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Bayesian inference of emissions

Minimize cost Function:
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1. Analytical solution (linear model, H~> K):
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2. 4D variational method (4D-Var):
* Non-linear model — seeks a solution iteratively

- Adjoint model calculates the sensitivity of cost
function with respect to state vector



1. Analytical Inversion of Methane



Global Methane Burden Is Balanced by the Sources and Sinks !

t Sources ‘ Sinks

Emission

560 + 60 Tg &' Mainly through reactions with OH:

CH4 + OH —_— CH3 + HzO

Other: 40

Waste: 7 Wetlands: 160

Coal: 4 From prescribed full-chemistry simulation

Fires: 20
Oil/Gas: 70

Rice: 40 Livestock: 120

Sources — Sinks = Imbalance mmmm) Growth of CH, concentration



Global Methane Concentration Surge in 2020 & 2021

Global Monthly Mean CH,4
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Record high annual increase of 14.7 ppbv in 2020 and 16.0 ppbv in 2021.
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Analytical Inversion Simultaneously Estimates the Sources and Sinks of CH,
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Prior non-wetland emissions

Ly

e P e N
ij{_\% : = . _
‘ i
. Q ’%
@'i7 \m%\
r]—E [
& i . >
0.0 05 1.0 1.5[Tg grid"a"]

](X) = %(x - xa)TSa_l(x - xa) + %7@ — Kx)Tso_l(y _ Kx)

Prior estimates:

EDGARvV4.3.2 as global default;

EPA greenhouse inventory for CONUS;
oil, gas, and coal from GFEI,

wetland from WetCHARTs

X: 4020 non-wetland emission, 12 x 14 wetland
emissions, 2 hemispheric OH concentrations

K: sensitivity of each observation to 4190 state
vector elements

S, include both satellite and model errors



Changes in CH, Sources and Sinks in 2019-2020

dm

Methane growth rate: — = E—km -1 m = methane mass
E = emission
_ d*m dE dm dk dL  k=OH loss rate constant
Acceleration of growth rate: qZ = dr k 4f "™ 4 T g¢  L=minorlosses (strat, Cl. Dep)
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Forcing away from steady state: F=_—-m_ = 36 Tga
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Global mean OH reduce by 1.2%

African wetlands drive 50% of the
surge; independent evidence from
inundation data

9-member inversion ensemble: + 30 £+ 5.5 Tg a' (82% + 18%) (Qu et al., 2022)



Analytical Inversion: Compare Observations from Different Instruments
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(Qu et al., 2021)



Other Applications of CH, Analytical Inversions

Complementarity of GOSAT and in-situ observations Integrated Methane Inversion cloud-based facility

Anthropogenic methane emission trends in 2010-2017 e 0.25° or 0.5° resolution

Averaging kernel sensitivities Posterior trends [a'1] ° TROPOM' data and GEOS-Chem on AWS
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* Analytical inversion: forward model is linear; can easily quantify information
content and generate an ensemble of inversions

* The largest increases of methane emissions over 2010-2021 are from Africa
and South America.

 Emissions from Africa, South America, and Equatorial Asia drives the methane
surge in 2020 and 2021.



2. Quantifying NO,, SO,, and CO Emissions using 4D-Var
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Previous Applications of 4D-Var

Improve spatial distribution:

NO, emissions (Top=down - HTAF, 2010)
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Address the impact of chemical interactions:
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Decrease of NMSE [%]
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Observation standard deviation:
NO; 0.2, SO; 0.3
prior noise standard deviation: 0.1 .

MBJ MBI  OptS OptN ObsS ObsN

s Jointly =====Individually ====Nitrogen === Sulfur

(Quetal., 2019)



Limitations in Previous Top-down Estimates

Cannot...

1. optimize sectoral profiles

2. separate errors from emission
factor & activity rates

E = species emission factor x activity

\ optimize /

New sector-based inversion

Similar total emissions, different profiles
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Unique Emission Profile for Each Source

No CO




Formulation of a sector-based inversion
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Species-based inversion:
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Sector-based inversion:
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Sector-based Inversion: Independent Adjustments for Each Source 10

Emission adjustments (Top-down — bottom-up, Jan, 2010)
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(Quetal., 2022)

Bottom-up emissions: overestimate underestimate

£ =@emissio@




How Different Sources Respond to Regulations in China?
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(Qu et al., 2022)
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Emissions Continuously Increase in India

Top-down emissions in India (Jan, 2005-2012)
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* 4D-Var: good for non-linear problems, computational expensive, but can be
combined with other methods (e.g., mass balance) to reduce the
computational cost.

* Top-down emissions from a newly developed sector-based inversion
framework lead to the best agreement with independent surface
measurements and provide a new perspective to evaluate bottom-up
estimates by activities.



