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About this talk

• The eigenvalue problem: “accurately” compute the
eigenvalues and eigenvectors of an input matrix A ∈ Cn×n.

• The QR algorithm: The go-to method for obtaining the full
eigendecomposition when no particular structure of A is
known.

• Rigorous guarantees: We show that (with high probability)
the QR algorithm can be used solve the eigenvalue problem in
Õ(n3) arithmetic operations.
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Backward approximate eigenvalue problem

We will focus on the following version of the eigenvalue problem:

Problem (Backward approximate Schur form): Given a matrix
A ∈ Cn×n and δ > 0 find T ,U ∈ Cn×n with T upper triangular
and U unitary such that

∥A− UTU∗∥ ≤ δ∥A∥.

In general, the quality of the forward approximation is given by

δ · Condition number of the problem



Eigenvector condition number

If A ∈ Cn×n is diagonalizable, define its eigenvector condition
number as

κV (A) = inf
V :A=VDV−1

∥V ∥∥V−1∥.

• When A is normal κV (A) = 1. When A is non-diagonalizable
(e.g. a Jordan block) κV (A) = ∞.

Theorem (Bauer-Fike 60) For any A,E ∈ Cn×n, with ∥E∥ ≤ ϵ

Spec(A+ E ) ⊂
⋃

λi∈Spec(A)

D(λi , ϵκV (A))
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The QR algorithm

(Francis 61, Kublanovskaya 62) On an input A ∈ Cn×n:

(0) Put A in Hessenberg form, that is, compute a Hessenberg H0

with
H0 := U∗AU for U unitary.

(Hessenberg matrices) An upper Hessenberg matrix H ∈ Cn×n

is a matrix with H(i , j) = 0 for all i > j + 1. E.g.
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗


(Hessenberg form) For any A ∈ Cn×n one can compute in
O(n3) operations a Hessenberg matrix H that is unitarily
equivalent to A, that is H = U∗AU.



The QR algorithm

(Francis 61, Kublanovskaya 62) On an input A ∈ Cn×n:

(0) Put A in Hessenberg form, that is, compute a Hessenberg H0

with
H0 := U∗AU for U unitary.

(1) Generate a sequence H0,H1, . . . of Hessenberg matrices:

If pt(Ht) = QtRt then Ht+1 = Q∗
t HtQt

where pt = Sh(Ht). The roots of pt(z) are “guesses” for Spec(Ht),
and the recipe for choosing the pt is the shifting strategy.

• (Unitary equivalence) A = U∗
t HtUt where Ut = UQ0 · · ·Qt .

• (The hope) The shifting strategy leads to rapid convergence
of Ht to a triangular T , and therefore:

lim
t→∞

U∗
t HtUt = U∗

∞TU∞ = A.



Decoupling and deflation

The following quantitative notion of convergence proves useful.

• δ-Decoupling: We say that H ∈ Hess(n) is δ-decoupled if
|H(i , i − 1)| < δ∥H∥ for some i = 1, . . . , n.

• Deflation: Once a matrix is decoupled we can deflate it into
smaller subproblems:

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 small ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 −→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


Gold standard: Devise a shifting strategy (with moderate
deg(pt) = k) that guarantees δ-decoupling in polylog(1/δ) =⇒
O(polylog(1/δ)kn3) diagonalization algorithm.
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Previous work

• Hermitian case (Wilkinson 68, Dekker-Traub 71). The
Wilkinson shift achieves δ-decoupling in log(1/δ) iterations on
any Hermitian input.

• Unitary case (Eberlein-Huang 75, Wang-Gragg 2002). A
mixture of the Wilkinson shift and an exceptional shift achieve
δ-decoupling in log(1/δ) iterations on any unitary input.

• General case: A complex but empirically reliable and practical
version of the algorithm has been obtained over the decades
by addressing non-convergent cases with heuristic
modifications and improvements.



Main result (Controlled κV (H))

Theorem (Banks, GV, Srivastava 2021-2022). For every k, we
devise a shifting strategy of degree k, which achieves δ-decoupling
in log(1/δ) iterations, provided that the input H satisfies

k ≥ C log κV (H) log log κV (H).

• Computing each shift has a cost of at most O(k2n2)
arithmetic operations.

• This allows to solve the eigenvalue problem, with accuracy δ,
in O(log(1/δ)k2n3) operations.



Main result (Arbitrary inputs)

Random matrix theory (Armentano et al. 2015, Banks et al.
2019, Banks et al. 2020, Jain et al. 2020, Erdös et al. 2023)
Let Gn be a normalized n × n Ginibre matrix. For any A ∈ Cn×n

with ∥A∥ ≤ 1 and γ > 0, with high probability

κV (A+ γGn) ≤
n4

γ
.

Preprocessing: Rather than running ShiftedQR on A, run it on
Ã = A+ γGn, say for γ = δ

10 . So with high probability

C log κV (Ã) log log κV (Ã) = O(log(n/δ) log log(n/δ))

Conclusion: We get an algorithm which WHP runs in
O(n3 log(n/δ)3 log log(n/δ)2) = Õ(n3) arithmetic operations on
any input.
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The algorithm: Mixed strategy for normal matrices

Ht − Ht(n, n)In = QtRt , Ĥt = Q∗
t HtQt Rayleigh shift

If |Ĥt(n, n − 1)| < .8|Ht(n, n − 1)|, put Ht+1 = Ĥt

Else: Take N ⊂ AHt(n,n−1) with 20 points Exceptional shift

For α ∈ N Ht − αIn = QtRt , Ĥt = Q∗
t HtQt

If |Ĥt(n, n − 1)| < .8|Ht(n, n − 1)|, put Ht+1 = Ĥt

Claim: WHP δ-decoupling is attained in O(log(1/δ)) iterations.
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗

 −→


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 small ∗





The shift design: insight

• We use a potential function to track progress of the
algorithm.

• We use a main shift that avoids transient behavior and
guarantees that progress is not lost. This is where the
assumption k ≥ log κV (H) log log κV (H) is necessary.

• We use an exceptional shift to avoid stagnation when little to
no progress is made.



Conclusions

• Theory: We prove that a relatively simple shifting strategy
can achieve rapid decoupling and we have a clear conceptual
explanation of how it works.

• Practice: Our theoretical algorithm is not a prescription for
what should be done in practice, and does not seek to replace
the current fine-tuned LAPACK routines.

• The dream: Our work suggests that there might be a simple,
efficient, and infallible shifting strategy for the QR algorithm.



Thanks!


