Global convergence of the Hessenberg QR algorithm

Jorge Garza-Vargas

Joint work with Jess Banks and Nikhil Srivastava

BIRS March of 2023

- *The eigenvalue problem:* "accurately" compute the eigenvalues and eigenvectors of an input matrix *A* ∈ ℂ^{*n*×*n*}.
- *The QR algorithm:* The go-to method for obtaining the full eigendecomposition when no particular structure of *A* is known.
- *Rigorous guarantees:* We show that (with high probability) the QR algorithm can be used solve the eigenvalue problem in $\tilde{O}(n^3)$ arithmetic operations.

1 The eigenvalue problem

2 The shifted QR algorithm

4 Design of shifting strategy

Backward approximate eigenvalue problem

We will focus on the following version of the eigenvalue problem:

Problem (Backward approximate Schur form): Given a matrix $A \in \mathbb{C}^{n \times n}$ and $\delta > 0$ find $T, U \in \mathbb{C}^{n \times n}$ with T upper triangular and U unitary such that

$$\|A - UTU^*\| \le \delta \|A\|.$$

In general, the quality of the forward approximation is given by

 $\delta\cdot {\rm Condition}$ number of the problem

Eigenvector condition number

If $A \in \mathbb{C}^{n \times n}$ is diagonalizable, define its eigenvector condition number as

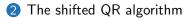
$$\kappa_V(A) = \inf_{V:A=VDV^{-1}} \|V\| \|V^{-1}\|.$$

 When A is normal κ_V(A) = 1. When A is non-diagonalizable (e.g. a Jordan block) κ_V(A) = ∞.

Theorem (Bauer-Fike 60) For any $A, E \in \mathbb{C}^{n \times n}$, with $||E|| \le \epsilon$

$$\operatorname{Spec}(A + E) \subset \bigcup_{\lambda_i \in \operatorname{Spec}(A)} D(\lambda_i, \epsilon \kappa_V(A))$$

The eigenvalue problem



4 Design of shifting strategy

The QR algorithm

(Francis 61, Kublanovskaya 62) On an input $A \in \mathbb{C}^{n \times n}$:

Put A in Hessenberg form, that is, compute a Hessenberg H₀ with

$$H_0 := U^* A U$$
 for U unitary.

(Hessenberg matrices) An upper Hessenberg matrix $H \in \mathbb{C}^{n \times n}$ is a matrix with H(i,j) = 0 for all i > j + 1. E.g.

(*	*	*	*	
	*	*	*	*	
	0	*	*	*	
(0	0	*	*]

(Hessenberg form) For any $A \in \mathbb{C}^{n \times n}$ one can compute in $O(n^3)$ operations a Hessenberg matrix H that is unitarily equivalent to A, that is $H = U^*AU$.

The QR algorithm

(Francis 61, Kublanovskaya 62) On an input $A \in \mathbb{C}^{n \times n}$:

0 Put A in Hessenberg form, that is, compute a Hessenberg H_0 with

$$H_0 := U^* A U$$
 for U unitary.

1 Generate a sequence H_0, H_1, \ldots of Hessenberg matrices:

If $p_t(H_t) = Q_t R_t$ then $H_{t+1} = Q_t^* H_t Q_t$

where $p_t = \text{Sh}(H_t)$. The roots of $p_t(z)$ are "guesses" for $\text{Spec}(H_t)$, and the recipe for choosing the p_t is the *shifting strategy*.

- (Unitary equivalence) $A = U_t^* H_t U_t$ where $U_t = UQ_0 \cdots Q_t$.
- (*The hope*) The shifting strategy leads to rapid convergence of *H_t* to a triangular *T*, and therefore:

$$\lim_{t\to\infty} U_t^* H_t U_t = U_\infty^* T U_\infty = A.$$

Caltech

Decoupling and deflation

The following quantitative notion of convergence proves useful.

- δ -Decoupling: We say that $H \in \text{Hess}(n)$ is δ -decoupled if $|H(i, i-1)| < \delta ||H||$ for some i = 1, ..., n.
- *Deflation:* Once a matrix is decoupled we can deflate it into smaller subproblems:

$$\begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & \text{small} & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix} \longrightarrow \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

Gold standard: Devise a shifting strategy (with moderate $\deg(p_t) = k$) that guarantees δ -decoupling in $\operatorname{polylog}(1/\delta) \Longrightarrow O(\operatorname{polylog}(1/\delta)kn^3)$ diagonalization algorithm.

The eigenvalue problem

2 The shifted QR algorithm

4 Design of shifting strategy

Previous work

- Hermitian case (Wilkinson 68, Dekker-Traub 71). The Wilkinson shift achieves δ-decoupling in log(1/δ) iterations on any Hermitian input.
- Unitary case (Eberlein-Huang 75, Wang-Gragg 2002). A mixture of the Wilkinson shift and an exceptional shift achieve δ-decoupling in log(1/δ) iterations on any unitary input.
- General case: A complex but empirically reliable and practical version of the algorithm has been obtained over the decades by addressing non-convergent cases with heuristic modifications and improvements.

Theorem (Banks, GV, Srivastava 2021-2022). For every k, we devise a shifting strategy of degree k, which achieves δ -decoupling in $\log(1/\delta)$ iterations, provided that the input H satisfies

 $k \geq C \log \kappa_V(H) \log \log \kappa_V(H).$

- Computing each shift has a cost of at most $O(k^2n^2)$ arithmetic operations.
- This allows to solve the eigenvalue problem, with accuracy δ, in O(log(1/δ)k²n³) operations.

Main result (Arbitrary inputs)

Random matrix theory (Armentano et al. 2015, Banks et al. 2019, Banks et al. 2020, Jain et al. 2020, Erdös et al. 2023) Let G_n be a normalized $n \times n$ Ginibre matrix. For any $A \in \mathbb{C}^{n \times n}$ with $||A|| \leq 1$ and $\gamma > 0$, with high probability

$$\kappa_V(A+\gamma G_n)\leq \frac{n^4}{\gamma}.$$

Preprocessing: Rather than running ShiftedQR on A, run it on $\tilde{A} = A + \gamma G_n$, say for $\gamma = \frac{\delta}{10}$. So with high probability

$$C \log \kappa_V(\tilde{A}) \log \log \kappa_V(\tilde{A}) = O(\log(n/\delta) \log \log(n/\delta))$$

Conclusion: We get an algorithm which WHP runs in $O(n^3 \log(n/\delta)^3 \log \log(n/\delta)^2) = \tilde{O}(n^3)$ arithmetic operations on any input.

The eigenvalue problem

2 The shifted QR algorithm

The algorithm: Mixed strategy for normal matrices

$$\begin{aligned} &H_t - H_t(n,n)I_n = Q_t R_t, \quad \hat{H}_t = Q_t^* H_t Q_t \quad \text{Rayleigh shift} \\ &\text{If } |\hat{H}_t(n,n-1)| < .8|H_t(n,n-1)|, \text{ put } H_{t+1} = \hat{H}_t \\ &\text{Else: Take } \mathcal{N} \subset \mathcal{A}_{H_t(n,n-1)} \text{ with } 20 \text{ points} \quad \text{Exceptional shift} \\ &\text{For } \alpha \in \mathcal{N} \quad H_t - \alpha I_n = Q_t R_t, \quad \hat{H}_t = Q_t^* H_t Q_t \\ &\text{If } |\hat{H}_t(n,n-1)| < .8|H_t(n,n-1)|, \text{ put } H_{t+1} = \hat{H}_t \end{aligned}$$

Claim: WHP δ -decoupling is attained in $O(\log(1/\delta))$ iterations.

$$\begin{pmatrix} * & * & * & * \\ * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{pmatrix} \longrightarrow \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & \text{small} & * \end{pmatrix}$$

Caltech

- We use a *potential function* to track progress of the algorithm.
- We use a main shift that avoids transient behavior and guarantees that progress is not lost. This is where the assumption $k \ge \log \kappa_V(H) \log \log \kappa_V(H)$ is necessary.
- We use an *exceptional shift* to avoid *stagnation* when little to no progress is made.

Conclusions

- *Theory:* We prove that a relatively simple shifting strategy can achieve rapid decoupling and we have a clear conceptual explanation of how it works.
- *Practice:* Our theoretical algorithm is not a prescription for what should be done in practice, and does not seek to replace the current fine-tuned LAPACK routines.
- *The dream:* Our work suggests that there might be a simple, efficient, and infallible shifting strategy for the QR algorithm.

Thanks!

