Free *p*-convex Banach lattices and non-linear maps between Banach spaces

> T. Oikhberg + M. Taylor, P. Tradacete, V. Troitsky

> > Banff, May 2023

Overview

- 2 Free Banach lattices
- 3 Lattice isomorphisms between free lattices
- 4 When do we have $\operatorname{FBL}^{(p)}[E] = \operatorname{FBL}^{(p)}[F]$?
 - $\operatorname{FBL}^{(p)}[E]$ versus $\operatorname{FBL}^{(p)}[F]$ for $p = \infty$
 - $\operatorname{FBL}^{(p)}[E]$ versus $\operatorname{FBL}^{(p)}[F]$ for $p \in [1,\infty)$

Definition of a Banach lattice

Definition

A (real) Banach lattice is:

- a Banach space $(X, \|\cdot\|)$,
- equipped with a partial order ≤, so that if x ≤ y, then, for any z ∈ X and a ∈ [0, ∞), x + z ≤ y + z and ax ≤ ay,
- which is also a lattice: x, y ∈ X have their max (least upper bound)
 x ∨ y and min (greatest lower bound) x ∧ y,
- such that $\|\cdot\|$ is a lattice norm: $\|x\| \le \|y\|$ if $|x| \le |y|$. Here, $|x| = x \lor (-x)$.

Operations on Banach lattices

Definition

Suppose X, Y are Banach lattices. $T \in B(X, Y)$ is a lattice homomorphism if it preserves lattice operations: suffices to verify that $(T_X) \lor (T_Y) = T(x \lor y)$, for any $x, y \in X$. T is a lattice isomorphism (isometry) if it is invertible (surjective isometry), and both T and T^{-1} are lattice homomorphisms-. T is a lattice embedding (isometric lattice embedding) if T(X) is a sublattice of Y, and $T : X \to T(X)$ is a lattice isomorphism (resp. lattice isometry).

T is a lattice quotient if it is a lattice homomorphic quotient map.

Example of a lattice isomorphism: a weighted composition on C(K). For $x \in C(K)$, and $t \in K$, $[Tx](t) = a(t)x(\phi(t))$, where $a \in C(K)$, a > 0, and $\phi : K \to K$ is a topological homeomorphism.

All lattice isomorphisms of C(K) are of this form.

p-convexity

Definition

Suppose $1 \leq p \leq \infty$. A Banach lattice X is *p*-convex with constant *C* if $\left\| \left(\sum_{i} |x_{i}|^{p} \right)^{1/p} \right\| \leq C \left(\sum_{i} ||x_{i}||^{p} \right)^{1/p}$ holds for any $x_{1}, \ldots, x_{N} \in X$.

- Any Banach lattice is 1-convex with constant 1 (triangle inequality).
- Any C(K)-space is ∞ -convex, with constant 1. If X is ∞ -convex (with constant 1), then it is lattice isomorphic (lattice isometric) to a sublattice of C(K).
- $L_q(\mu)$ is *p*-convex with constant 1 for $p \leq q$. If p > q, and dim $L_q(\mu) = \infty$, then $L_q(\mu)$ is not *p*-convex.
- If X is q-convex, then it is also p-convex for $p \leq q$.
- If X is q-convex with constant C, then it can be renormed to be q-convex with constant 1.

Free *p*-convex Banach lattice over a Banach space

Definition

Suppose *E* is a Banach space, and $1 \le p \le \infty$. A free *p*-convex Banach lattice on *E* (FBL^(*p*)[*E*]) is the unique Banach lattice *X* so that:

- X is p-convex with constant 1.
- There exists an isometry φ = φ_{E,p} : E → X so that φ_{E,p}(E) generates X as a Banach lattice.
- If Z is a Banach lattice, *p*-convex with constant 1, then any $T \in B(E, Z)$ extends to a lattice homomorphism $\widehat{T} : \operatorname{FBL}^{(p)}[E] \to Z$ so that $\|\widehat{T}\| = \|T\|$, and $\widehat{T} \circ \phi_{E,p} = T$.

If Z is p-convex with constant C, we can construct an extension \widehat{T} with $\|\widehat{T}\| \leq C \|T\|$ (renorming makes Z p-convex with constant 1). **Notation:** FBL[E] := FBL⁽¹⁾[E] (for p = 1, Z is an arbitrary lattice).

Functional representation of $FBL^{(p)}[E]$

Denote by $\mathbf{H}[E^*]$ the space of positively homogeneous functions on E^* $(f(tx^*) = tf(x^*) \forall t \ge 0)$. $\mathbf{H}_{\rho}[E^*]$ consists of those $f \in \mathbf{H}[E^*]$ for which $\exists C > 0 \text{ s.t. } \sum_{i=1}^{N} |f(x_i^*)|^p \leqslant C^p$ when $\|(x_i^*)_{i=1}^N\|_{p,\text{weak}} \leqslant 1$. $\|f\|_p := \inf C$. Here $\|(x_i^*)_{i=1}^N\|_{p,\text{weak}} = \sup_{x \in \mathbf{B}(E)} (\sum_i |\langle x_i^*, x \rangle|^p)^{1/p}$. Let $\phi_{E,p} : E \to \mathbf{H}[E^*] : x \mapsto \delta_x; \delta_x(x^*) = \langle x^*, x \rangle$.

Theorem

 $\phi_{E,p}: E \to \mathbf{H}_p[E^*]$ is an isometry. $\operatorname{FBL}^{(p)}[E]$ is the Banach lattice generated by $\phi_{E,p}(E)$ in $\mathbf{H}_p[E^*]$.

Note: All functions from $\operatorname{FBL}^{(p)}[E]$ are weak* continuous on $B(E^*) := \{e^* \in E^* : ||e^*|| \leq 1\}.$

Why does $FBL^{(p)}[E]$ look the way it does? Recall: $\mathbf{B}(E^*) = \{e^* \in E^* : ||e^*|| \leq 1\}$. $C(\mathbf{B}(E^*))$ contains *E*, is "large enough" for many purposes. FBL^(p)[E] is "something like" $C(\mathbf{B}(E^*))$. Any p-convex lattice Z embeds into $(\bigoplus_i L_p(\mu_i))_{\infty}$, so we need to show that any $T: E \to L_p(\mu)$ extends to $\widehat{T}: \text{FBL}^{(p)}[E] \to L_p(\mu)$, with $\|\widehat{T}\| = \|T\|$. Discretize, and replace $L_p(\mu)$ by ℓ_p^n . $T = (e_i^*)_{i=1}^n$, $e_i^* \in E^*$, $1 = \|T\| = \|(e_i^*)\|_{p, \text{weak}}$. Each $e_i^* : E \to \mathbb{R}$ extends to a lattice homomorphism $\widehat{e_i^*}$: FBL^(p)[E] $\rightarrow \mathbb{R}$ (point evaluation at e_i^*). Then $\widehat{T} = (\widehat{e_i^*})_{i=1}^n$. For $f \in \text{FBL}^{(p)}[E]$,

$$\|f\|_{\operatorname{FBL}^{(p)}[E]} \ge \|\widehat{T}f\| = \|(f(e_i^*))\|_{\ell_p^n} = \left(\sum_i |f(e_i^*)|^p\right)^{1/p}.$$

Take sup over $||(e_i^*)||_{p,\text{weak}} \leq 1$:

$$\|f\|_{\mathrm{FBL}^{(p)}[E]} := \sup \big\{ \big(\sum_i |f(e_i^*)|^p \big)^{1/p} : \|(e_i^*)\|_{p,\mathrm{weak}} \leqslant 1 \big\}.$$

Examples of free lattices

If $E = \mathbb{R}$ (dim E = 1), then FBL^(p) $[E] = C(\{1, -1\}) = \ell_{\infty}^2$. $\phi(1) = \delta_1 = (1, -1)$. For a Banach lattice Z and $T : E \to Z$, write $T1 = z_+ - z_-$, where $z_+ = (T1)_+$ and $z_- = (T1)_-$ (disjoint). Then $\widehat{T}(a, b) = az_+ + bz_-$ ($\widehat{T}(1, 0) = z_+$, $\widehat{T}(0, 1) = z_-$).

Theorem

 $\operatorname{FBL}^{(\infty)}[E]$ coincides with the space $\operatorname{CH}[E^*]$ of weak^{*} continuous positively homogeneous functions on $\operatorname{B}(E^*)$, with sup norm $\|\cdot\|_{\infty}$.

For $p \in [1, \infty)$, $FBL^{(p)}[E]$ need not be an ideal in "the weak* continuous part of" $H_p[E^*]$.

Theorem (Avilés, Rodríguez, Tradacete)

For $1 \leq p < \infty \exists$ weak^{*} continuous $0 \leq g \leq f$ s.t. $g, f \in \mathbf{H}_p[\ell_1^*] \setminus \{0\}$ s.t. $f \in |\operatorname{ran} \phi_{\ell_1,p}| \subset \operatorname{FBL}^{(p)}[\ell_1], g \notin \operatorname{FBL}^{(p)}[\ell_1].$

Structure of lattice homomorphisms between free lattices

Theorem (N. Laustsen, P. Tradacete)

Suppose $T : \operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F]$ is a lattice homomorphism. Then \exists a positively homogeneous $\Phi_T : F^* \to E^*$, weak* to weak* continuous on bounded sets, s.t. $[Tf](y^*) = f(\Phi_T y^*)$ for $y^* \in F^*$, $f \in \operatorname{FBL}^{(p)}[F]$; $\|\Phi_T y^*\| \leq \|T\| \|y^*\|$. Moreover:

- Any positively homogeneous Φ : F* → E*, weak* to weak* continuous on bounded sets, determines T : FBL^(∞)[E] → FBL^(∞)[F] s.t.
 Φ_T = Φ, ||T|| = sup_{||y*||≤1} ||Φ_Ty*||.
- If $q \ge p$, then, for any $y_1^*, \ldots, y_N^* \in F^*$, we have $\|(\Phi_T y_i^*)\|_{q, \text{weak}} \le \|T\| \|(y_i^*)\|_{q, \text{weak}}$.

• If T is a lattice isomorphism, then $\Phi_{T^{-1}} = \Phi_T^{-1}$.

Recall: $||(y_i^*)_{i=1}^N||_{q,\text{weak}} = \sup_{y \in \mathbf{B}(F)} \left(\sum_i |\langle y_i^*, y \rangle|^q \right)^{1/q}$. **Remark.** (1) $\forall y^* || \Phi_T y^* || \leq ||T|| ||y^*||$. (2) If T is a lattice quotient, then T^* is bounded below, hence $\exists c > 0$ s.t. $\forall y^* || \Phi_T y^* || \geq c ||y^*||$.

Lattice homomorphisms: a construction

Theorem (N. Laustsen, P. Tradacete)

Suppose $T : \operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F]$ is a lattice homomorphism. Then \exists a positively homogeneous $\Phi_T : F^* \to E^*$, weak* to weak* continuous on bounded sets, s.t. $[Tf](y^*) = f(\Phi_T y^*)$ for $y^* \in F^*$, $f \in \operatorname{FBL}^{(p)}[F]$; $\|\Phi_T y^*\| \leq \|T\| \|y^*\|$. If $q \ge p$, then, for any $y_1^*, \ldots, y_N^* \in F^*$, we have $\|(\Phi_T y_i^*)\|_{q,\operatorname{weak}} \leq \|T\| \|(y_i^*)\|_{q,\operatorname{weak}}$.

Construction of Φ_T . FBL^(p) $[F]^* \supset \{\widehat{y^*} : y^* \in F^*\} = \text{set of atoms } (\widehat{y^*} = \text{evaluation at } y^*)$. T^* is interval preserving, so $T^*\widehat{y^*}$ is an atom, say $\widehat{\Phi_T y^*}$. $\|(y_i^*)_{i=1}^N\|_{q,\text{weak}} = \|(\widehat{y_i^*})_{i=1}^N\|_{q,\text{weak}}$. Indeed, consider $T : F \to \ell_q^N : f \mapsto (\langle y_i^*, f \rangle)_{i=1}^n$. Extension: $\widehat{T} : \text{FBL}^{(p)}[F] \to \ell_q^N : \varphi \mapsto (\varphi(y_i^*))_{i=1}^n = (\widehat{y_i^*}(\varphi))_{i=1}^n$. $\|(y_i^*)_{i=1}^N\|_{q,\text{weak}} = \|T\| = \|\widehat{T}\| = \|(\widehat{y_i^*})_{i=1}^N\|_{q,\text{weak}}$. $\|(\widehat{T^*y_i^*})_{i=1}^N\|_{q,\text{weak}} \leqslant \|T\| \|(\widehat{y_i^*})_{i=1}^N\|_{q,\text{weak}}$. When do we have $FBL^{(p)}[E] = FBL^{(p)}[F]$?

Can $FBL^{(p)}[E]$ and $FBL^{(p)}[F]$ be "similar," while E and F are "different?"

The answer for $p = \infty$ differs from what we get for $p \in [1,\infty)$.

The isometric and isomorphic settings are different.

Case of $p = \infty$: structure of lattice homomorphisms

Theorem

 $\operatorname{FBL}^{(\infty)}[E]$ coincides with the space $\operatorname{CH}[E^*]$ of weak^{*} continuous positively homogeneous functions on $\operatorname{B}(E^*)$, with sup norm $\|\cdot\|_{\infty}$.

Corollary (Lattice homomorphism vs compositions)

(1) If Φ : F* → E* is a positively homogeneous and weak* continuous on bounded sets, then ∃ a lattice homomorphism
T : FBL^(∞)[E] → FBL^(∞)[F] s.t. Φ = Φ_T - that is, Tf = f ∘ Φ.
(2) If, moreover, Φ is surjective, and
∀y* ∈ F* C₁||y*|| ≥ ||Φy*|| ≥ ||y*||/C₂,
then T is a lattice isomorphism, with ||T|| ≤ C₁ and ||T⁻¹|| ≤ C₂.

Comparing $FBL^{(\infty)}[E]$ with $FBL^{(\infty)}[F]$, and FDDs

A Banach space *E* has Finite Dimensional Decomposition (FDD) if \exists a sequence of finite rank projections $P_n \in B(E)$ s.t. (i) $P_iP_j = P_{\min\{i,j\}}$, and (ii) $\forall x \in E$, $\lim_N P_N x = x$ (then $\sup_N ||P_N|| < \infty$).

Example: a Schauder basis (e_i) gives rise to an FDD $(P_i = \text{canonical basis projection})$.

An FDD (P_i) is monotone if $\sup_N ||P_N|| = 1$. **Example:** canonical basis in ℓ_p .

Theorem

If E is a Banach space with a monotone FDD, then $\text{FBL}^{(\infty)}[E]$ is lattice isometric to $\text{FBL}^{(\infty)}[c_0]$.

$\operatorname{FBL}^{(\infty)}[\mathcal{E}] = \operatorname{FBL}^{(\infty)}[c_0]$, construction in particular case

Suppose E has monotone normalized basis (e_i) , and (e_i^*) is strictly monotone: $\|\sum_{i=1}^{N} \alpha_i e_i^*\| \leq \|\sum_{i=1}^{N+1} \alpha_i e_i^*\|$, with equality iff $\alpha_{N+1} = 0$. Goal: construct positively homogeneous norm-preserving surjection $\Phi: E^* \to \ell_1 = c_0^*$ s.t. Φ and Φ^{-1} are weak^{*} continuous on bounded sets. Let f_i^* be the canonical basis of ℓ_1 . Let P_n be the *n*-th basis projection in *E*, then $P_n^*: E^* \to X_n = \operatorname{span}[e_i^*: 1 \leq i \leq n]$ canonically. Construct maps $\Phi_n : X_n \to Y_n = \operatorname{span}[f_i^* : 1 \leq i \leq n] \subset \ell_1$. Let $\Phi_1 \alpha_1 e_1^* := \alpha_1 f_1^*$. Define Φ_n recursively: for $e^* = x^* + \alpha e_n^*$ ($x^* \in X_{n-1}$), let $\Phi_n e^* := \Phi_{n-1} x^* + t f_n^*$, where $t = \operatorname{sign} \alpha \cdot (\|e^*\| - \|x^*\|)$. The $\Phi = \operatorname{weak}^* - \operatorname{lim} \Phi_n P_n^*$ has the desired properties. **Question.** Can we avoid the FDD assumption?

Properties of $FBL^{(\infty)}[c_0]$

Theorem

If E is a Banach space with a monotone FDD, then $\text{FBL}^{(\infty)}[E]$ is lattice isometric to $\text{FBL}^{(\infty)}[c_0] =: \mathfrak{U}$ (for "universal").

Corollary

If E has FDD, then FBL^(∞)[E] is lattice isomorphic to 𝔄.
 If E is a separable Banach space, then ∃ linear isometry
 FBL^(∞)[E] → 𝔄 and a contractive lattice homomorphism
 𝔅 𝔅 → FBL^(∞)[E] so that PJ = id_{FBL^(∞)[E]}.
 If E has the BAP, J above can be a lattice isomorphism.

Proof of (2). $X = \operatorname{FBL}^{(\infty)}[E]$ is an $\mathcal{L}_{\infty,1+}$ space, hence it has a monotone basis, hence $\operatorname{FBL}^{(\infty)}[X]$ is lattice isometric to \mathfrak{U} . $id: X \to X$ extends to a lattice homomorphism $\widehat{id} : \operatorname{FBL}^{(\infty)}[X] \to X$. $\widehat{id} \circ \phi_X$ is the desired factorization via $\operatorname{FBL}^{(\infty)}[X] = \mathfrak{U}$.

Properties of ${\mathfrak U}$

Question. What can we say about \mathfrak{U} ?

Proposition (\mathfrak{U} is not homogeneous (Gurarii))

If $1 \leq p \leq \infty$ and dim $E \geq 2$, there exist norm one $\phi, \psi \in \text{FBL}^{(p)}[E]_+$ s.t. $||T\phi - \psi|| \geq 1/3$ for any lattice isometry T.

Proposition

 \mathfrak{U} is Banach space isomorphic to C[0,1].

$\operatorname{FBL}^{(\infty)}[E]$ vs. $\operatorname{FBL}^{(\infty)}[F]$, non-separable case

Theorem (Keller)

If E and F are separable Banach spaces, then $(\mathbf{B}(E^*), w^*)$ is homeomorphic to $(\mathbf{B}(F^*), w^*)$. In fact, both are homeomorphic to $[0, 1]^{\omega}$.

No analogue exists in the non-separable setting.

Proposition

For Γ with $|\Gamma| \ge c$, and $p \in (1, \infty)$, let $E = \ell_1(\Gamma)$ and $F = \ell_p(\Gamma)$. Then:

- **(** $\mathbf{B}(E^*), w^*$) is not homeomorphic to ($\mathbf{B}(F^*), w^*$).
- **2** $\operatorname{FBL}^{(\infty)}[E]$ is not lattice isomorphic to $\operatorname{FBL}^{(\infty)}[F]$.

Lattice homomorphisms of $\mathrm{FBL}^{(p)}$ for $1\leqslant p<\infty$

Theorem (N. Laustsen, P. Tradacete)

Suppose $T : \operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F]$ is a lattice homomorphism. Then \exists a positively homogeneous $\Phi_T : F^* \to E^*$, weak* to weak* continuous on bounded sets, s.t. $[Tf](y^*) = f(\Phi_T y^*)$ for $y^* \in F^*$, $f \in \operatorname{FBL}^{(p)}[F]$; $\|\Phi_T y^*\| \leq \|T\| \|y^*\|$. If $q \ge p$, then, for any $y_1^*, \ldots, y_N^* \in F^*$, we have $\|(\Phi_T y_i^*)\|_{q,\operatorname{weak}} \leq \|T\| \|(y_i^*)\|_{q,\operatorname{weak}}$.

Although any lattice homomorphism is a composition operator, a composition need not generate a lattice homomorphism.

Proposition

 $\forall p \in [1, \infty) \exists$ positively homogeneous $\Phi : \ell_1^* \to \ell_1^*$, weak^{*} continuous on bounded sets, s.t. $\forall q \in [p, \infty], \forall y_1^*, \dots, y_N^* \in \ell_1^*$ we have $\|(\Phi y_i^*)\|_{q, \text{weak}} \leq \|(y_i^*)\|_{q, \text{weak}}$, but s.t. $f \circ \Phi \notin \text{FBL}^{(p)}[\ell_1]$ for some $f \in \text{FBL}^{(p)}[\ell_1]$.

Lattice quotients $\operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F]$, $1 \leq p < \infty$

Theorem

Fix $u, v \in [2, \infty]$, $p \in [1, \infty]$, and $u < \min\{v, p'\}$, 1/p + 1/p' = 1. Suppose E^* has cotype u, and F^* does not have cotype less than v. Then $FBL^{(p)}[F]$ is not lattice isomorphic to a lattice quotient of $FBL^{(p)}[E]$.

Cotype $u: \exists K \text{ s.t. } \forall x_1^*, \dots, x_N^* \in E^*, \mathbb{E} \| \sum_i \pm x_i^* \| \ge K(\sum_i \|x_i^*\|^u)^{1/u}.$ $L_r \text{ has cotype max}\{r, 2\}.$

Corollary

Suppose $\beta \in [1, 2]$, and $\alpha \in (\beta, \infty]$. For σ -finite Radon measures μ and ν , $FBL[L_{\beta}(\nu)]$ is not a lattice quotient of $FBL[L_{\alpha}(\mu)]$.

Known: $L_{\beta}(\nu)$ is not a quotient of $L_{\alpha}(\mu)$. **Proof.** Apply theorem with $E = L_{\alpha}(\mu)$, $F = L_{\beta}(\nu)$, p = 1. E^* has cotype max $\{2, \alpha'\}$, F^* has cotype $\beta' > \max\{2, \alpha'\}$.

Lattice quotients $\operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F], 1 \leq p < \infty$

Theorem

Suppose $\infty \ge u > \max\{v, p\} \ge v \ge 1$, $E = (\sum_j E_j)_u$ $(E_1, E_2, ... are finite dimensional)$, and F^* contains a copy of $\ell_{v'}$, with 1/v + 1/v' = 1. Then $FBL^{(p)}[F]$ is not a lattice quotient of $FBL^{(p)}[E]$.

Questions. (1) Do there exist non-isomorphic E and F s.t. $FBL^{(p)}[E]$ and $FBL^{(p)}[F]$ are lattice isomorphic $(1 \le p < \infty)$?

(2) If $FBL^{(p)}[E]$ and $FBL^{(p)}[F]$ are lattice isomorphic, which properties do E and F share?

Proposition

Suppose FBL[E] is lattice isometric to FBL[F].

- If E contains a complemented copy of ℓ_1 , then so does F.
- If E contains ℓ_1^n 's complementably uniformly, then so does F.

Indirect proof: relate properties of E to those of FBL[E].

Lattice isometries $\operatorname{FBL}^{(p)}[\mathcal{E}] \to \operatorname{FBL}^{(p)}[\mathcal{F}], \ 1 \leqslant p < \infty$

A Banach space Z is called smooth if $\forall z \in Z \setminus \{0\}$ the norming functional $z^* \in Z^*$ is unique. Meaning: the unit sphere of Z has no "corners."

Theorem

Suppose $1 \leq p < \infty$, and E, F are Banach spaces s.t. either (i) E^*, F^* are smooth, or (ii) E, F are reflexive, and either E^* or F^* is smooth. Then $FBL^{(p)}[E]$ is lattice isometric to $FBL^{(p)}[F]$ iff E is isometric to F.

Idea. Quantities $\|(e_i^*)\|_{p,\text{weak}} = \|(\widehat{e_i^*})\|_{p,\text{weak}}$ are preserved by lattice isometries.

For $x \in Z$, denote by $\mathcal{F}(x)$ the set of support functionals for x – that is, of $x^* \in Z^*$ for which $||x^*|| = ||x||$ and $||x||^2 = \langle x^*, x \rangle$.

Lemma

Suppose
$$x, y \in \mathbf{S}(Z)$$
, and $1 \leq p < \infty$. Let $\kappa = \sup_{x^* \in \mathcal{F}(x)} |\langle x^*, y \rangle|$. Then, for $t \to 0$, $\|(x, ty)\|_{p, \text{weak}} = 1 + \frac{\kappa^p}{p} |t|^p + o(|t|^p)$.

Lattice isometries when E^* , F^* are smooth

Theorem

Suppose $1 \leq p < \infty$, and E, F are Banach spaces so that E^*, F^* are smooth. Then $T : FBL^{(p)}[E] \to FBL^{(p)}[F]$ is a lattice isometry iff $T = \overline{U}$, for some isometry $U : E \to F$.

Proof. If Z is smooth, then $\forall x \in Z \exists f_x \in Z^*$ s.t. $\mathcal{F}(x) = \{f_x\}$. Define semi-inner product $[y, x] := \langle f_x, y \rangle$. This has the same properties as the inner product, except symmetry and additivity in second variable. Let $[\cdot, \cdot]_E$ and $[\cdot, \cdot]_F$ be the semi-inner products on E^* and F^* respectively. For $x^*, y^* \in \mathbf{S}(F^*)$, $\|(x^*, ty^*)\|_{P, \text{weak}} = 1 + \frac{|t|^p}{p} |[y^*, x^*]_F| + o(|t|^p)$, hence $|[y^*, x^*]_F| = |[\Phi_T y^*, \Phi_T x^*]_E|$. [Ilisevic & Turnsec]: $\exists \sigma : F^* \to \{-1, 1\}$ and $V : F^* \to E^*$ s.t. $\forall x^* \in F^*$ $\Phi_T x^* = \sigma(x^*)Vx^*$. Show that $\sigma = \text{const}$ and V is weak* continuous, so $V = U^*$.

Lattice isometries and the lack of smoothness

Definition

An element x of a Banach space X is called an ℓ_1 -point if the equality $\max_{\pm} ||x \pm y|| = ||x|| + ||y||$ holds for any $y \in X$.

Proposition

Suppose $1 \leq p < \infty$. x is an ℓ_1 -point iff $\|(x,y)\|_{p,\mathrm{weak}} = (\|x\|^p + \|y\|^p)^{1/p}$ for any $y \in X$.

Proposition

Suppose $T : FBL^{(p)}[F] \to FBL^{(p)}[E]$ is a lattice isometry. Then Φ_T is a bijection between ℓ_1 -points of E^* and F^* .

Application: free lattices on AM-spaces

Proposition

Suppose E and F are AM-spaces. For $1 \leq p < \infty$, TFAE:

- FBL^(p)[E] is lattice isometric to FBL^(p)[F].
- 2 E and F are isometric.
- I and F are lattice isometric.

Idea of proof. Realize E as a set of functions of $\overline{\Omega_E}$ (the weak* closure of the state space). Identify ℓ_1 points with point masses. Do the same for F. Any lattice isometry $\operatorname{FBL}^{(p)}[E] \to \operatorname{FBL}^{(p)}[F]$ will generate a homeomorphism between Ω_E and Ω_F .

Lattice isometries and strict convexity

A Banach space Z is called strictly convex if \forall norm one $z_1, z_2 \in Z$ we have $||z_1 + z_2|| < 2$ unless $z_1 \neq z_2$.

Proposition

Suppose $1 \leq p < \infty$, and E, F are Banach spaces s.t. $FBL^{(p)}[E]$ is lattice isometric to $FBL^{(p)}[F]$. Then E^* is strictly convex iff F^* is.

Thank you for your attention! Questions welcome!

