Free p-convex Banach lattices and non-linear maps between Banach spaces

T. Oikhberg
+ M. Taylor, P. Tradacete, V. Troitsky

Banff, May 2023

Overview

(1) Banach lattices: reminders
(2) Free Banach lattices
(3) Lattice isomorphisms between free lattices
(4) When do we have $\mathrm{FBL}^{(p)}[E]=\mathrm{FBL}^{(p)}[F]$?

- $\mathrm{FBL}^{(p)}[E]$ versus $\mathrm{FBL}^{(p)}[F]$ for $p=\infty$
- $\mathrm{FBL}^{(p)}[E]$ versus $\mathrm{FBL}^{(p)}[F]$ for $p \in[1, \infty)$

Definition of a Banach lattice

Definition

A (real) Banach lattice is:
(1) a Banach space $(X,\|\cdot\|)$,
(2) equipped with a partial order \leqslant, so that if $x \leqslant y$, then, for any $z \in X$ and $a \in[0, \infty), x+z \leqslant y+z$ and $a x \leqslant a y$,
(3) which is also a lattice: $x, y \in X$ have their max (least upper bound) $x \vee y$ and min (greatest lower bound) $x \wedge y$,
(9) such that $\|\cdot\|$ is a lattice norm: $\|x\| \leqslant\|y\|$ if $|x| \leqslant|y|$. Here, $|x|=x \vee(-x)$.

Operations on Banach lattices

Definition

Suppose X, Y are Banach lattices. $T \in B(X, Y)$ is a lattice homomorphism if it preserves lattice operations: suffices to verify that $(T x) \vee(T y)=T(x \vee y)$, for any $x, y \in X$.
T is a lattice isomorphism (isometry) if it is invertible (surjective isometry), and both T and T^{-1} are lattice homomorphisms-.
T is a lattice embedding (isometric lattice embedding) if $T(X)$ is a sublattice of Y, and $T: X \rightarrow T(X)$ is a lattice isomorphism (resp. lattice isometry).
T is a lattice quotient if it is a lattice homomorphic quotient map.
Example of a lattice isomorphism: a weighted composition on $C(K)$. For $x \in C(K)$, and $t \in K,[T x](t)=a(t) x(\phi(t))$, where $a \in C(K), a>0$, and $\phi: K \rightarrow K$ is a topological homeomorphism.
All lattice isomorphisms of $C(K)$ are of this form.

p-convexity

Definition

Suppose $1 \leqslant p \leqslant \infty$. A Banach lattice X is p-convex with constant C if $\left\|\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}\right\| \leqslant C\left(\sum_{i}\left\|x_{i}\right\|^{p}\right)^{1 / p}$ holds for any $x_{1}, \ldots, x_{N} \in X$.

- Any Banach lattice is 1 -convex with constant 1 (triangle inequality).
- Any $C(K)$-space is ∞-convex, with constant 1 .

If X is ∞-convex (with constant 1), then it is lattice isomorphic (lattice isometric) to a sublattice of $C(K)$.

- $L_{q}(\mu)$ is p-convex with constant 1 for $p \leqslant q$.

If $p>q$, and $\operatorname{dim} L_{q}(\mu)=\infty$, then $L_{q}(\mu)$ is not p-convex.

- If X is q-convex, then it is also p-convex for $p \leqslant q$.
- If X is q-convex with constant C, then it can be renormed to be q-convex with constant 1 .

Free p-convex Banach lattice over a Banach space

Definition

Suppose E is a Banach space, and $1 \leqslant p \leqslant \infty$. A free p-convex Banach lattice on $E\left(\mathrm{FBL}^{(p)}[E]\right)$ is the unique Banach lattice X so that:

- X is p-convex with constant 1 .
- There exists an isometry $\phi=\phi_{E, p}: E \rightarrow X$ so that $\phi_{E, p}(E)$ generates X as a Banach lattice.
- If Z is a Banach lattice, p-convex with constant 1 , then any
$T \in B(E, Z)$ extends to a lattice homomorphism $\widehat{T}: \mathrm{FBL}^{(p)}[E] \rightarrow Z$ so that $\|\widehat{T}\|=\|T\|$, and $\widehat{T} \circ \phi_{E, p}=T$.
$\mathrm{FBL}^{(p)}[E]$

If Z is p-convex with constant C, we can construct an extension \widehat{T} with $\|\widehat{T}\| \leqslant C\|T\|$ (renorming makes Z p-convex with constant 1$)$.
Notation: $\mathrm{FBL}[E]:=\mathrm{FBL}^{(1)}[E]$ (for $p=1, Z$ is an arbitrary lattice).

Functional representation of $\mathrm{FBL}^{(p)}[E]$

Denote by $\mathbf{H}\left[E^{*}\right]$ the space of positively homogeneous functions on E^{*} $\left(f\left(t x^{*}\right)=t f\left(x^{*}\right) \forall t \geqslant 0\right) . \mathbf{H}_{p}\left[E^{*}\right]$ consists of those $f \in \mathbf{H}\left[E^{*}\right]$ for which $\exists C>0$ s.t. $\sum_{i=1}^{N}\left|f\left(x_{i}^{*}\right)\right|^{p} \leqslant C^{p}$ when $\left\|\left(x_{i}^{*}\right)_{i=1}^{N}\right\|_{p, \text { weak }} \leqslant 1 .\|f\|_{p}:=\inf C$. Here $\left\|\left(x_{i}^{*}\right)_{i=1}^{N}\right\|_{p, \text { weak }}=\sup _{x \in \mathbf{B}(E)}\left(\sum_{i}\left|\left\langle x_{i}^{*}, x\right\rangle\right|^{p}\right)^{1 / p}$. Let $\phi_{E, p}: E \rightarrow \mathbf{H}\left[E^{*}\right]: x \mapsto \delta_{x} ; \delta_{x}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle$.

Theorem

$\phi_{E, p}: E \rightarrow \mathbf{H}_{p}\left[E^{*}\right]$ is an isometry. $\mathrm{FBL}^{(p)}[E]$ is the Banach lattice generated by $\phi_{E, p}(E)$ in $\mathbf{H}_{p}\left[E^{*}\right]$.

Note: All functions from $\mathrm{FBL}^{(p)}[E]$ are weak* continuous on $\mathbf{B}\left(E^{*}\right):=\left\{e^{*} \in E^{*}:\left\|e^{*}\right\| \leqslant 1\right\}$.

Why does $\mathrm{FBL}^{(p)}[E]$ look the way it does?
Recall: $\mathbf{B}\left(E^{*}\right)=\left\{e^{*} \in E^{*}:\left\|e^{*}\right\| \leqslant 1\right\} . C\left(\mathbf{B}\left(E^{*}\right)\right)$ contains E, is "large enough" for many purposes. $\mathrm{FBL}^{(p)}[E]$ is "something like" $C\left(\mathbf{B}\left(E^{*}\right)\right)$. Any p-convex lattice Z embeds into $\left(\oplus_{i} L_{p}\left(\mu_{i}\right)\right)_{\infty}$, so we need to show that any $T: E \rightarrow L_{p}(\mu)$ extends to $\widehat{T}: \mathrm{FBL}^{(p)}[E] \rightarrow L_{p}(\mu)$, with $\|\hat{T}\|=\|T\|$. Discretize, and replace $L_{p}(\mu)$ by ℓ_{p}^{n}.
$T=\left(e_{i}^{*}\right)_{i=1}^{n}, e_{i}^{*} \in E^{*}, 1=\|T\|=\left\|\left(e_{i}^{*}\right)\right\|_{p, \text { weak }}$. Each $e_{i}^{*}: E \rightarrow \mathbb{R}$ extends to a lattice homomorphism $\widehat{e_{i}^{*}}: \mathrm{FBL}^{(p)}[E] \rightarrow \mathbb{R}$ (point evaluation at e_{i}^{*}). Then $\widehat{T}=\left(\widehat{e_{i}^{*}}\right)_{i=1}^{n}$. For $f \in \operatorname{FBL}^{(p)}[E]$,

$$
\|f\|_{\mathrm{FBL}^{(p)}[E]} \geqslant\|\widehat{T} f\|=\left\|\left(f\left(e_{i}^{*}\right)\right)\right\|_{\ell_{p}}=\left(\sum_{i}\left|f\left(e_{i}^{*}\right)\right|^{p}\right)^{1 / p} .
$$

Take sup over $\left\|\left(e_{i}^{*}\right)\right\|_{p, \text { weak }} \leqslant 1$:

$$
\|f\|_{\mathrm{FBL}^{(p)}[E]}:=\sup \left\{\left(\sum_{i}\left|f\left(e_{i}^{*}\right)\right|^{p}\right)^{1 / p}:\left\|\left(e_{i}^{*}\right)\right\|_{\rho, \text { weak }} \leqslant 1\right\} .
$$

Examples of free lattices

If $E=\mathbb{R}(\operatorname{dim} E=1)$, then $\mathrm{FBL}^{(p)}[E]=C(\{1,-1\})=\ell_{\infty}^{2}$.
$\phi(1)=\delta_{1}=(1,-1)$. For a Banach lattice Z and $T: E \rightarrow Z$, write $T 1=z_{+}-z_{-}$, where $z_{+}=(T 1)_{+}$and $z_{-}=(T 1)_{-}$(disjoint). Then $\widehat{T}(a, b)=a z_{+}+b z_{-}\left(\widehat{T}(1,0)=z_{+}, \widehat{T}(0,1)=z_{-}\right)$.

Theorem

$\mathrm{FBL}^{(\infty)}[E]$ coincides with the space $\mathrm{CH}\left[E^{*}\right]$ of weak continuous positively homogeneous functions on $\mathbf{B}\left(E^{*}\right)$, with sup norm $\|\cdot\|_{\infty}$.

For $p \in[1, \infty), \mathrm{FBL}^{(p)}[E]$ need not be an ideal in "the weak* continuous part of" $\mathbf{H}_{p}\left[E^{*}\right]$.

Theorem (Avilés, Rodríguez, Tradacete)

For $1 \leqslant p<\infty \exists$ weak * continuous $0 \leqslant g \leqslant f$ s.t. $g, f \in \mathbf{H}_{p}\left[\ell_{1}^{*}\right] \backslash\{0\}$ s.t. $f \in\left|\operatorname{ran} \phi_{\ell_{1}, p}\right| \subset \mathrm{FBL}^{(p)}\left[\ell_{1}\right], g \notin \mathrm{FBL}^{(p)}\left[\ell_{1}\right]$.

Structure of lattice homomorphisms between free lattices

Theorem (N. Laustsen, P. Tradacete)

Suppose $T: \mathrm{FBL}^{(p)}[E] \rightarrow \mathrm{FBL}^{(p)}[F]$ is a lattice homomorphism. Then \exists a positively homogeneous $\Phi_{T}: F^{*} \rightarrow E^{*}$, weak ${ }^{*}$ to weak* continuous on bounded sets, s.t. $[T f]\left(y^{*}\right)=f\left(\Phi_{T} y^{*}\right)$ for $y^{*} \in F^{*}, f \in \mathrm{FBL}^{(p)}[F]$; $\left\|\Phi_{T} y^{*}\right\| \leqslant\|T\|\left\|y^{*}\right\|$. Moreover:

- Any positively homogeneous Φ : $F^{*} \rightarrow E^{*}$, weak ${ }^{*}$ to weak ${ }^{*}$ continuous on bounded sets, determines $T: \mathrm{FBL}^{(\infty)}[E] \rightarrow \mathrm{FBL}^{(\infty)}[F]$ s.t. $\Phi_{T}=\Phi,\|T\|=\sup _{\left\|y^{*}\right\| \leqslant 1}\left\|\Phi_{T} y^{*}\right\|$.
- If $q \geqslant p$, then, for any $y_{1}^{*}, \ldots, y_{N}^{*} \in F^{*}$, we have $\left\|\left(\Phi_{T} y_{i}^{*}\right)\right\|_{q, \text { weak }} \leqslant\|T\|\left\|\left(y_{i}^{*}\right)\right\|_{q, \text { weak }}$.
- If T is a lattice isomorphism, then $\Phi_{T^{-1}}=\Phi_{T}^{-1}$.

Recall: $\left\|\left(y_{i}^{*}\right)_{i=1}^{N}\right\|_{q, \text { weak }}=\sup _{y \in \mathbf{B}(F)}\left(\sum_{i}\left|\left\langle y_{i}^{*}, y\right\rangle\right|^{q}\right)^{1 / q}$.
Remark. (1) $\forall y^{*}\left\|\Phi_{T} y^{*}\right\| \leqslant\|T\|\left\|y^{*}\right\|$. (2) If T is a lattice quotient, then T^{*} is bounded below, hence $\exists c>0$ s.t. $\forall y^{*}\left\|\Phi_{T} y^{*}\right\| \geqslant c\left\|y^{*}\right\|$.

Lattice homomorphisms: a construction

Theorem (N. Laustsen, P. Tradacete)

Suppose $T: \mathrm{FBL}^{(p)}[E] \rightarrow \mathrm{FBL}^{(p)}[F]$ is a lattice homomorphism. Then \exists a positively homogeneous $\Phi_{T}: F^{*} \rightarrow E^{*}$, weak ${ }^{*}$ to weak continuous on bounded sets, s.t. $[T f]\left(y^{*}\right)=f\left(\Phi_{T} y^{*}\right)$ for $y^{*} \in F^{*}, f \in \mathrm{FBL}^{(p)}[F]$; $\left\|\Phi_{T} y^{*}\right\| \leqslant\|T\|\left\|y^{*}\right\|$. If $q \geqslant p$, then, for any $y_{1}^{*}, \ldots, y_{N}^{*} \in F^{*}$, we have $\left\|\left(\Phi_{T} y_{i}^{*}\right)\right\|_{q, \text { weak }} \leqslant\|T\|\left\|\left(y_{i}^{*}\right)\right\|_{q, \text { weak }}$.

Construction of $\Phi_{T} . \mathrm{FBL}^{(p)}[F]^{*} \supset\left\{\widehat{y^{*}}: y^{*} \in F^{*}\right\}=$ set of atoms $\left(\widehat{y^{*}}=\right.$ evaluation at $\left.y^{*}\right) . T^{*}$ is interval preserving, so $T^{*} \widehat{y^{*}}$ is an atom, say $\widehat{\Phi_{T} y^{*}}$.
$\left\|\left(y_{i}^{*}\right)_{i=1}^{N}\right\|_{q, \text { weak }}=\left\|\left(\widehat{y_{i}^{*}}\right)_{i=1}^{N}\right\|_{q, \text { weak }}$.
Indeed, consider $T: F \rightarrow \ell_{q}^{N}: f \mapsto\left(\left\langle y_{i}^{*}, f\right\rangle\right)_{i=1}^{n}$. Extension:
$\widehat{T}: \mathrm{FBL}^{(p)}[F] \rightarrow \ell_{q}^{N}: \varphi \mapsto\left(\varphi\left(y_{i}^{*}\right)\right)_{i=1}^{n}=\left(\widehat{y_{i}^{*}}(\varphi)\right)_{i=1}^{n}$.
$\left\|\left(y_{i}^{*}\right)_{i=1}^{N}\right\|_{q, \text { weak }}=\|T\|=\|\widehat{T}\|=\left\|\left(\widehat{y_{i}^{*}}\right)_{i=1}^{N}\right\|_{q, \text { weak }}$.
$\left\|\left(\widehat{T^{*} y_{i}^{*}}\right)_{i=1}^{N}\right\|_{q, \text { weak }} \leqslant\|T\|\left\|\left(\widehat{y_{i}^{*}}\right)_{i=1}^{N}\right\|_{q, \text { weak }}$.

When do we have $\mathrm{FBL}^{(p)}[E]=\mathrm{FBL}^{(p)}[F]$?

$$
\begin{array}{cl}
\mathrm{FBL}^{(p)}[F]-\stackrel{\bar{T}}{\mathrm{FBL}^{(p)}}[E] & \bar{T} \text { is the canonical lattice homomorphic } \\
\phi_{F, p} \int_{F} \xrightarrow{\phi_{E, p} \int_{E}} \begin{array}{l}
\text { extension of } T .
\end{array} \\
\text { If } T \text { is isomorphic (isometric), then so is } \bar{T} .
\end{array}
$$

Can $\mathrm{FBL}^{(p)}[E]$ and $\mathrm{FBL}^{(p)}[F]$ be "similar," while E and F are "different?"
The answer for $p=\infty$ differs from what we get for $p \in[1, \infty)$.
The isometric and isomorphic settings are different.

Case of $p=\infty$: structure of lattice homomorphisms

Theorem

$\mathrm{FBL}^{(\infty)}[E]$ coincides with the space $\mathbf{C H}\left[E^{*}\right]$ of weak ${ }^{*}$ continuous positively homogeneous functions on $\mathbf{B}\left(E^{*}\right)$, with sup norm $\|\cdot\|_{\infty}$.

Corollary (Lattice homomorphism vs compositions)

(1) If $\Phi: F^{*} \rightarrow E^{*}$ is a positively homogeneous and weak ${ }^{*}$ continuous on bounded sets, then \exists a lattice homomorphism
$T: \mathrm{FBL}^{(\infty)}[E] \rightarrow \mathrm{FBL}^{(\infty)}[F]$ s.t. $\Phi=\Phi_{T}-$ that is, $T f=f \circ \Phi$.
(2) If, moreover, Φ is surjective, and
$\forall y^{*} \in F^{*} C_{1}\left\|y^{*}\right\| \geqslant\left\|\Phi y^{*}\right\| \geqslant\left\|y^{*}\right\| / C_{2}$,
then T is a lattice isomorphism, with $\|T\| \leqslant C_{1}$ and $\left\|T^{-1}\right\| \leqslant C_{2}$.

Comparing $\mathrm{FBL}^{(\infty)}[E]$ with $\mathrm{FBL}^{(\infty)}[F]$, and FDDs

A Banach space E has Finite Dimensional Decomposition (FDD) if \exists a sequence of finite rank projections $P_{n} \in B(E)$ s.t. (i) $P_{i} P_{j}=P_{\min \{i, j\}}$, and (ii) $\forall x \in E, \lim _{N} P_{N} x=x\left(\right.$ then $\left.\sup _{N}\left\|P_{N}\right\|<\infty\right)$.

Example: a Schauder basis $\left(e_{i}\right)$ gives rise to an FDD ($P_{i}=$ canonical basis projection).
An FDD $\left(P_{i}\right)$ is monotone if $\sup _{N}\left\|P_{N}\right\|=1$. Example: canonical basis in ℓ_{p}.

Theorem

If E is a Banach space with a monotone $F D D$, then $\mathrm{FBL}^{(\infty)}[E]$ is lattice isometric to $\mathrm{FBL}^{(\infty)}\left[c_{0}\right]$.
$\mathrm{FBL}^{(\infty)}[E]=\mathrm{FBL}^{(\infty)}\left[c_{0}\right]$, construction in particular case

Suppose E has monotone normalized basis $\left(e_{i}\right)$, and $\left(e_{i}^{*}\right)$ is strictly monotone: $\left\|\sum_{i=1}^{N} \alpha_{i} e_{i}^{*}\right\| \leqslant\left\|\sum_{i=1}^{N+1} \alpha_{i} e_{i}^{*}\right\|$, with equality iff $\alpha_{N+1}=0$.
Goal: construct positively homogeneous norm-preserving surjection $\Phi: E^{*} \rightarrow \ell_{1}=c_{0}^{*}$ s.t. Φ and Φ^{-1} are weak* continuous on bounded sets.
Let f_{i}^{*} be the canonical basis of ℓ_{1}. Let P_{n} be the n-th basis projection in E, then $P_{n}^{*}: E^{*} \rightarrow X_{n}=\operatorname{span}\left[e_{i}^{*}: 1 \leqslant i \leqslant n\right]$ canonically.
Construct maps $\Phi_{n}: X_{n} \rightarrow Y_{n}=\operatorname{span}\left[f_{i}^{*}: 1 \leqslant i \leqslant n\right] \subset \ell_{1}$.
Let $\Phi_{1} \alpha_{1} e_{1}^{*}:=\alpha_{1} f_{1}^{*}$.
Define Φ_{n} recursively: for $e^{*}=x^{*}+\alpha e_{n}^{*}\left(x^{*} \in X_{n-1}\right)$, let $\Phi_{n} e^{*}:=\Phi_{n-1} x^{*}+t f_{n}^{*}$, where $t=\operatorname{sign} \alpha \cdot\left(\left\|e^{*}\right\|-\left\|x^{*}\right\|\right)$.
The $\Phi=$ weak $^{*}-\lim \Phi_{n} P_{n}^{*}$ has the desired properties.
Question. Can we avoid the FDD assumption?

Properties of $\mathrm{FBL}^{(\infty)}\left[c_{0}\right]$

Theorem

If E is a Banach space with a monotone $F D D$, then $\mathrm{FBL}^{(\infty)}[E]$ is lattice isometric to $\mathrm{FBL}^{(\infty)}\left[c_{0}\right]=: \mathfrak{U}$ (for "universal").

Corollary

(1) If E has $F D D$, then $\mathrm{FBL}^{(\infty)}[E]$ is lattice isomorphic to \mathfrak{U}.
(2) If E is a separable Banach space, then \exists linear isometry
$J: \mathrm{FBL}^{(\infty)}[E] \rightarrow \mathfrak{U}$ and a contractive lattice homomorphism
$P: \mathfrak{U} \rightarrow \mathrm{FBL}^{(\infty)}[E]$ so that $P J=i d_{\mathrm{FBL}}{ }^{(\infty)}[E]$.
(3) If E has the BAP, J above can be a lattice isomorphism.

Proof of (2). $X=\mathrm{FBL}^{(\infty)}[E]$ is an $\mathcal{L}_{\infty, 1+}$ space, hence it has a monotone basis, hence $\mathrm{FBL}^{(\infty)}[X]$ is lattice isometric to \mathfrak{U}. id : $X \rightarrow X$ extends to a lattice homomorphism $\hat{i d}: \mathrm{FBL}^{(\infty)}[X] \rightarrow X$. $\hat{i d} \circ \phi_{X}$ is the desired factorization via $\mathrm{FBL}^{(\infty)}[X]=\mathfrak{U}$.

Properties of \mathfrak{U}

Question. What can we say about \mathfrak{U} ?

Proposition (\mathfrak{U} is not homogeneous (Gurarii))

If $1 \leqslant p \leqslant \infty$ and $\operatorname{dim} E \geqslant 2$, there exist norm one $\phi, \psi \in \mathrm{FBL}^{(p)}[E]_{+}$s.t. $\|T \phi-\psi\| \geqslant 1 / 3$ for any lattice isometry T.

```
Proposition
\(\mathfrak{U}\) is Banach space isomorphic to \(C[0,1]\).
```

$\mathrm{FBL}^{(\infty)}[E]$ vs. $\mathrm{FBL}^{(\infty)}[F]$, non-separable case

```
Theorem (Keller)
If \(E\) and \(F\) are separable Banach spaces, then \(\left(\mathbf{B}\left(E^{*}\right), w^{*}\right)\) is homeomorphic to \(\left(\mathbf{B}\left(F^{*}\right), w^{*}\right)\). In fact, both are homeomorphic to \([0,1]^{\omega}\).
```

No analogue exists in the non-separable setting.

Proposition

For Γ with $|\Gamma| \geqslant c$, and $p \in(1, \infty)$, let $E=\ell_{1}(\Gamma)$ and $F=\ell_{p}(\Gamma)$. Then:
(1) $\left(\mathbf{B}\left(E^{*}\right), w^{*}\right)$ is not homeomorphic to $\left(\mathbf{B}\left(F^{*}\right), w^{*}\right)$.
(2) $\mathrm{FBL}^{(\infty)}[E]$ is not lattice isomorphic to $\mathrm{FBL}^{(\infty)}[F]$.

Lattice homomorphisms of $\mathrm{FBL}^{(p)}$ for $1 \leqslant p<\infty$

Theorem (N. Laustsen, P. Tradacete)

Suppose $T: \mathrm{FBL}^{(p)}[E] \rightarrow \mathrm{FBL}^{(p)}[F]$ is a lattice homomorphism. Then \exists a positively homogeneous $\Phi_{T}: F^{*} \rightarrow E^{*}$, weak ${ }^{*}$ to weak* continuous on bounded sets, s.t. $[T f]\left(y^{*}\right)=f\left(\Phi_{T} y^{*}\right)$ for $y^{*} \in F^{*}, f \in \mathrm{FBL}^{(p)}[F]$; $\left\|\Phi_{T} y^{*}\right\| \leqslant\|T\|\left\|y^{*}\right\|$. If $q \geqslant p$, then, for any $y_{1}^{*}, \ldots, y_{N}^{*} \in F^{*}$, we have $\left\|\left(\Phi_{T} y_{i}^{*}\right)\right\|_{q, \text { weak }} \leqslant\|T\|\left\|\left(y_{i}^{*}\right)\right\|_{q, \text { weak }}$.

Although any lattice homomorphism is a composition operator, a composition need not generate a lattice homomorphism.

Proposition

$\forall p \in[1, \infty) \exists$ positively homogeneous $\Phi: \ell_{1}^{*} \rightarrow \ell_{1}^{*}$, weak* continuous on bounded sets, s.t. $\forall q \in[p, \infty], \forall y_{1}^{*}, \ldots, y_{N}^{*} \in \ell_{1}^{*}$ we have $\left\|\left(\Phi y_{i}^{*}\right)\right\|_{q \text {,weak }} \leqslant\left\|\left(y_{i}^{*}\right)\right\|_{q, \text { weak }}$, but s.t. $f \circ \Phi \notin \mathrm{FBL}^{(p)}\left[\ell_{1}\right]$ for some $f \in \operatorname{FBL}^{(p)}\left[\ell_{1}\right]$.

Lattice quotients $\mathrm{FBL}^{(p)}[E] \rightarrow \mathrm{FBL}^{(p)}[F], 1 \leqslant p<\infty$

Theorem

Fix $u, v \in[2, \infty], p \in[1, \infty]$, and $u<\min \left\{v, p^{\prime}\right\}, 1 / p+1 / p^{\prime}=1$.
Suppose E^{*} has cotype u, and F^{*} does not have cotype less than v. Then $\mathrm{FBL}^{(p)}[F]$ is not lattice isomorphic to a lattice quotient of $\mathrm{FBL}^{(p)}[E]$.

Cotype u : $\exists K$ s.t. $\forall x_{1}^{*}, \ldots, x_{N}^{*} \in E^{*}, \mathbb{E}\left\|\sum_{i} \pm x_{i}^{*}\right\| \geqslant K\left(\sum_{i}\left\|x_{i}^{*}\right\|^{u}\right)^{1 / u}$. L_{r} has cotype $\max \{r, 2\}$.

Corollary

Suppose $\beta \in[1,2]$, and $\alpha \in(\beta, \infty]$. For σ-finite Radon measures μ and ν, $\mathrm{FBL}\left[L_{\beta}(\nu)\right]$ is not a lattice quotient of $\mathrm{FBL}\left[L_{\alpha}(\mu)\right]$.

Known: $L_{\beta}(\nu)$ is not a quotient of $L_{\alpha}(\mu)$.
Proof. Apply theorem with $E=L_{\alpha}(\mu), F=L_{\beta}(\nu), p=1$. E^{*} has cotype $\max \left\{2, \alpha^{\prime}\right\}, F^{*}$ has cotype $\beta^{\prime}>\max \left\{2, \alpha^{\prime}\right\}$.

Lattice quotients $\mathrm{FBL}^{(p)}[E] \rightarrow \mathrm{FBL}^{(p)}[F], 1 \leqslant p<\infty$

Theorem

Suppose $\infty \geqslant u>\max \{v, p\} \geqslant v \geqslant 1, E=\left(\sum_{j} E_{j}\right)_{u}\left(E_{1}, E_{2}, \ldots\right.$ are finite dimensional), and F^{*} contains a copy of $\ell_{v^{\prime}}$, with $1 / v+1 / v^{\prime}=1$. Then $\mathrm{FBL}^{(p)}[F]$ is not a lattice quotient of $\mathrm{FBL}^{(p)}[E]$.

Questions. (1) Do there exist non-isomorphic E and F s.t. $\mathrm{FBL}^{(p)}[E]$ and $\mathrm{FBL}^{(p)}[F]$ are lattice isomorphic $(1 \leqslant p<\infty)$?
(2) If $\mathrm{FBL}^{(p)}[E]$ and $\mathrm{FBL}^{(p)}[F]$ are lattice isomorphic, which properties do E and F share?

Proposition

Suppose $\mathrm{FBL}[E]$ is lattice isometric to $\mathrm{FBL}[F]$.

- If E contains a complemented copy of ℓ_{1}, then so does F.
- If E contains ℓ_{1}^{n} 's complementably uniformly, then so does F.

Indirect proof: relate properties of E to those of $\operatorname{FBL}[E]$.

Lattice isometries $\mathrm{FBL}^{(p)}[E] \rightarrow \mathrm{FBL}^{(p)}[F], 1 \leqslant p<\infty$
A Banach space Z is called smooth if $\forall z \in Z \backslash\{0\}$ the norming functional $z^{*} \in Z^{*}$ is unique. Meaning: the unit sphere of Z has no "corners."

Theorem

Suppose $1 \leqslant p<\infty$, and E, F are Banach spaces s.t. either (i) E^{*}, F^{*} are smooth, or (ii) E, F are reflexive, and either E^{*} or F^{*} is smooth. Then $\mathrm{FBL}^{(p)}[E]$ is lattice isometric to $\mathrm{FBL}^{(p)}[F]$ iff E is isometric to F.

Idea. Quantities $\left\|\left(e_{i}^{*}\right)\right\|_{p, \text { weak }}=\left\|\left(\widehat{e_{i}^{*}}\right)\right\|_{p, \text { weak }}$ are preserved by lattice isometries.

For $x \in Z$, denote by $\mathcal{F}(x)$ the set of support functionals for x that is, of $x^{*} \in Z^{*}$ for which $\left\|x^{*}\right\|=\|x\|$ and $\|x\|^{2}=\left\langle x^{*}, x\right\rangle$.

Lemma

Suppose $x, y \in \mathbf{S}(Z)$, and $1 \leqslant p<\infty$. Let $\kappa=\sup _{x^{*} \in \mathcal{F}(x)}\left|\left\langle x^{*}, y\right\rangle\right|$. Then, for $t \rightarrow 0,\|(x, t y)\|_{p, \text { weak }}=1+\frac{\kappa^{p}}{p}|t|^{p}+o\left(|t|^{p}\right)$.

Lattice isometries when E^{*}, F^{*} are smooth

Theorem

Suppose $1 \leqslant p<\infty$, and E, F are Banach spaces so that E^{*}, F^{*} are smooth. Then $T: \mathrm{FBL}^{(p)}[E] \rightarrow \mathrm{FBL}^{(p)}[F]$ is a lattice isometry iff $T=\bar{U}$, for some isometry $U: E \rightarrow F$.

Proof. If Z is smooth, then $\forall x \in Z \exists f_{x} \in Z^{*}$ s.t. $\mathcal{F}(x)=\left\{f_{x}\right\}$. Define semi-inner product $[y, x]:=\left\langle f_{x}, y\right\rangle$. This has the same properties as the inner product, except symmetry and additivity in second variable.

Let $[\cdot, \cdot]_{E}$ and $[\cdot, \cdot]_{F}$ be the semi-inner products on E^{*} and F^{*} respectively. For $x^{*}, y^{*} \in \mathbf{S}\left(F^{*}\right),\left\|\left(x^{*}, t y^{*}\right)\right\|_{p, \text { weak }}=1+\frac{|t|^{p}}{p}\left|\left[y^{*}, x^{*}\right]_{F}\right|+o\left(|t|^{p}\right)$, hence $\left|\left[y^{*}, x^{*}\right]_{F}\right|=\left|\left[\Phi_{T} y^{*}, \Phi_{T} x^{*}\right]_{E}\right|$.
[llisevic \& Turnsec]: $\exists \sigma: F^{*} \rightarrow\{-1,1\}$ and $V: F^{*} \rightarrow E^{*}$ s.t. $\forall x^{*} \in F^{*}$ $\Phi_{T} x^{*}=\sigma\left(x^{*}\right) V x^{*}$. Show that $\sigma=$ const and V is weak* continuous, so $V=U^{*}$.

Lattice isometries and the lack of smoothness

Definition

An element x of a Banach space X is called an ℓ_{1}-point if the equality $\max _{ \pm}\|x \pm y\|=\|x\|+\|y\|$ holds for any $y \in X$.

Proposition

Suppose $1 \leqslant p<\infty . x$ is an ℓ_{1}-point iff
$\|(x, y)\|_{p, \text { weak }}=\left(\|x\|^{p}+\|y\|^{p}\right)^{1 / p}$ for any $y \in X$.

Proposition

Suppose $T: \mathrm{FBL}^{(p)}[F] \rightarrow \mathrm{FBL}^{(p)}[E]$ is a lattice isometry. Then Φ_{T} is a bijection between ℓ_{1}-points of E^{*} and F^{*}.

Application: free lattices on AM-spaces

Proposition

Suppose E and F are $A M$-spaces. For $1 \leqslant p<\infty$, TFAE:
(1) $\mathrm{FBL}^{(p)}[E]$ is lattice isometric to $\mathrm{FBL}^{(p)}[F]$.
(2) E and F are isometric.
(3) E and F are lattice isometric.

Idea of proof. Realize E as a set of functions of $\overline{\Omega_{E}}$ (the weak* closure of the state space). Identify ℓ_{1} points with point masses. Do the same for F. Any lattice isometry $\mathrm{FBL}^{(p)}[E] \rightarrow \mathrm{FBL}^{(p)}[F]$ will generate a homeomorphism between Ω_{E} and Ω_{F}.

Lattice isometries and strict convexity

A Banach space Z is called strictly convex if \forall norm one $z_{1}, z_{2} \in Z$ we have $\left\|z_{1}+z_{2}\right\|<2$ unless $z_{1} \neq z_{2}$.

Proposition

Suppose $1 \leqslant p<\infty$, and E, F are Banach spaces s.t. $\mathrm{FBL}^{(p)}[E]$ is lattice isometric to $\mathrm{FBL}^{(p)}[F]$. Then E^{*} is strictly convex iff F^{*} is.

Thank you for your attention! Questions welcome!

