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Real vs complex phase retrieval

Let X be a Banach lattice and E ⊆ X be a subspace.

We say that E does phase retrieval in X if for all f , g ∈ E ,

|f | = |g | ⇐⇒ f = λg for some scalar |λ| = 1.

If X is a real Banach lattice then E ⊆ X does phase retrieval in X if and only if E

does not contain a pair of non-zero disjoint vectors.
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Real vs complex phase retrieval

Suppose X is a complex Banach function space.

Q1. How can we characterize when a subspace E ⊆ X does phase retrieval?

Q2. What are necessary or sufficient conditions for E ⊆ X to do phase retrieval?

Known necessary conditions for E ⊆ X to do phase retrieval:

1. E cannot contain a disjoint pair of non-zero vectors f , g ∈ E .

2. E cannot contain an independent pair of entirely real vectors f , g ∈ E .

Theorem (Alharbi-Alshabhi-F-Ghoreishi ’22, F-Oikhberg-Pineau-Taylor ’22)

Let X be a Banach lattice, E ⊆ X be a subspace, and 〈·, ·〉 be an inner product on E .

Then E fails to do phase retrieval in X if and only if there are orthogonal non-zero

vectors f , g ∈ X with |f | = |g |.
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Phase retrieval, continuity, and convergence structures

Let X be a Banach lattice and E ⊆ X be a subspace.

E ⊆ X does phase retrieval means that for all f , g ∈ E ,

|f | = |g | if and only if f = λg for some scalar |λ| = 1.

Define an equivalence relation ∼ on E by f ∼ λf for every scalar |λ| = 1.

E ⊆ X does phase retrieval if and only if the map f 7→ |f | is one-to-one on E/∼.

We say that E ⊆ X does C -stable phase retrieval if the recovery map |f | 7→ f is

C -Lipschitz. That is,

min
|λ|=1

‖f − λg‖X ≤ C
∥∥|f | − |g |∥∥

X
for all f , g ∈ E .
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Phase retrieval, continuity, and convergence structures

If X is a real Banach lattice then E ⊆ X does phase retrieval if and only if E does not

contain a pair of non-zero disjoint vectors.

Theorem (F-Oikhberg-Pineau-Taylor ’22)

Let X be a real Banach lattice and let E ⊆ X be a subspace. Then E does stable

phase retrieval in X if and only if there exists K > 0 such that∥∥∥|f | ∧ |g |∥∥∥
X
≥ K min

(
‖f ‖X , ‖g‖X

)
for all f , g ∈ E .

That is, E does stable phase retrieval in X if and only if X does not contain a

sequence of almost disjoint pairs.

For every 1 ≤ p <∞, it is possible to build infinite dimensional subspaces

E ⊆ Lp [0, 1] which do stable phase retrieval. (Calderbank-Daubechies-F-Freeman ’22,

Christ-Pineau-Taylor ’22, F-Oikhberg-Pineau-Taylor ’22)
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Phase retrieval, continuity, and convergence structures

Let X be a vector lattice and suppose that E ⊆ X does phase retrieval. That is, the

recovery map |f | 7→ f is well defined from |E | ⊆ X to E/ ∼.

We say that phase retrieval for E ⊆ X preserves a convergence structure η if

whenever (xα)α∈I is a net in E and x ∈ E is such that |xα| →η |x | then there exist

scalars (λα)α∈I with |λ| = 1 so that λαxα →η x

Q3. Given a convergence structure η, what properties of E ⊆ X imply that phase

retrieval preserves η convergence?

Q4. Given a convergence structure η, what properties of E ⊆ X are necessary for

phase retrieval to preserve η convergence?

Q5. Which subspaces of E ⊆ c do phase retrieval which preserve order convergence?

Q6. Given two convergence structures η1 and η2, what are examples of E ⊆ X where

phase retrieval preserves one convergence structure but not the other.
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Phase retrieval, continuity, and convergence structures

Every infinite dimensional Banach lattice X has an infinite dimensional subspace

E ⊆ X which does phase retrieval. (F-Oikhberg-Pineau-Taylor ’22)

Q7. Given a convergence structure η, what properties of X guarantee the existence of

an infinite dimensional subspace E ⊆ X where phase retrieval preserves η convergence?

Q8. Let X be a Banach lattice and let E ⊆ X be an infinite dimensional subspace.

Does there exist a further infinite dimensional subspace F ⊆ E so that F does phase

retrieval in X .

Q9. Let X be a Banach lattice and let E ⊆ X be an infinite dimensional subspace.

Given a convergence structure η, what properties of E ⊆ X guarantee the existence of

a further infinite dimensional subspace F ⊆ E where phase retrieval for F ⊆ X

preserves η convergence?
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Phase retrieval and subsets of Banach lattices

We have been considering phase retrieval for E ⊆ X where X is a Banach lattice and

E is a subspace.

We say that a subset A ⊆ X × X does C -stable phase retrieval in X if

min
|λ|=1

‖f − λg‖X ≤ C
∥∥|f | − |g |∥∥

X
for all (f , g) ∈ A. (1)

Q10. What are interesting examples of Banach lattices X and subsets A ⊆ X × X

such that A does stable phase retrieval in X?

If H is a Hilbert space and F : H → L2(µ) is a continuous transform then

F(H) ⊆ L2(µ) cannot do stable phase retrieval in L2(µ). (Alaifari-Grohs ’17)

There are nice examples of continuous transforms F : H → L2(µ) and subsets

A ⊆ F(H)×F(H) such that A does stable phase retrieval in L2(µ)!

(Chen-Cheng-Sun-Wang ’20, Cheng-Daubechies-Dym-Lu ’21, Grohs-Rathmair ’22)
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Phase retrieval and subsets of Banach lattices

We say that a subset A ⊆ X × X does C -Hölder stable phase retrieval in X with

parameter γ ≥ 1 if

min
|λ|=1

‖f − λg‖X ≤ C
(
‖f ‖X + ‖g‖X

)1−1/γ∥∥|f | − |g |∥∥1/γ

X
for all (f , g) ∈ A.

The case γ = 1 corresponds to Lipschitz stable phase retrieval.

If E ⊆ X is a subspace which does Hölder stable phase retrieval in X then E does

Lipschitz stable phase retrieval in X because the stability is worst at orthogonal

vectors. (F-Oikhberg-Pineau-Taylor ’22)

There are interesting subsets A ⊆ L2 × L2 which do Hölder stable phase retrieval.

(Cahill-Casazza-Daubechies ’16, Christ-Pineau-Taylor ’22)

Q11. Do these subsets do Lipschitz stable phase retrieval?

Q12. How can we construct A ⊆ X × X such that A does Hölder stable phase

retrieval in X for some γ > 1 but A does not do Lipschitz stable phase retrieval in X .
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Phase retrieval and larger relations

In applications, we have measured |f | and we want to recover either f or −f .

There is often a much larger class of functions G where we are happy to recover any

g ∈ Gf instead of just f or −f .

Example: Suppose f = ψ + φ is a sound wave consisting of a 2 second sound wave ψ

followed by 1 second of silence and then a 2 second sound wave φ.

Then ψ + φ sounds exactly the same as ψ − φ
When doing phase retrieval, we are happy to recover any of

ψ + φ, ψ − φ, −ψ + φ, or −ψ − φ from |f |.

Q13. Suppose that E ⊆ X and ∼G is a larger equivalence relation on X . How can we

characterize when f 7→ |f | is one-to-one on E/∼G ?

If E ⊆ RN is an n-dimensional subspace which does phase retrieval then N ≥ 2n − 1.

Furthermore, almost every n-dimensional subspace of R2n−1 does phase retrieval.

Q14. Suppose that ∼G is a larger equivalence relation on RN . How big must N be for

it to be possible that f 7→ |f | is one-to-one on E/∼G ?

Q15. How big must N be so that f 7→ |f | is one-to-one on E/∼G for almost every

n-dimensional E ⊆ RN?
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Phase retrieval and larger relations

Continuous transforms often do stable phase retrieval on certain local subsets. These

local subsets can then be pieced together so that given |f | ⊆ L2(Ω) it is possible to

stably recover
∑n

j=1 λj f 1Ωj
for some |λj | = 1 and certain subsets (Ωj )

n
j=1 of Ω.

(Alaifari-Daubechies-Grohs-Yin ’19, Chen-Cheng-Sun-Wang ’20,

Cheng-Daubechies-Dym-Lu ’21, Grohs-Rathmair ’22)

Q16. What are interesting examples of Banach lattices X , subspaces E ⊆ X , and

equivalence relations ∼G such that the recovery map |f | 7→ f is Lipschitz continuous

from |E | to E/∼G ?

We have a characterization of when a subspace of a real Banach lattice does stable

phase retrieval.

Q17. What are necessary and sufficient conditions for |f | 7→ f to be Lipschitz

continuous from |E | to E/∼G ?
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Phase retrieval and positive bases

Let H be a Hilbert space and (xj )
∞
j=1 ⊆ H so that the map Θ(x) = (〈x , xj 〉)∞j=1 is an

embedding of H into `2.

Θ(H) ⊆ `2 does phase retrieval in `2 means that for all x , y ∈ H

(|〈x , xj 〉|2)∞j=1 = (|〈y , xj 〉|2)∞j=1 ⇔ x = λy for some |λ| = 1.

(〈x ⊗ x , xj ⊗ xj 〉HS )∞j=1 = (〈y ⊗ y , xj ⊗ xj 〉HS |)∞j=1 ⇔ x ⊗ x = y ⊗ y .

(〈x ⊗ x − y ⊗ y , xj ⊗ xj 〉HS )∞j=1 = 0⇔ x ⊗ x − y ⊗ y = 0.

(〈T , xj ⊗ xj 〉HS )∞j=1 = 0⇔ T = 0 for every s.a. T with rank at most 2.

We have that phase retrieval for Θ(H) ⊆ `2 is equivalent to whenever T is a non-zero

self-adjoint operator with rank at most 2 then the orthogonal projection of T onto the

closed span of (xj ⊗ xj )
∞
j=1 is non-zero.
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Phase retrieval and positive bases

Doing phase retrieval in `2 is equivalent to constructing a sequence (xj )
∞
j=1 ⊆ H so

that whenever T is a non-zero self-adjoint operator with rank at most 2 then the

orthogonal projection of T onto the closed span of (xj ⊗ xj )
∞
j=1 is non-zero.

Q18. Let H be an infinite dimensional separable Hilbert space. Does there exist a

conditional Schauder basic sequence (xj ⊗ xj )
∞
j=1 and C > 0 so that for every

self-adjoint operator T with rank at most 2, ‖T‖HS ≤ C‖Pspanxj⊗xj ‖HS .

Such a sequence cannot be unconditional as stable phase retrieval is not possible for

infinite dimensional subspaces of `2. (Casazza)

Q19. Does there exist a conditional Schauder basis for the self-adjoint

Hilbert-Schmidt operators on H consisting of positive rank one operators?

The Faber-Schauder system is a basis of positive functions in C [0, 1]. There exists a

conditional Schauder basis for L1(R) consisting of positive functions

(Johnson-Schechtman ’15). There exists a conditional Schauder basis for L2(R)

consisting of positive functions (F-Powell-Taylor ’21).

Q20. What other Banach lattices have a conditional Schauder basis of positive

vectors, but not an unconditional basis of positive vectors?

Q21.(Vladimir Kadets) What are examples of cones in Banach spaces which contain a

Schauder basis?
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Discretization

In applied harmonic analysis, researchers work with discrete samplings of a continuous

transform. This corresponds to given some E ⊆ L2(Ω) ∩ L∞(Ω) finding (tj )j∈J ⊆ Ω

and uniform constants 0 < A ≤ B such that

A‖f ‖2
L2(Ω) ≤

∑
j∈J
|f (j)|2 ≤ B‖f ‖2

L2(Ω) for all f ∈ E .

The L2-norm on E ⊆ L2(Ω) ∩ L∞(Ω) can always be discretized. (F-Speegle ’19)

In approximation theory, it is important to discretize a norm on a finite dimensional

subspace E ⊆ Lp(Ω) where Ω is a probability space and we use a number of sampling

points which is close to the order of the dimension.

(Limonova-Temlyakov ’22, Kosov ’21, Dai-Prymak-Temlyakov-Tikhonov ’19)

This corresponds to finding sampling points (tj )
n
j=1 ⊆ Ω and uniform constants

0 < A ≤ B such that

A‖f ‖p
Lp(Ω)

≤
1

n

n∑
j=1

|f (j)|p ≤ B‖f ‖p
Lp(Ω)

for all f ∈ E .
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Discretization

We are interested in discretizing the norm on a finite dimensional subspace of a

Banach lattice in a way that preserves stable phase retrieval.

Q22. Let A,B,C , κ > 0 be some uniform constants. Suppose that E ⊆ Lp(Ω) is

N-dimensional and does C -stable phase retrieval where Ω is a probability space. When

can we find sampling points (tj )
n
j=1 ⊆ Ω so that the subspace{

(n−1/pf (tj ))nj=1 : f ∈ E
}
⊆ `np does κ-stable phase retrieval and

A‖f ‖p
Lp(Ω)

≤
1

n

n∑
j=1

|f (j)|p ≤ B‖f ‖p
Lp(Ω)

for all f ∈ E ,

where n is on the order of N, N log(N)p , or something similar?

For p = 2, if E is the span of independent Gaussian random variables or uniformly

sub-Gaussian random variables which do stable phase retrieval then sampling at n

random points in Ω works with high probability when n is on the order of N.

(Candès-Li ’14, Krahmer-Liu ’21)

One difficulty is that a discretization of the L2-norm on E ⊆ L2(Ω) which preserves

stable phase retrieval will also be a discretizing of the L1-norm on E ⊆ L1(Ω).

(F-Ghoreishi ’23)
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