Global convergence of the Hessenberg
QR algorithm

Jorge Garza-Vargas

Joint work with Jess Banks and Nikhil Srivastava

BIRS
March of 2023

Caltech



® The eigenvalue problem: “accurately” compute the
eigenvalues and eigenvectors of an input matrix A € C"*",

® The QR algorithm: The go-to method for obtaining the full
eigendecomposition when no particular structure of A is
known.

® Rigorous guarantees: We show that (with high probability)
the QR algorithm can be used solve the eigenvalue problem in
O(n®) arithmetic operations.
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Backward approximate eigenvalue problem

We will focus on the following version of the eigenvalue problem:
Problem (Backward approximate Schur form): Given a matrix
AeC™"and § >0 find T,U € C"™" with T upper triangular
and U unitary such that

A= UTU"|| < 5]|All

In general, the quality of the forward approximation is given by

d - Condition number of the problem
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Eigenvector condition number

If A e C"™" is diagonalizable, define its eigenvector condition
number as
kv(A) = inf V[V
VA = et VIV

® When A is normal xy/(A) = 1. When A is non-diagonalizable
(e.g. a Jordan block) ky(A) = oo.

Theorem (Bauer-Fike 60) For any A, E € C"™", with |[E| < e
Spec(A+ E) C U D(\i,exv(A))

Ai€Spec(A)
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The QR algorithm
(Francis 61, Kublanovskaya 62) On an input A € C"*":

© Put A in Hessenberg form, that is, compute a Hessenberg Hy
with
Ho := U"AU for U unitary.

(Hessenberg matrices) An upper Hessenberg matrix H € C"™*"
is a matrix with H(i,j) =0 forall i > j+ 1. E.g.

* X X X
* Kk K X

O O % *
O ¥ *x ¥

(Hessenberg form) For any A € C"*" one can compute in
O(n3) operations a Hessenberg matrix H that is unitarilé
equivalent to A, that is H = U*AU. altech



(Francis 61, Kublanovskaya 62) On an input A € C"*":

© Put A in Hessenberg form, that is, compute a Hessenberg Hy
with
Ho := UAU for U unitary.

@ Generate a sequence Hg, H1, ... of Hessenberg matrices:
If p:(He) = Q:R: then Hip1 = QfH:Q:

where p; = Sh(H;). The roots of p:(z) are “guesses” for Spec(H;),
and the recipe for choosing the p; is the shifting strategy.

® (Unitary equivalence) A = U}H:U; where Uy = UQq - - - Q.

® (The hope) The shifting strategy leads to rapid convergence
of H; to a triangular T, and therefore:

I|m UiH: U = U, TUs = A.



The following quantitative notion of convergence proves useful.

® 0-Decoupling: We say that H € Hess(n) is d-decoupled if
|H(i,i —1)| < é||H| for some i=1,... n.

® Deflation: Once a matrix is decoupled we can deflate it into
smaller subproblems:

* * * * * % * * * %
* ok ok ok % * ok ok % %
0 small *x x % — ] 0 0 % x =x
0 O * k% 0 0 * =* =
0 0 0 x =« 0 0 0 x =

Gold standard: Devise a shifting strategy (with moderate
deg(p:) = k) that guarantees d-decoupling in polylog(1/6) —
O(polylog(1/6)kn?) diagonalization algorithm.
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® Hermitian case (Wilkinson 68, Dekker-Traub 71). The
Wilkinson shift achieves d-decoupling in log(1/0) iterations on
any Hermitian input.

® Unitary case (Eberlein-Huang 75, Wang-Gragg 2002). A
mixture of the Wilkinson shift and an exceptional shift achieve
d-decoupling in log(1/9) iterations on any unitary input.

® General case: A complex but empirically reliable and practical
version of the algorithm has been obtained over the decades
by addressing non-convergent cases with heuristic
modifications and improvements.



Theorem (Banks, GV, Srivastava 2021-2022). For every k, we
devise a shifting strategy of degree k, which achieves §-decoupling
in log(1/0) iterations, provided that the input H satisfies

k > Clog ky(H)loglog kv (H).

* Computing each shift has a cost of at most O(k?n?)
arithmetic operations.

® This allows to solve the eigenvalue problem, with accuracy 9§,
in O(log(1/6)k?n3) operations.



Random matrix theory (Armentano et al. 2015, Banks et al.
2019, Banks et al. 2020, Jain et al. 2020, Erdos et al. 2023)
Let G, be a normalized n x n Ginibre matrix. For any A € C"*"
with ||A]| <1 and v > 0, with high probability

4
kv(A+~G,) < 7

Preprocessing: Rather than running ShiftedQR on A, run it on
A=A+ ~vG,, say for v = 1%. So with high probability
C log kv (A) loglog kv (A) = O(log(n/d) log log(n/d))

Conclusion: We get an algorithm which WHP runs in
O(n®log(n/d)3 loglog(n/8§)?) = O(n%) arithmetic operations on
any input.
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The algorithm: Mixed strategy for normal matrices

Hy — He(n,n)ln = QeRe,  Hy = QFH:Q:  Rayleigh shift

If |A:(n,n—1)| < .8/H¢(n,n—1)|, put Hey1 = He

Else: Take V' C A, (1) With 20 points  Exceptional shift
Forae N Hi—al,=QR:, Hi= QH:Q:
If |He(n,n—1)| < .8|He(n,n—1)|, put Hey1 = H,

Claim: WHP §-decoupling is attained in O(log(1/4)) iterations.

*  x  k % * % * *
* ok k k * % * *
0 * * =x - 0 =« * *
0 0 x = 0 0 small =
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The shift design: insight

® We use a potential function to track progress of the
algorithm.

® We use a main shift that avoids transient behavior and
guarantees that progress is not lost. This is where the
assumption k > log kv (H) loglog kv (H) is necessary.

® We use an exceptional shift to avoid stagnation when little to
no progress is made.
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® Theory: We prove that a relatively simple shifting strategy
can achieve rapid decoupling and we have a clear conceptual

explanation of how it works.

® Practice: Our theoretical algorithm is not a prescription for
what should be done in practice, and does not seek to replace
the current fine-tuned LAPACK routines.

® The dream: Our work suggests that there might be a simple,
efficient, and infallible shifting strategy for the QR algorithm.



Thanks!
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