
150 #5.33 KBOZB
v '\ '\ Higher ord
5o 123 ! I Igner oraer
28 100 AT I\ A It &
Sy k2s UEY h3al
T2 s \ 4 L\ A average
S5c iaz I,\ :(55 /.ﬁ39‘ I"\ Usels
3 s0 I 517 I\ N, ] &b I\ N . .
g W "“ A /1 YA\ F 0SSN s’¢ approximations
g 2.5 So , /’ \ \ \\\ / ‘_/’/ \\\§ So / 4_/,/\\\ \\~ / ‘_/’/ \\\é
0.0 {= =T - —— e g dO not alWayS
(e) ) (9) [(h) 2.992 .
g i result in better
5 5 il ati
8 5.2 l' \ approximations
> 9 \
g 0 o213 $53) of the
3° \ /ﬂ |
810 125!\ Iy [ :
£ /N }&3 2 ,43”357\ N // 7 \\ /\(3‘\3 9 covariance
S A
- o-----;;MJﬁ‘t_‘_.‘_—'ﬁ"\a\. ST A78 23~ IS 2 LA diagonal
0 n 2n 0 n 2n o0 n 2n 0 n 2n g )
t=T/4 t=T/2 t=5T/6

Figure 4: Time series snapshots of higher order average approximations (dashed)
compared to the exact solution (solid). 15



Part II: Concluding Thoughts, Lingering Questions, and Further Investigation

e Key Insight: Approximating the diagonal with
Pii1= M1 k(Mii1kPr) "

approximated along the covariance diagonal. N —

off-diagonal elements changes the dynamics

e For advective systems, the approximated
dynamics depend on ratio of the grid resolution
to the correlation length, %.

e What does this suggest about covariance
propagation practiced in current data

assimilation schemes?
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Motivation Spurious Loss of Variance in 2D Transport Model

Figure 1 from Ménard et al. (2000),
illustrating the variances o?(x, t) asso-
ciated with the covariance P(x1, x2,t)

on an isentropic surface of Earth's at-
mosphere governed by

]Pt+v1-V1P+V2-V2P=o.\

(a) variance extracted from the discrete
covariance propagation M(MP)T, (b)
variance obtained by solving the associ-
ated equation for the variance,

a?—l—v-VazzO, 0821.
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Motivation: Spurious Loss of Variance in 3D Transport Model
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FIGURE 5 Total error variance evolution using ERA-Interim winds for different initial correlation length using 20 and 100 members

Figure 5: Figure 5
from Ménard et al.
(2021) depicting
the total error
variance as a
function of time for
different ensemble
experiments in a
3D chemical
transport model
(chemistry turned
off, advection only).
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Part I: The Hyperplane x; = x; is a Characteristic Surface

The characteristic equations for x; and x, both satisfy

% = v(x,t),
x(t) = s,

where x; = x(t; s;) for the initial coordinate s;, i = 1, 2.
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Part I: The Hyperplane x; = x; is a Characteristic Surface

The characteristic equations for x; and x, both satisfy

% = v(x,t),
x(to) ='s,
where x; = x(t; s;) for the initial coordinate s;, i = 1, 2.
If s1 = s5, then for t > ty
x1 = x(t; s1) = x(t; s2) = x2,

solutions that start on the hyperplane x; = x2 remain on this hyperplane for all time.

As a result, there is a discontinuous change in covariance dynamics as initial
correlation lengths tend to zero.
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Part I: The Fundamental Solution Operator

We can write solutions to the state equation as
q(x, t) = (M:qo)(x),
where M, [*(S?) + L*(S?) is the fundamental solution operator
(M) = [ M 5Of(Ede, 1< 1),
whose kernel M = M(x, t; ) satisfies ’
M;+v-VM+ bM =0,
M(x, to; &) = 0(x, &).
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Part I: The Fundamental Solution Operator

We can write solutions to the state equation as

q(x, t) = (M:qo)(x),
where M, [*(S?) + L*(S?) is the fundamental solution operator

(M) = [ M 5Of(Ede, 1< 1),
whose kernel M = M(x, t; ) satisfies ’
M;+v-VM+ bM =0,

M(x, to; &) = 0(x, &).

We can also define the adjoint fundamental solution operator, M : [*(S?) — L*(S?), defined by
(M7f.g)e = (f, Mig)2 Vf g€ Ll’(S)),

which is also an integral operator,
(M:‘f)(g):/ M*(&; x, t)f(x)dx, f e L*(S}).
S?
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Part I: Continuum Covariance Propagation (Operator Formulation)

We can express the covariance P(x1, x2, t) in terms of the kernels M and M*,

PO t) = [ M, 66)P(E: M (€3 2. )6,
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Part I: Continuum Covariance Propagation (Operator Formulation)

We can express the covariance P(x1, x2, t) in terms of the kernels M and M*,
Plaaxe ) = [ [ MO 6€)Pol€r, €)M (€2, 1) 06y,
Sf SV

or simply

[ Pt = Mt'POM?7 ]

where P, : L?(S?) — L?(S?) is the covariance operator,
(Pf)(x1) = / P(x1, x2, t)f(x2)dx2, f € L*(S}),
s

where at t = t; we have

(Pooxs) = [ Poxa)fxa)d, 1 € LX(SD).
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Part Il: Expanding the Averaging Term

%P,’J(t) = i{vi_l(t)[P/,L;(t) + P,‘7,',1(t)]— 2V,'(t)P,'7,'(t)}—Q[b,'(t)—(vx),'(t)] P,'V,'(t).

The natural choice is to expand about the half-grid point x;_1 /2, Xi_1/2.
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Part Il: Expanding the Averaging Term

d i{v,_l(t)[P,-,L,-(t) + P (0] 26(0)Ps () b2 bi(£) ()i (1)] Pis().

—P;i(t) =
dt ii(t) Ax
The natural choice is to expand about the half-grid point x;_1 /2, Xi_1/2.

A 2
P(xi—1,xi,t) + P(xi, xj—1,t) = 2P(X,~_1/2, Xi—1/2; t)+ (2X> P2(X,’_1/2, t)+ O(AX3).

%P o’P  9*P P(x,x,t)
2(X7 ) |:aX12 aX10X2 8X12 x (Xa X, t) |Og [’D(Xv X, t)} XX L2(X, t)

correlation length
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Part 1l: Semi-Discretization in Advection Form (Upwind)

Suppose we consider the state equation in advection form,
gt + vax + bg =0,

and discretize gy using a first-order upwind scheme,

9 a0 =19 [g_(1)  ai(®)] - bi()ai(0)
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Part 1l: Semi-Discretization in Advection Form (Upwind)

Suppose we consider the state equation in advection form,
gt + vax + bg =0,

and discretize gy using a first-order upwind scheme,

9 a0 =19 [g_(1)  ai(®)] - bi()ai(0)

The semi-discretization for the covariance diagonal is then,

%P,'7,-(t) _ Vgi) { [Pi1i(t) + Piia(t)] — 2P,-7,-(t)} — 2b;(t)P; i(t)
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Part 1l: Semi-Discretization in Advection Form (Upwind)

Suppose we consider the state equation in advection form,
gt + vax + bg =0,

and discretize gy using a first-order upwind scheme,
vilt
Do) =219 [g (1) ~ ai(0)] - bi(t)ar(1)
The semi-discretization for the covariance diagonal is then,

d P;i(t) = Vgi) { [Pi1i(t) + Piia(t)] — 2P,-7,-(t)} — 2b;(t)P; i(t)

dt
The approximated dynamics (after expanding the averaging term) are
d Ax?
P, ) = = V(i )P i, 1) [1 M(i)] — 2b(xi, t)P(x;, xi, t)

—iAiXZV(X- t)P(xi, xi, t) + Au(xi, t) + Bu(xi, t)
AX4L2(X’7t) ] Iy 72y u [} 1 25



