Global convergence of the Hessenberg QR algorithm

Jorge Garza-Vargas

Joint work with Jess Banks and Nikhil Srivastava

BIRS
March of 2023

About this talk

- The eigenvalue problem: "accurately" compute the eigenvalues and eigenvectors of an input matrix $A \in \mathbb{C}^{n \times n}$.
- The $Q R$ algorithm: The go-to method for obtaining the full eigendecomposition when no particular structure of A is known.
- Rigorous guarantees: We show that (with high probability) the QR algorithm can be used solve the eigenvalue problem in $\tilde{O}\left(n^{3}\right)$ arithmetic operations.

Table of Contents

(1) The eigenvalue problem
(2) The shifted QR algorithm
(3) Results
(4) Design of shifting strategy

Backward approximate eigenvalue problem

We will focus on the following version of the eigenvalue problem:
Problem (Backward approximate Schur form): Given a matrix $A \in \mathbb{C}^{n \times n}$ and $\delta>0$ find $T, U \in \mathbb{C}^{n \times n}$ with T upper triangular and U unitary such that

$$
\left\|A-U T U^{*}\right\| \leq \delta\|A\|
$$

In general, the quality of the forward approximation is given by
$\delta \cdot$ Condition number of the problem

Eigenvector condition number

If $A \in \mathbb{C}^{n \times n}$ is diagonalizable, define its eigenvector condition number as

$$
\kappa V(A)=\inf _{V: A=V D V^{-1}}\|V\|\left\|V^{-1}\right\|
$$

- When A is normal $\kappa_{V}(A)=1$. When A is non-diagonalizable (e.g. a Jordan block) $\kappa v(A)=\infty$.

Theorem (Bauer-Fike 60) For any $A, E \in \mathbb{C}^{n \times n}$, with $\|E\| \leq \epsilon$

$$
\operatorname{Spec}(A+E) \subset \bigcup_{\lambda_{i} \in \operatorname{Spec}(A)} D\left(\lambda_{i}, \epsilon \kappa V(A)\right)
$$

Table of Contents

(1) The eigenvalue problem
(2) The shifted QR algorithm
(3) Results
(4) Design of shifting strategy

The QR algorithm

(Francis 61, Kublanovskaya 62) On an input $A \in \mathbb{C}^{n \times n}$:
(0) Put A in Hessenberg form, that is, compute a Hessenberg H_{0} with

$$
H_{0}:=U^{*} A U \quad \text { for } U \text { unitary. }
$$

(Hessenberg matrices) An upper Hessenberg matrix $H \in \mathbb{C}^{n \times n}$ is a matrix with $H(i, j)=0$ for all $i>j+1$. E.g.

$$
\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right)
$$

(Hessenberg form) For any $A \in \mathbb{C}^{n \times n}$ one can compute in $O\left(n^{3}\right)$ operations a Hessenberg matrix H that is unitarily equivalent to A, that is $H=U^{*} A U$.

The QR algorithm

(Francis 61, Kublanovskaya 62) On an input $A \in \mathbb{C}^{n \times n}$:
(0) Put A in Hessenberg form, that is, compute a Hessenberg H_{0} with

$$
H_{0}:=U^{*} A U \quad \text { for } U \text { unitary. }
$$

(1) Generate a sequence H_{0}, H_{1}, \ldots of Hessenberg matrices:

$$
\text { If } \quad p_{t}\left(H_{t}\right)=Q_{t} R_{t} \quad \text { then } \quad H_{t+1}=Q_{t}^{*} H_{t} Q_{t}
$$

where $p_{t}=\operatorname{Sh}\left(H_{t}\right)$. The roots of $p_{t}(z)$ are "guesses" for $\operatorname{Spec}\left(H_{t}\right)$, and the recipe for choosing the p_{t} is the shifting strategy.

- (Unitary equivalence) $A=U_{t}^{*} H_{t} U_{t}$ where $U_{t}=U Q_{0} \cdots Q_{t}$.
- (The hope) The shifting strategy leads to rapid convergence of H_{t} to a triangular T, and therefore:

$$
\lim _{t \rightarrow \infty} U_{t}^{*} H_{t} U_{t}=U_{\infty}^{*} T U_{\infty}=A
$$

Decoupling and deflation

The following quantitative notion of convergence proves useful.

- δ-Decoupling: We say that $H \in \operatorname{Hess}(n)$ is δ-decoupled if $|H(i, i-1)|<\delta\|H\|$ for some $i=1, \ldots, n$.
- Deflation: Once a matrix is decoupled we can deflate it into smaller subproblems:

$$
\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
0 & \text { small } & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right) \longrightarrow\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

Gold standard: Devise a shifting strategy (with moderate $\operatorname{deg}\left(p_{t}\right)=k$) that guarantees δ-decoupling in polylog $(1 / \delta) \Longrightarrow$ O (polylog $\left.(1 / \delta) k n^{3}\right)$ diagonalization algorithm.

Table of Contents

(1) The eigenvalue problem
(2) The shifted QR algorithm
(3) Results
(4) Design of shifting strategy

Caltech

Previous work

- Hermitian case (Wilkinson 68, Dekker-Traub 71). The Wilkinson shift achieves δ-decoupling in $\log (1 / \delta)$ iterations on any Hermitian input.
- Unitary case (Eberlein-Huang 75, Wang-Gragg 2002). A mixture of the Wilkinson shift and an exceptional shift achieve δ-decoupling in $\log (1 / \delta)$ iterations on any unitary input.
- General case: A complex but empirically reliable and practical version of the algorithm has been obtained over the decades by addressing non-convergent cases with heuristic modifications and improvements.

Main result (Controlled $\kappa_{V}(H)$)

Theorem (Banks, GV, Srivastava 2021-2022). For every k, we devise a shifting strategy of degree k, which achieves δ-decoupling in $\log (1 / \delta)$ iterations, provided that the input H satisfies

$$
k \geq C \log \kappa v(H) \log \log \kappa v(H)
$$

- Computing each shift has a cost of at most $O\left(k^{2} n^{2}\right)$ arithmetic operations.
- This allows to solve the eigenvalue problem, with accuracy δ, in $O\left(\log (1 / \delta) k^{2} n^{3}\right)$ operations.

Main result (Arbitrary inputs)

Random matrix theory (Armentano et al. 2015, Banks et al. 2019, Banks et al. 2020, Jain et al. 2020, Erdös et al. 2023) Let G_{n} be a normalized $n \times n$ Ginibre matrix. For any $A \in \mathbb{C}^{n \times n}$ with $\|A\| \leq 1$ and $\gamma>0$, with high probability

$$
\kappa_{V}\left(A+\gamma G_{n}\right) \leq \frac{n^{4}}{\gamma}
$$

Preprocessing: Rather than running ShiftedQR on A, run it on $\tilde{A}=A+\gamma G_{n}$, say for $\gamma=\frac{\delta}{10}$. So with high probability

$$
C \log \kappa_{V}(\tilde{A}) \log \log \kappa_{V}(\tilde{A})=O(\log (n / \delta) \log \log (n / \delta))
$$

Conclusion: We get an algorithm which WHP runs in $O\left(n^{3} \log (n / \delta)^{3} \log \log (n / \delta)^{2}\right)=\tilde{O}\left(n^{3}\right)$ arithmetic operations on any input.

Table of Contents

(1) The eigenvalue problem
(2) The shifted QR algorithm
(3) Results
(4) Design of shifting strategy

The algorithm: Mixed strategy for normal matrices

$H_{t}-H_{t}(n, n) I_{n}=Q_{t} R_{t}, \quad \hat{H}_{t}=Q_{t}^{*} H_{t} Q_{t} \quad$ Rayleigh shift
If $\left|\hat{H}_{t}(n, n-1)\right|<.8\left|H_{t}(n, n-1)\right|$, put $H_{t+1}=\hat{H}_{t}$
Else: Take $\mathcal{N} \subset \mathcal{A}_{H_{t}(n, n-1)}$ with 20 points Exceptional shift
For $\alpha \in \mathcal{N} \quad H_{t}-\alpha I_{n}=Q_{t} R_{t}, \quad \hat{H}_{t}=Q_{t}^{*} H_{t} Q_{t}$
If $\left|\hat{H}_{t}(n, n-1)\right|<.8\left|H_{t}(n, n-1)\right|$, put $H_{t+1}=\hat{H}_{t}$

Claim: WHP δ-decoupling is attained in $O(\log (1 / \delta))$ iterations.

$$
\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
0 & * & * & * \\
0 & 0 & \text { small } & *
\end{array}\right)
$$

The shift design: insight

- We use a potential function to track progress of the algorithm.
- We use a main shift that avoids transient behavior and guarantees that progress is not lost. This is where the assumption $k \geq \log \kappa v(H) \log \log \kappa v(H)$ is necessary.
- We use an exceptional shift to avoid stagnation when little to no progress is made.

Conclusions

- Theory: We prove that a relatively simple shifting strategy can achieve rapid decoupling and we have a clear conceptual explanation of how it works.
- Practice: Our theoretical algorithm is not a prescription for what should be done in practice, and does not seek to replace the current fine-tuned LAPACK routines.
- The dream: Our work suggests that there might be a simple, efficient, and infallible shifting strategy for the QR algorithm.

Thanks!

Caltech

