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Highlights from CHASC

https://hea-www.harvard.edu/AstroStat/ 

❖ The CHASC AstroStatistics Collaboration has been operating since c.1997

❖ Started as a collaboration between astrophysicists at the Center for 
Astrophysics and statisticians at Harvard to handle challenges of high-
quality data anticipated from the Chandra X-ray Observatory

❖ Has now expanded to involve astrophysicists from CfA, MIT, Crete, 
Cambridge, IUCAA, GSFC, and statisticians from Harvard, Imperial, UC 
Davis, Michigan, Penn State, Simon Fraser, Columbia, Williams College

❖ Responsible for ≈40 PhD theses, ≳10 Masters theses

https://hea-www.harvard.edu/AstroStat/


Astronomical Data are Multi-dimensional

❖ For several years now, we at CHASC have been developing algorithms to analyze 
multi-dimensional data focused on “lists of events” — photons, sunspots, flares, 
collections of fluxes, etc.


❖ I will give a broad overview of some of the highlights; ask David van Dyk, Aneta 
Siemiginowska, David Stenning, Yang Chen, or Max Autenrieth for details 



High-Energy Astro: marked Poisson process
❖ High-energy data are 4-way tables of 

photons, with spatial, spectral, and 
temporal marks associated with each 
photon: {x, y, t, E}


❖ {x, y, t, E} are projected onto a smaller 
set of axes, and 1-D or 2-D histograms 
are used to extract sources or 
variability events or spectral features

❖ {x,y} → counts image Iij 

❖ {t} → light curve lk

❖ {E} → energy or wavelength 
spectrum sp 

❖ combinations are also interesting

❖ {x,y,t} → spatio−temporal 
variations 

❖ {x,y,E} → spatio−spectral variations 

❖ {t,E} → spectral variability 

❖ {x,y,t,E} → everything everywhere 
all at once





0-D and 1-D

Application Analysis Reference

Non detections/upper limits balance of Type I and Type II, 
smooth tests

Kashyap et al. 2010 ApJ, Zhang et al. 
2023 MNRAS

Spectral hardness (BEHR) hierarchical Bayesian modeling Park et al. 2006 ApJ

Modeling low-counts spectra, narrow 
lines in low-res spectra (BLoCXS) MCMC with multimodal posteriors van Dyk et al. 2001 ApJ, Park et al. 2008 

ApJ

Collections (logN-logS, power-law 
distributions, sunspot numbers, flare 
distributions)

data augmentation, Maximum 
Product of Spacings, multi-stage 

Bayesian, Gaussian Processes

Yu et al. 2012 SolPhys, Yan et al. 2021 
RNAAS, and in prep: Autenrieth et al., 
Wang et al., Yan et al., Ingram et al.

David van Dyk, Aneta Siemiginowska, David Stenning, Yang Chen, Max Autenrieth



1 1/2 D and 2-D

Application Analysis Reference

Incorporate calibration uncertainty in 
spectral modeling

Pragmatic and Fully Bayes, shrinkage 
estimation

Lee et al. 2011 ApJ, Xu et al. 2014 ApJ, Chen 
et al. 2018 AoAS, Yu et al. 2018 ApJ, Marshall 
et al. 2021 AJ, Yu et al., 2023 (submitted ApJ)

Image deconvolution with error bars 
(LIRA, jolideco)

Multiscale hierarchical Bayesian, p-value 
upper bounds, Ising, Genetic algorithms

Esch et al. 2004 ApJ, Stein et al. 2015 ApJ, 
McKeough et al. (in prep), Donath et al. (in 
prep)

(Spatial) segmentation and 
boundaries in event lists (SRGonG, 
BFD-SRGonG)

Graphed seeded region growing Fan et al. 2023 ApJ, Wang et al. (in prep)

Spectro-temporal change points 
(Automark)

Minimum descriptor lengths Wong et al. 2016 AoAS

David van Dyk, Aneta Siemiginowska, David Stenning, Yang Chen, Max Autenrieth



3-D and 4-D

Application Analysis Reference

spatio-spectral disambiguation of 
overlapping sources (BASCS)

Bayesian mixtures and Reversible 
Jump MCMC Jones et al. 2015 ApJ

spatio-spectro-temporal 
disambiguation of overlapping 
sources (EBASCS)

Bayesian mixtures Meyer et al. 2021 MNRAS

spatio-spectro-temporal change 
points in multi-filter data cubes (4D 
Automark)

Seeded region growing and minium 
descriptor lengths Xu et al. 2022 AJ

David van Dyk, Aneta Siemiginowska, David Stenning, Yang Chen, Max Autenrieth



Non detections/upper limits balance of Type I and Type II, 
smooth tests

Spectral hardness (BEHR) hierarchical Bayesian modeling

Narrow lines in low-res spectra (BLoCXS) MCMC with multimodal posteriors

Collections (logN-logS, power-law distributions, sunspot 
numbers, flare distributions)

data augmentation, Maximum Product of Spacings, 
multi-stage Bayesian, Gaussian Processes

Incorporate calibration uncertainty in spectral modeling Pragmatic and Fully Bayes, shrinkage estimation

Image deconvolution with error bars (LIRA, jolideco) Multiscale hierarchical Bayesian, p-value upper bounds, Ising, 
Genetic algorithms

(Spatial) segmentation and boundaries in event lists 
(SRGonG, BFD-SRGonG) Graphed seeded region growing

Spectro-temporal change points (Automark) Minimum descriptor lengths

spatio-spectral disambiguation of overlapping sources 
(BASCS) Bayesian mixtures and Reversible Jump MCMC

spatio-spectro-temporal disambiguation of overlapping 
sources (EBASCS) Bayesian mixtures

spatio-spectro-temporal change points in multi-filter data 
cubes (4D Automark) Seeded region growing and minium descriptor lengths





Vinay Kashyap : iid2022 : 2022-Nov-15

"0D": flux upper limits to undetected sources

When no signal is 
detectable, it is useful 
to know what is the 
maximum brightness 
that a source could 
have at which point it 
would be detected.

Compute upper limits 
based on probability of 
false –ves for a given 
acceptable false +ve 
threshold.

Kashyap et al. 2010, ApJ 719, 900



1D: spectral shape in low counts regime
Even when there are too few counts to 
obtain a model fit to an energy spectrum, 
we can still get an estimate of the spectral 
shape via ratios of counts seen in broad 
bands via Hierarchical Bayesian modeling 
of Poisson count intensity, while accounting 
for background, instrument sensitivity, and 
exposure duration.

Park et al. 2006, ApJ 652, 610

Soft/Bright

Hard/Faint

Flare on dMe star Ross 154



FIRST UP
CONSULTANTS

RESULTS: TOTAL ENERGY

5

• Aggregate:
• α = 1.93
• k = 2.01 × 1025

• Region left: 6.5 × 1027 𝑒𝑟𝑔𝑠
• Region right: 2.6 × 1030 𝑒𝑟𝑔𝑠
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computed with MPS

J.Ingram 2020jul07

1D: extent of a power-law distribution

Solar flare energies appear to be 
distributed as a power-law, but the 
distribution turns over at both low and 
high energies.  So a naive estimate of 
the power-law slope will give a biased 
estimate.

Maximum Product of Spacings is semi-
parametric a technique that fits a 
power-law model over a small range 
but ignores the rest.  So we can self-
consistently estimate the upper and 
lower bounds of applicability of the 
power-law.

Wang, Meng, Ingram, Kashyap, Klingenberg (in prep)



1D: incorporating systematic uncertainty
Spectral analysis requires 
knowledge of instrument 
sensitivity, which is 
empirically measured on the 
ground prior to telescope 
launch.  It is not known 
perfectly, and also evolves.

How to incorporate this 
uncertainty into the analysis?

A pragmatic Bayesian way, 
where different choices of the 
sensitivity are sampled from a 
prior, and the fully Bayesian 
way where everything is 
estimated based on the data.

Lee et al. 2011 ApJ 731, 126; Xu et al. 2014 ApJ 794, 97; Yu et al. 2018, ApJ 866, 146; Yu et al. 2023, in prep

p(θ|D,ε(def))

p(θ|D,ε(m)) p(ε,θ|D)


→ p(θ|D,ε) ⋅ p(ε)

p(ε,θ|D)


→ p(θ|D,ε) ⋅ p(ε|D)

Truth

Estimate

(David van Dyk)



2D: segmentation of event lists

Using graphed Seeded Region Growing, we can define boundaries of diffuse regions and find segmentations without 
manual supervision.

Start with an oversampling of seeds, aggregate Voronoi cells into clusters based on similarity of surface brightness, 
and merge segments into an optimum number of ROIs via BIC

Fan et al. 2023, AJ 165, 66; Wang et al. in prep



SRGonG

Chandra X-ray image
of interacting starburst
galaxies Arp 299

Vinay Kashyap : iid2022 : 2022-Nov-16



Fan et al. 2023, AJ 165, 66; Wang et al. (in prep)

Vinay Kashyap : iid2022 : 2022-Nov-16

SRGonG

segmentation of
Arp 299 photons



4D: change points in time across filter images

Example of detecting 
an evolving loop in 

the solar corona, 
where the loop is 
found in each of 6 

filter images, and its 
growth and decay is 
identified over time.  
Uses MDL coupled 
with seeded region 

growing.

Wong et al. 2016, AoAS 10(2), 1107; Xu et al. 2021, AJ 161, 184



4D: disambiguation of overlapping photons
Probabilistically assign photons to one of 
several overlapping point sources by 
leveraging their spatial, spectral, and 
temporal patterns

{x,y,E} — BASCS (Jones et al. 2015)
{x,y,t,E} — EBASCS (Meyer et al. 2021)

Finite Mixture model where each event is 
assumed to arise from one of several 
sources with the mixture weights 
representing proportion of photons from 
that source.

Each event is assigned a probability of 
belonging to each source and sifted, and the 
the sources are probabilistically separated.

Jones et al. 2015, ApJ 808, 137; Meyer et al. 2021, MNRAS 506, 6160



4D: disambiguation of overlapping photons
Jones et al. 2015, ApJ 808, 137; Meyer et al. 2021, MNRAS 506, 6160

6170 A. D. Meyer et al.

Figure 7. Left-hand panel: Light curves for UV Cet A, UV Cet B, and the background obtained from an single Monte Carlo iteration of the space+time
algorithm. There is moderate contamination from the UV Cet B’s flare (at around 53ks) on the background. This contamination is less severe than with the
spatial algorithm; space+time allocated 84 events to the background at the time of the UV Cet B flare, while spatial allocated 106 events to the
background. (Such contamination is also a consequence of the approximate nature of our PSF model.) Right-hand panel: Arrival times of events disputed by the
spatial and space+time algorithms. The orange bars indicate events that are moved from UV Cet B to UV Cet A, and green bars indicate events that are
moved from UV Cet A to UV Cet B by the space+time model. Events allocated to the same source by both algorithms are not included in the plot. Notice
that space+time is successful in identifying the contamination in UV Cet A due to the large flare of UV Cet B and allocating those events to UV Cet B.

Table 6. Disagreement matrix between the allocations made
by the space+time and spatial algorithms. Columns
correspond to the allocations made by spatial and rows
correspond to allocations made by space+time. For exam-
ple, 149 events that were attributed to UV Cet A by spatial
were instead allocated to UV Cet B by space+time.

UV Cet B UV Cet A Background

UV Cet B 8388 149 28
UV Cet A 107 3560 19
Background 23 5 381

six time bins. (Only error bars for λ1,4 and λ2,4 show a substantial
overlap.) The right-hand panel of Fig. 8 illustrates the difference in
the separated light curves; HBC 515 Aa is stable for the first 15ks
and then starts dimming, whereas HBC 515 Ab has a u-shaped light
curve.

To further investigate spectral differences between the sources, we
analyse variations in their hardness ratios, shown in Fig. 10. First,
we sampled 500 allocations of the recorded events to HBC 515 Aa
and HBC 515 Ab from the posterior distribution of s (i.e. the
latent variable encoding the origin of the observed events, see
Section 2.2) under eBASCS. Then, for each allocation, we computed
the spectral hardness of the separated sources in the soft (S:0.3–
0.9 keV), medium (M:0.9–2 keV), and hard (H:2-8 keV) bands,
in each of 30 time intervals of length 1 ks. This yields, for each
separated source at each time interval, the posterior distribution
of spectral hardness in the top (log S

M
) and bottom (log M

H
) panels

of Fig. 10. Fig. 10 shows that both sources exhibit variations in
their spectra over the observation period. eBASCS is able to iden-
tify time-scales over which HBC 515 Aa and HBC 515 Ab exhibit
differences in their hardness ratios (see caption of Fig. 10 for
details).

7 SU M M A RY

We have presented eBASCS, an extension to the BASCS method
developed by Jones et al. (2015) to leverage temporal variability
signatures in high-energy astronomical sources with overlapping
PSFs to perform a better separation of the photon events. The method
integrates the temporal information into the disentangling algorithm
via a flexible model that allows us to extract discriminatory features
from the observed data. The assumption of independence of the
brightness across time bins allows the model to flexibly capture
temporal variability.

Several enhancements to eBASCS are in progress. We plan
to enhance the scalability of the method, while maintaining its
current flexibility, by modelling the temporal information with simple
continuous-time processes; incorporate instrument sensitivity and
model the spectra using physically meaningful models for the source
spectra; explore extensions of our spectral modelling to grating
data (e.g. to separate photons in overlapping lines in the Chandra
LETGS+HRC-S UV Cet observation); apply our methodology to
astronomical systems that exhibit higher contrast in the relative
intensities of their components (e.g. weak jets of X-ray bright
quasars); explore observations from instruments with lower spatial
resolution (such as NuSTAR) to investigate whether eBASCS is able
to separate spatially unresolved sources on the basis of their spectral
and temporal variations; and finally, extend the method to allow the
number of sources in the model to be estimated by carrying out both
model comparisons for different assumed numbers of sources [e.g.
using AIC (Akaike 1974) or BIC (Schwarz 1978)] as well as using
a more sophisticated Reversible Jump MCMC method (Green 1995;
Jones et al. 2015).

Simulation studies show that eBASCS achieves more accurate
separation of photons from overlapping sources than either BASCS
or the baseline spatial method. In particular, the proposed
method further removes the contamination at the sources’ cores and

MNRAS 506, 6160–6180 (2021)
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LXpeak ≈ 2⋅1029 erg s−1 ≈ X1000


LXmin ≈ 1027 erg s−1 ≈200× increase

(Audard et al. 2003)

Without EBASCS
had been incorrectly 

assigned to A

Without EBASCS
had been incorrectly 

assigned to B


