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When are rationals useful?

When our toolbox is limited to the basic arithmetic operations (+, —, x, +),

the functions we can make are polynomials and rationals.

VA exp(A) sign(A) eig(A) Ar = b

Rationals appear in the fundamental things we do in numerical linear algebra.
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When our toolbox is limited to the basic arithmetic operations (+, —, x, +),

the functions we can make are polynomials and rationals.

VA exp(A) sign(A) eig(A) Ar = b

Rationals appear in the fundamental things we do in numerical linear algebra.

Rational functions have excellent approximation power near singularities.

...and so much more!



Applications in signal processing

Rationals are usetul for...

e recovering signals with slowly decaying spectral content.
(approximations to signals with sharp features, rapid transitions)

e representing functions sparsely in both frequency and time domains.
e filtering noise.

¢ imputing missing data.

e extrapolation.

¢ identifying/locating singularities.



Applications in signal processing

Example: Identifying singularities

Cubic Spline: Can you spot the knots?
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Applications in signal processing:

When are rationals useful?

Signal reconstruction: geophysics and seismology, biomedical monitoring,
extrapolation/interpolation, filtering

[Belykin and Monzon (2009), Moitra (2018), Fridli, Losci and Schipp (2012), Vetterli, Marziliano, and Blu
(2002), many more]

Feature extraction: abnormality detection, classification, parameter recovery
[Gilian (2016), Moitra (2018) , Peter and Plonka (2013), Potts and Tasche (2013), many more]

Model order reduction: transfer functions, nonlinear models, multi-in/out, data-driven
interpolation, H2 optimization

[Antolous, Beattie, Giigercin (2020), Antolous and Sorensen (2001),
Williams (2021), so many more! ]

Related methods: wavelets, RBFs, splines

[De Boor, Debnath, Wendland,Unser and Blu, and many more] W_/\“\w

Reconstructed ECG signal in REfit
(W., Damle, Townsend, 2022)
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Data-driven rational approximation

for signal reconstruction

GOAL: Develop software tools for working adaptively with
trigonometric rational approximations to periodic functions.

* “Near-optimal” rational approximations

* Data-driven: no tuning parameters

* Works with noisy, under-resolved, missing data.

* Basic tools: algebraic operations (sums, products), differentiation,
integration, filtering, rootfinding, polefinding, visualization, etc.

Prony’'s method

(Fourier domain) ——— (time domain)

The AAA algorithm
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Trigonometric rational functions

f is periodic, real-valued, continuous on [0, 1), fol f(0)do = 0.

We seek r,, = f, where

—1 T T
D il e [0,1)
q'm,(37) o Z;n:_m bje27r?lj:z: y L , 1).

rm has 2m simple poles, {7;,7,}7;, 0< Re(n;) < 1.




Trigonometric rational functions

in Fourier space

Key observation: The Fourier series of r,, can be efficiently represented

by a short sum of complex, decreasing exponentials.

If r,,(z) = Z (Frr ) 6 €2™*% | then for k > 0,
k=—o00 m
(Fm)k = Rm (k) ==Y w;e¥,
j=1
where \; = 2min;, Re(n;) > 0.

[ Adamjan, Arov, and Krein (1971), Beylkin and Monzdn (2005, 2009), Pototskaia and Plonka (2016),
Potts and Tasche (2010) ]



Trigonometric rational functions

in Fourier space

Key observation: The Fourier series of r,, can be efficiently represented

by a short sum of complex, decreasing exponentials.

oo
If r,,(z) = Z (Frr ) 6 €2™*% | then for k > 0,
k=—o0
™m
(Fm)k = Rm (k) ==Y w;e¥,
j=1 .
where Ag — 27TZ779, Re('fb) > 0. (Gaspard de Prony)

The parameters of R,, can be exactly recovered by observing
(Fm)os -+, (Fm)om (Prony’s method)

rm = [ can be constructed by solving the approximate interpolation
problem |fi — Ry, (k)| < €| f|], for 0 < k < Ne. (Regularized Prony’s method)

[ Adamjan, Arov, and Krein (1971), Beylkin and Monzdn (2005, 2009), Pototskaia and Plonka (2016),
Potts and Tasche (2010) ]



Exponential sum format

Advantage for reconstruction: Filter for Gaussian noise

Example: Extracting pulses in the Pacific Blue whale’s song.

6001 noisy samples from a hydrophone type (245, 246) trigonometric rational
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e Automatic construction in the presence of noise.

e Automatic denoising parameter detection.

[Peter & Plonka (2013), Potts & Tasche (2013), M. Vetterli, P. Marziliano, & T. Blu (2002)]



Exponential sum format

Advantage for postprocessing: Efficient recompression

“This formulation allows us to develop a numerical calculus that
includes functions with singularities and sharp transitions...”

-Haut, Beylkin, Monzon (2012)
Un + Sg — Gn+¢

n ~ m
N Ak Y _
F vn) + F M (s0) = ije T ) et Z%‘e’\”k

In theory, optimal “reduction” algorithms based on finite-rank Hankel operator properties

In practice, we use a stable method that typically requires O((n + £)?) operations.

[ Adamjan, Arov, and Krein (1971), Beylkin and Monzon (2005), Haut, Beylkin and Monzon (2012)
Pototskaia and Plonka (2016) ]



Exponential sum format

Advantage for postprocessing: Efficient recompression

“This formulation allows us to develop a numerical calculus that
includes functions with singularities and sharp transitions...”

-Haut, Beylkin, Monzon (2012)
Un + Sg — Gn+¢

n “ £ m

A oAk ~ X, .

Flon) + Fl(se) = D @€ 4 Dodeibar Dowedt
j=1 =1 j=1

In theory, optimal “reduction” algorithms based on finite-rank Hankel operator properties

In practice, we use a stable method that typically requires O((n + £)?) operations.

More advantages:

® Works for products, sums, convolutions.

e Fast evaluation (on the grid) for derivatives and indefinite integrals.

[ Adamjan, Arov, and Krein (1971), Beylkin and Monzon (2005), Haut, Beylkin and Monzon (2012)
Pototskaia and Plonka (2016) ]



Trigonometric barycentric rational
functions

T vk eot (w(z — 1))
>0 5 cot (m (@ — t5))

Key properties

e 1, is a type (m — 1, m) trigonometric rational.
e interpolates f at t;: r7(¢;) = f;.

e numerically stable evaluation for z € [0,1).

[ Berrut (2005) , Berrut and Trefethen (2004), Henrici (1979), Higham (2004), Austin and Xu (2017),
Nakatsukasa, Trefethen, & Sete (2018), Antoulas & Anderson (1986), Berrut (2005), Baddoo (2021) ]
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Trigonometric barycentric rational
functions

>0 vifi cot (m(a — t5)
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(P. Henrici) (J.P. Berrut)

Choose {t1,...,tom}

Find weights by minimizing ¢5 error for

Tfr’z7 (Ts)dm(Ts) — Nm—1(s)

—> tall-skinny struct. matrices, find approx. null space

(Y. Nakatsukasa) (L.N. Trefethen) (O. Séete)

Construct via the PronyAAA algorithm

Key Idea: greedily build up an interpolant, one point at a time, choose weights via
linearized least squares fit to data.

[ Berrut (2005) , Berrut and Trefethen (2004), Henrici (1979), Higham (2004), Austin and Xu (2017),
Nakatsukasa, Trefethen, & Sete (2018), Antoulas & Anderson (1986), Berrut (2005), Badoo(2021) ]



PronyAAA algorithm

Advantage for reconstruction: Imputes missing data
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AAA does not require equally-spaced or other grid-based sampling schemes.

[ Trefethen (2023)]




REfit: barycentric + exponential

. e —— S 2 o~ i cot (m(z — )
Rm(k) = ije)‘ﬂk Tf,ﬁ(x) _ =1 13J7] J
j=1 F YR, > 5T cot (m(z — t5))
—
Exponential sums Barycentric form
Robustness to noise Imputing missing data
Filtering and recompression  Differentiation (closed-form formula)
Pole symmetry preservation Stable evaluation
convolution, cross-correlations Rootfinding, identifying extrema
R = efun(f) r = rfun(f)
R = ft(r)
r = ift(R)

roots(r), R+S, conv(r,s), diff(r)



REfit: barycentric + exponential

m | --..._- ... ., . 22: vi ficot (m(x —t;))
Rm(k)zz%-e)‘ﬂk by (o — Leg=1 1373 J
(@) >0 s cot (m(z — t5))

A lossless bridge: infinite precision case

F(r.m): Exact recovery is possible, but the problem is ill-posed whenever
., is near-optimal (exact recovery is not numerically possible!)

F~1(R,,): Exact recovery is possible for any set of 2m unique interpolat-
ing points. Ill-conditioning sets in unless interpolating points are chosen
very caretully.



REfit: barycentric + exponential

e - G — S 2 o~ i cot (m(z — )
R, (k) = ije)‘ﬂk by (o — Leg=1 1373 J
i=1 F—1 (Rm) ! (2) Z?Zl 7v; cot (m(z —t;))
—

A lossy, but stable bridge:

F(rm): Rectangular version of stabilized Prony’s method with small Han-
kel matrix ( O(k?) entries)

F~1(R,,): Stably construct interpolant when poles are known a priori:
CPQR-selected barycentric interpolant + regularization.



REfit: barycentric + exponential

Problem: Fourier coefficients decay slowly, sample is underresolved...
How can I construct an exponential sum representation of r,, ~ f?

(Fourier space) (Time)

r
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REfit: barycentric + exponential

Problem: Fourier coefficients decay slowly, sample is underresolved...
How can I construct an exponential sum representation of r,, ~ f?

(Fourier space) (Time)
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REfIt: barycentric + exponential

Problem: Noisy data, limited spatial resolution...

How can I construct a barycentric representation of r,,, ~ f7

(time domain)

ot
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REfIt: barycentric + exponential

Problem: Noisy data, limited spatial resolution...
How can I construct a barycentric representation of r,,, ~ f7

(Fourier space) (time domain)
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REfIt: barycentric + exponential

Problem: Noisy data, limited spatial resolution...
How can I construct a barycentric representation of r,,, ~ f7

(Fourier space) (time domain)
10° - :
E —extrapolated Fourier data 1.2
——original Fourier data 1 “ ﬂ
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Conclusion

Data-driven rational construction algorithms

Accessible tools for nonlinear approximation!

Many open directions:

» Positivity-preserving methods

* Time-frequency analysis tools

* Multiscale methods

* Mixed models (polynomial + rational)

 Structured low rank Hankel/Toeplitz/Cauchy/Loewner
approximation

* Nested low-order rational approximation



Thank you!

REfit for data-driven rational computing:
(open-source package for MATLAB)

My website:
heatherw3521.github.io

Other AMAZING rational approximation tools:
AAA in Chebfun:
www.chebfun.org (Nakatsukasa, Trefethen, Sete)

RKfit for rational Krylov subspace approximation:
guettel.com/rktoolbox/index.html (Berljafa, Guttel)



https://www.chebfun.org
http://guettel.com/rktoolbox/index.html
http://heatherw3521.github.io

Begin Extra Slides



Trigonometric barycentric rational
functions

X cot (n(a — 1)
ST s cot (n(z — ;)

Recent developments:

Stable poles only methods (Brubeck andTrefethen, Williams,
Valera-Riveria and Egin)

Barycentric to rational Krylov basis (Guettel and collab.)

Adaptive (trigonometric) rational approximation and conformal mapping, quadrature,
nonlinear eigenvalue problems, minimax optimizations, filter design



PronyAAA algorithm

Advantage for postprocessing: rootfinding

If rt7(¢;) = 0 and p = €27, then Ey = pBy, where

B e27r73:1:1 271X ] 1

twie w1
E — * . | :2 . : B — :
627m:1:2m 1 W € TLL2m, 1 1Wom
I fl c o f2m 0 ] I O --- 0 0 ]

There are 2m — 2 finite, nonzero eigenvalues.



PronyAAA algorithm

Advantage for postprocessing: rootfinding

If rt7(¢;) = 0 and p = €2™%s, then Ey = uBy, where

B e27rz:231 iwleQ'mwl ] B 1 iwl ]
E = B - 2 . ,B — .
e<Ttr2m | 909, T 2m 1| wwom,
f fom 0 ) 0 - 0 0

There are 2m — 2 finite, nonzero eigenvalues.

More advantages




When are rationals useful?

Matrix function evaluation: (Gawlik, 2020), (Nakatsukasa and Gawlik, 2021),
(Braess and Hackbusch, 2005, 2009) (Ward, 1977) (Gosea and Guttel, 2020)

and many more...

Eigendecompositions/Polar decomposition: ( Nakatsukasa and Freund, 2015),
(Saad, El-Guide, and Miedlar), (Tang and Polizzi, 2014), (Guttel, 2010), (Ruhe, 1994

and many more...

Solving linear systems/matrix equations: (Ruhe, 1994),(Druskin and
Simoncini, 2011), (Sabino, 2008), (Kressner, Massei, and Robol, 2019),
(Benner, Truhar, and Li, 2009), (W. And Townsend, 2018)many more...

Solving PDEs: (Haut, Beylkin and Monzon 2015), (Trefethen and Tee, 2006 ), (Gopal
and Trefethen, 2019) , (Haut, Babb, Martinsson, and Wingate, 2016), many more...

Quadrature, conformal mapping, analytic continuation, diqgital filter design,
reduced order modeling... (See Approximation Theory and Practice, Ch. 23)




When are rationals useful?
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PronyAAA algorithm

Key Idea: greedily build up an interpolant, one point at a time.

Start with sampling locations T' = {x1,...,znN }.

Suppose the nodes are t = {t1,...,tom} C T ” £ .

(Y. NakatsukasallL.N. Trefethen) o
Sete)

Determining the barycentric weights:

Choosing the next interpolating point:

'Nakatsukasa, Trefethen, & Sete (2018), Antoulas & Anderson (1986), Berrut (2005), Badoo(2021) ]
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PronyAAA algorithm

Key Idea: greedily build up an interpolant, one point at a time.

Start with sampling locations T' = {x1,...,znN }.

Suppose the nodes are t = {t1,...,tom} C T ” ' .

(Y. NakatsukasallL.N. Trefethen) o
Sete)

Determining the barycentric weights:

£y Nm—1() gnelg (f(z5)dm(z;) — nm—l(%))z :
T'm ('T) d. SC) ' x; €T\t
P (€)dm (%) = N1 (2) st. D f(t)n =0, Ila=1.

Choosing the next interpolating point:

tom+1 = argmaXxET\thf;z’y(xj) —f (95'3' )|

'Nakatsukasa, Trefethen, & Sete (2018), Antoulas & Anderson (1986), Berrut (2005), Badoo(2021) ]



Exponential sums to barycentric interpolants

Rm(k) — iwje)\jk ,rt,'y(x) _ Z?ZLl ’ijj cot (7T(CL‘ o t]))

P rm(z) = F " (Bm)(2) " 2, v cot (w(z — t;))




Exponential sums to barycentric interpolants

Rm(k) — iwje)\jk ,r,t,'y(x) _ Z?ZI ijfj cot (7T(£L’ o t]))

=1 Tm(m) — f_l(Rm)(x) " Z?Zl v; cot (m(x — ;))




Exponential sums to barycentric interpolants

i 2m
Runk) = oy eh b 2 s fy ot (n(z — 1))
o8 () > oo v cot (m(z — t5))

Exact recovery is an ill-conditioned problem: The choice of ¢ matters greatly.



Exponential sums to barycentric interpolants

i m Wik () — Z?:l "ijj cot (W(:B—tj))
) ; ’ "'m(2) :f_l(Rm)(gj) (@) Z?Z v; cot (m(z — t;))

Exact recovery is an ill-conditioned problem: The choice of ¢ matters greatly.

ldea 1: Apply 2m steps of PronyAAA. (chooses points via greedy residual minimization)

Can be numerically unstable. Loss of accuracy/poles occurring on the interval!




Exponential sums to barycentric interpolants

N ek e S [y cot (n(@ — t5))
) J; ’ rm(T) = f_l(Rm)(ﬁC) () = Z?Zl v; cot (m(x — t;))

Exact recovery is an ill-conditioned problem: The choice of ¢ matters greatly.

Apply 2m steps of PronyAAA. (chooses points via greedy residual minimization)

Can be numerically unstable. Loss of accuracy/poles occurring on the interval!

ldea 2: Be greedy about numerical stability instead!

(A new pivoting strategy for AAA based on column-pivoted QR + stabilization)




PronyAAA algorithm
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PronyAAA algorithm

S g ot (n(a — )
" >27, ot ((x — t;))

Where are the poles?
Nothing explicitly enforces that poles are located off [0, 1).




PronyAAA algorithm

I cot (n(e — 1))
TRy cot (n(z — 1)

Where are the poles?
Nothing explicitly enforces that poles are located off [0, 1).

Benign spurious poles: Can be eliminated easily with AAA cleanup routine.

& @(C
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PronyAAA algorithm

_ > i £ cot (m(z — t5))
" > ;i cot (m(z — t5))

Where are the poles?
Nothing explicitly enforces that poles are located off [0, 1).

Benign spurious poles: Can be eliminated easily with AAA cleanup routine.

& @(C
o 24Y0

}"”ffﬁ 1"
Yb X| XL K 3 X 4
Pernicious spurious poles: cannot be eliminated without strongly impacting accuracy.

Pernicious spurious poles appear when...
1. Data is not modeled well by type (m — 1, m) trigonometric rationals.

2. We demand too much accuracy (e.g., machine precision).



Prony’s method

Given (cg,c1,...,Cop41), TECOVET

M
sp(f) = ije—’\a'f, where ¢, = s(¢) for £ > 0.
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"\;‘ rare!
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(Gaspard de Prony)

[Belykin & Monzon (2005, 2009) , Peter & Plonka (2013), Potts & Tasche (2013)]
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Prony’s method

Given (cg,c1,...,Cop41), TECOVET

M
sp(f) = ije—"a'f, where ¢, = s(¢) for £ > 0.
j=1

How can we find each A;?

M
M Y
Set p(2) =[[;_,(2 =), v =e Aj p(2) = Zpk,zk’ (Prony’s polynomial)
k=0
If we can determine p = (po,...,Pr), then this becomes a rootfinding problem.

[Belykin & Monzon (2005, 2009) , Peter & Plonka (2013), Potts & Tasche (2013)]
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Prony’s method

Given (cg,c1,...,Cop41), TECOVET

M
sp(f) = ije—"jf, where ¢, = s(¢) for £ > 0.
j=1

How can we find each A;?

(Gaspard de Prony)

M
M Y
Set p(2) =[[;_,(2 =), v =e Aj p(2) = Zpk,zk’ (Prony’s polynomial)
k=0
If we can determine p = (po,...,Pr), then this becomes a rootfinding problem.

d Y 2 ., = ¢ > k
For ¢ > 0, E prs(k +£) = E w; § pk%(- ) - E :wj’YjE :Pk%' =0
k=0 j=1 k=0 j=1 k=0

[ co T ... Cum \
Cq Co e CpM41

If H=| . _ . then Hp = 0.
\CM CM+1 .- CZM/

[Belykin & Monzon (2005, 2009) , Peter & Plonka (2013), Potts & Tasche (2013)]



barycentric to exponential sum

O | e T cOb (2 — 1))
j=1 > v cot (m (@ — t5))

Key ldea: Approximate A;, and use the “Prony principle”.

[Miller (1970), Moitra (2016), Transtrum, Matcha and Sethna (2010)]



barycentric to exponential sum

| e———— >0 i fi cot (m(x — t5))
Rm(k})z wje)\Jk fqﬁ _ g=1 1347 J
;1 " 527 5 ot (m(@ — t5)

Key ldea: Approximate A;, and use the “Prony principle”.

¢ Find the poles of r%Y — approximate each ;.

e Evaluate r%7 at 2N + 1 points — N Fourier coefficients.

e Solve Vw = s, where s is an O(m) sample of coeffs.

[Miller (1970), Moitra (2016), Transtrum, Matcha and Sethna (2010)]



exponential sum to barycentric:

CPQR-selected interpolation points

Observation: d,,(n;) = 0 when n; = 2mi,;.

S v fi cot (m(x — ;)

>0 g cot (m(z — )




exponential sum to barycentric:

CPQR-selected interpolation points

Y | > s i cot (m(x — t5))
j=1 23:1 v; cot (m(z —t5))

Observation: d,,(n;) = 0 when n; = 2mi,;.
Let T = {xg, x1, ..., rn} be sample locations. Let {n1,n2,..., Nom } be the poles of 7,,.



exponential sum to barycentric:

CPQR-selected interpolation points

S v fi cot (m(x — ;)
> v cot (m(x — ;)

Ba®) =N | (@) = F T (Ra)a) [ =

Observation: d,,(n;) = 0 when n; = 2mi,;.
Let T = {xg, x1, ..., rn} be sample locations. Let {n1,n2,...,72m} be the poles of r,,.

410 {1 N
: Ej,k; — COt(ﬂ"I]j — 7T$k)
Com.0 Com N
rm(Z0) Tm(TN)



exponential sum to barycentric:

CPQR-selected interpolation points

R (k) = ) wjet" rm(T) =
=1

S v fi cot (m(x — ;)
> v cot (m(x — ;)

Observation: d,,(n;) = 0 when n; = 2mi,;.

rn} be sample locations. Let {n1,n2,...,72m} be the poles of r,,.

Let T' = {35'0, Llyenos
61,0 EI,N
£2m.0 bom, N
T'm(Z0) Tm(ZTN)
ol 1l X2} --- N

)

Ej,k; — COt(ﬂ'?]j — 7T$k)



exponential sum to barycentric:

CPQR-selected interpolation points

S v fi cot (m(x — ;)
> v cot (m(x — ;)

Ba®) =3 0™ | (@) = F T (Ru)(@) | =

Observation: d,,(n;) = 0 when n; = 2mi,;.
Let T = {xg, x1, ..., rn} be sample locations. Let {n1,n2,...,72m} be the poles of r,,.
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exponential sum to barycentric:

CPQR-selected interpolation points

S v fi cot (m(x — ;)
> v cot (m(x — ;)

Ba®) =3 0™ | (@) = F T (Ru)(@) | =

Observation: d,,(n;) = 0 when n; = 2mi,;.
Let T = {xg, x1, ..., rn} be sample locations. Let {n1,n2,...,72m} be the poles of r,,.

El 0 €1,N
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Ezm 0 €2m N
Tm (T0) Tm (TN)
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exponential sum to barycentric:

CPQR-selected interpolation points

m - B . 321 jJj cot (m(z —¢;
Rm(k) = j;wje J ’)“m(a”:) - F 1(Rm)($) Tn’q,’y(x) — Z;:Z_mjfyj cot (7(T(i — tj))))

Let T = {xg, x1, ..., rn} be sample locations. Let {n1,n2,...,72m} be the poles of r,,.

El 0 €1,N
: Ej,k; — COt(ﬂ'?]j — 7T$k)
Ezm 0 €2m N
Tm (T0) Tm (TN)

Tof 1| T2 ... TN

| Y2m 0]




exponential sum to barycentric:

CPQR-selected interpolation points

=F! 2m . focot (m(x — ¢
Ro(k) = 3 wyeh rm(z) = F (Rm)(2) Tm(x)zzjzlefj t (m(z — t;))

j=1 Z?Zl v; cot (m(z — 1))
—

\
K 0
_'72.m_ _6_

Greedily select columns to form the most well-conditioned submatrix.

ToR L1 T2




exponential sum to barycentric:

CPQR-selected interpolation points

Y2 ot (n(z — 1)

. bl a‘: 2m
j=1 Zj:l v; cot (m(z — 1))
—

\
K 0
_'72.m_ _6_

Greedily select columns to form the most well-conditioned submatrix.

ToR L1 T2

Column—pivoted QR (CPQR) [Golub & Busigner (1965), Chandrasekaran & Ipsen (1994), Gu & Eisenstat (1996)]




exponential sum to barycentric:

CPQR-selected interpolation points

Y2 ot (n(z — 1)

. bl a‘; 2m
j=1 Zj:l v; cot (m(z — 1))
—

\
K 0
_'72.m_ _6_

Greedily select columns to form the most well-conditioned submatrix.

ToR L1 T2

Column—pivoted QR (CPQR) [Golub & Busigner (1965), Chandrasekaran & Ipsen (1994), Gu & Eisenstat (1996)]

1. CPQR to choose candidates for barycentric nodes.

2. Regularization procedure: Constrained optimization to subselect from
candidate nodes + find weights v = {v1,...,Y2m}.



AAA-selected and

CPQR-selected interpolation points

Example: f(x) = |sin(w(x — 1/2))| — 7/2

rp, = apply PronyAAA to data directly.
ro = apply Prony’s method to Fourier coefficients to get R,, then compute

F~1R,) = r, using CPQR-selected barycentric nodes.

Ty
>-—o--——9 ©-0 O-OOMEMO 00 - O -O Q-
To
fr————— &------ 0---0--0-00-DO-0-0-0----0----—-0-------0---
0 0.2 0.4 0.6 0.8 1




AAA-selected and CPQR-selected poles

flz) = |sin(m(z —1/2))| — 7/2

rp, = apply PronyAAA to data directly.
ro = apply Prony’s method to Fourier coefficients to get R,, then compute

F~1R,) = r, using CPQR-selected barycentric nodes.

| ' Im : :

0 Very different pole configurations,
02| : : similar clustering properties.
0.1

s S Re
-0.1
-0.2| . | 107 10 102 10™" 10°

distances from pole to singularity

-0.3 ]

0.47 0.48 0.49 0;5 0.51 0.52 0.53 0.54

[Nakatsukasa , Weideman & Trefethen (2021)]
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