Kolyvagin's Conjecture and Higher Congruences of Modular Forms

Naomi Sweeting

(Harvard)
January 19, 2023
Banff

Introduction

- Let E / \mathbb{Q} be an elliptic curve of conductor N.

Introduction

- Let E / \mathbb{Q} be an elliptic curve of conductor N.
- Idea: use $X_{0}(N) \rightarrow E$ to produce rational points.
- If K / \mathbb{Q} is an imaginary quadratic field in which all $\ell \mid N$ are split, then $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathfrak{N}^{-1}$ is a $K[1]$-rational point $y(1)$ of $X_{0}(N)$.
- If $(n, N)=1$, then have $y(n) \in X_{0}(N)(K[n])$ CM point of conductor n.

Gross-Zagier

Let $y_{K} \in E(K)$ be the trace of image of $y(1)$.
Theorem (Gross-Zagier)
$L^{\prime}(E / K, 1) \neq 0 \Longleftrightarrow y_{K} \in E(K)$ is non-torsion.
In particular, $r_{a n}=1 \Longrightarrow r_{M W} \geq 1$.

- Note $L(E / K, s)$ vanishes to odd order at $s=1$ by splitting conditions.

Kolyvagin's classes

- Fix auxiliary p with $E[p]$ absolutely irreducible, and image of Galois action on $E[p]$ containing a nontrivial scalar.
- For $n=\prod \ell$ with ℓ inert in K, Kolyvagin defined classes

$$
c(n) \in H^{1}\left(K, T_{p} E / I_{n}\right)
$$

using CM points $y(n)$.

- $I_{n}=\left(a_{\ell}, \ell+1\right) \subset \mathbb{Z}_{p}$.

Kolyvagin's classes

- Fix auxiliary p with $E[p]$ absolutely irreducible, and image of Galois action on $E[p]$ containing a nontrivial scalar.
- For $n=\prod \ell$ with ℓ inert in K, Kolyvagin defined classes

$$
c(n) \in H^{1}\left(K, T_{p} E / I_{n}\right)
$$

using CM points $y(n)$.

- $I_{n}=\left(a_{\ell}, \ell+1\right) \subset \mathbb{Z}_{p}$.
- When $n=1$,

$$
c(1)=\delta\left(y_{K}\right) \in H^{1}\left(K, T_{p} E\right)
$$

where $\delta=$ Kummer map.

Kolyvagin's classes

- Fix auxiliary p with $E[p]$ absolutely irreducible, and image of Galois action on $E[p]$ containing a nontrivial scalar.
- For $n=\prod \ell$ with ℓ inert in K, Kolyvagin defined classes

$$
c(n) \in H^{1}\left(K, T_{p} E / I_{n}\right)
$$

using CM points $y(n)$.

- $I_{n}=\left(a_{\ell}, \ell+1\right) \subset \mathbb{Z}_{p}$.
- When $n=1$,

$$
c(1)=\delta\left(y_{K}\right) \in H^{1}\left(K, T_{p} E\right)
$$

where $\delta=$ Kummer map.

- $c_{M}(n) \in H^{1}\left(K, E\left[p^{M}\right]\right)=$ reduction of $c(n)$ when $M \leq v_{p}\left(I_{n}\right)$

Kolyvagin's conjecture

Let $\nu \leq \infty$ be the least integer s.t. $\exists n$ with ν prime factors and with $c(n) \neq 0$.

Conjecture (Kolyvagin)
There exists n such that $c(n) \neq 0$, i.e. $\nu<\infty$.

Kolyvagin's conjecture

Let $\nu \leq \infty$ be the least integer s.t. $\exists n$ with ν prime factors and with $c(n) \neq 0$.

Conjecture (Kolyvagin)

There exists n such that $c(n) \neq 0$, i.e. $\nu<\infty$.
Let $r_{p}^{ \pm}=\operatorname{rank}_{\mathbb{Z}_{p}} \operatorname{Sel}\left(K, T_{p} E\right)^{ \pm}$, where \pmdenotes τ eigenvalue.
Theorem (Kolyvagin)
Suppose $\nu<\infty$. Then $\max \left\{r_{p}^{+}, r_{p}^{-}\right\}=\nu+1, \min \left\{r_{p}^{+}, r_{p}^{-}\right\} \leq \nu$, and total rank is odd.

Gross-Zagier and Kolyvagin

Theorem (Gross-Zagier)

$L^{\prime}(E / K, 1) \neq 0 \Longleftrightarrow y_{K} \in E(K)$ is non-torsion.

Theorem (Kolyvagin)

If y_{K} is non-torsion, then $r_{M W}=r_{p}^{+}+r_{p}^{-}=1$.

- y_{K} non-torsion $\Longleftrightarrow c(1) \neq 0 \Longleftrightarrow \nu=0$.
- Then $r_{p}^{+}+r_{p}^{-} \leq 2 \nu+1=1$.

Converse to GZK

Proposition 1

Suppose $\nu<\infty$ and $r_{p}^{+}+r_{p}^{-}=1$. Then $L^{\prime}(E / K, 1) \neq 0$. In particular, $r_{a n}=r_{M W}=1$ and $Ш_{p}$ is finite.

- Since $\nu<\infty$, have $r_{p}^{+}+r_{p}^{-} \geq \nu+1$ so $\nu=0$
- Therefore $c(1) \neq 0$, and y_{K} is non-torsion.

Generalized set-up

- Fix K an imaginary quadratic field, $N=N^{+} N^{-}$with all $\ell \mid N^{+}$ split and all $\ell \mid N^{-}$inert, N^{-}squarefree with $\nu\left(N^{-}\right)$even.
- $X_{N^{+}, N^{-}}=$Shimura curve associated to quaternion algebra B of discriminant N^{-}and $\Gamma_{0}\left(N^{+}\right)$level structure.
- Can define CM points $y(n) \in X_{N^{+}, N^{-}}(K[n])$, coming from $K \hookrightarrow B$. In moduli interpretation, these will be (isogenous to) products of CM elliptic curves, with action of $B \hookrightarrow M_{2}(K)$
- \exists modular parameterization $J_{N^{+}, N^{-}} \rightarrow E$

Main result

Theorem (S., 2021)

For such K and N, let E / \mathbb{Q} be a non-CM elliptic curve of conductor N and $p \nmid 2 D_{K} N$ a prime. Assume:

- $\nu\left(N^{-}\right)$is even.
- $\bar{\rho}: G_{\mathbb{Q}} \rightarrow E[p]$ is absolutely irreducible and image contains a nontrivial scalar; if $p=3$, then $\bar{\rho}$ is not induced from a character of $G_{\mathbb{Q}[\sqrt{-3}]}$.
- If p is inert in K or $p \mid a_{p}$, then $\exists \ell \| N$ of non-split toric reduction.
Then there exists n with $c(n) \neq 0$, i.e. $\nu<\infty$.
- In particular, $r_{p}^{+}+r_{p}^{-}=1 \Longleftrightarrow L^{\prime}(E / K, 1) \neq 0$.

Main result

Theorem (S., 2021)

For such K and N, let E / \mathbb{Q} be a non-CM elliptic curve of conductor N and $p \nmid 2 D_{K} N$ a prime. Assume:

- $\nu\left(N^{-}\right)$is even.
- $\bar{\rho}: G_{\mathbb{Q}} \rightarrow E[p]$ is absolutely irreducible and image contains a nontrivial scalar; if $p=3$, then $\bar{\rho}$ is not induced from a character of $G_{\mathbb{Q}[\sqrt{-3}]}$.
- If p is inert in K or $p \mid a_{p}$, then $\exists \ell \| N$ of non-split toric reduction.
Then there exists n with $c(n) \neq 0$, i.e. $\nu<\infty$.
- Zhang proved some $c_{1}(n) \neq 0$ assuming $E[p]$ is ramified at $\ell \mid N^{+}+$other hypotheses.
- Moral: rank 0 BSD + congruences \Longrightarrow Kolyvagin.
- Let $X_{N^{+}, N^{-}}$be the Shimura set associated to quaternion algebra B ramified at $N^{-} \infty$, and $\Gamma_{0}\left(N^{+}\right)$level structure.

$$
X_{N^{+}, N^{-}}=B^{\times} \backslash B\left(\mathbb{A}_{f}\right)^{\times} / \widehat{R}^{\times}
$$

- If f is the modular form associated to E, then by JL we have

$$
\phi_{f}: X_{N^{+}, N^{-}} \rightarrow \mathbb{Z}
$$

with the same eigenvalues.

- Let $X_{N^{+}, N^{-}}$be the Shimura set associated to quaternion algebra B ramified at $N^{-} \infty$, and $\Gamma_{0}\left(N^{+}\right)$level structure.

$$
X_{N^{+}, N^{-}}=B^{\times} \backslash B\left(\mathbb{A}_{f}\right)^{\times} / \widehat{R}^{\times}
$$

- If f is the modular form associated to E, then by JL we have

$$
\phi_{f}: X_{N^{+}, N^{-}} \rightarrow \mathbb{Z}
$$

with the same eigenvalues.

- If $\ell \mid N^{+}$are split and $\ell \mid N^{-}$are inert in K, then have "CM points" $y(n) \in X_{N^{+}, N^{-}}$.
- We define $\ell(n) \in \mathbb{Z}_{p} / I_{n}$ for Kolyvagin numbers n using $\phi_{f}(y(n))$.
- Likewise $\ell_{M}(n) \in \mathbb{Z}_{p} / p^{M}$.
- $\ell(1)$ is a unit multiple of $L^{\text {alg }}(E / K, 1)$ (Gross).
- Let $\nu \leq \infty$ be the smallest integer s.t. $\exists n$ with ν prime factors s.t. $\ell(n) \neq 0$.

A result for $\nu\left(N^{-}\right)$odd

Theorem (S., 2021)

K, N, p, E as before, but $\nu\left(N^{-}\right)$is odd. Then:

- $\exists n$ with $\ell(n) \neq 0$, i.e. $\nu<\infty$.
- $\max \left\{r_{p}^{+}, r_{p}^{-}\right\}=\nu$.
- $r_{p}^{+}+r_{p}^{-}$is even.
- When $r_{p}^{ \pm}=0$, this follows from BSD formula (in rank zero), i.e. $L(E / K, 1) \neq 0 \Longleftrightarrow r k_{\mathbb{Z}_{p}} \operatorname{Sel}\left(K, T_{p} E\right)=0$.

A two-variable Euler system

- Whenever $\nu\left(N^{-} Q\right)$ is even, all $q \mid Q$ are inert, and

$$
T_{p} J_{N^{+}, N^{-} Q} \rightarrow T_{p} E / p^{M} \simeq E\left[p^{M}\right], \quad \text { (level-raising) }
$$

we may define $c_{M}(n, Q)$ using $y(n, Q) \in J_{N^{+}, N^{-} Q}(K[n])$ and induced map

$$
H^{1}\left(K, T_{p} J_{N^{+}, N^{-} Q}\right) \rightarrow H^{1}\left(K, E\left[p^{M}\right]\right)
$$

A two-variable Euler system

- Whenever $\nu\left(N^{-} Q\right)$ is even, all $q \mid Q$ are inert, and

$$
T_{p} J_{N^{+}, N^{-} Q} \rightarrow T_{p} E / p^{M} \simeq E\left[p^{M}\right], \quad \text { (level-raising) }
$$

we may define $c_{M}(n, Q)$ using $y(n, Q) \in J_{N^{+}, N^{-} Q}(K[n])$ and induced map

$$
H^{1}\left(K, T_{p} J_{N^{+}, N^{-} Q}\right) \rightarrow H^{1}\left(K, E\left[p^{M}\right]\right)
$$

- Whenever $\nu\left(N^{-} Q\right)$ is odd, all $q \mid Q$ are inert, and

$$
\mathbb{Z}\left[X_{N^{+}, N^{-} Q}\right]^{0} \rightarrow \mathbb{Z} / p^{M}(f), \quad \text { (level-raising) }
$$

can define

$$
\ell_{M}(n, Q) \in \mathbb{Z} / p^{M}
$$

using $y(n, Q) \in X_{N^{+}, N^{-}} Q$.

A two-variable Euler system

- Geometric arguments + control on failure of \mathbb{T}-freeness for $T_{p} J_{N^{+}, N^{-} Q}$ and $X_{N^{+}, N^{-} Q} \Longrightarrow$ plenty of level-raising congruences.

So we have constructed:

$$
\begin{cases}c_{M}(n, Q) \in H^{1}\left(K, E\left[p^{M}\right]\right), & \nu\left(N^{-} Q\right) \text { even } \\ \ell_{M}(n, Q) \in \mathbb{Z} / p^{M}, & \nu\left(N^{-} Q\right) \text { odd }\end{cases}
$$

for $M \leq v_{p}\left(I_{n}\right), M(Q)$.

A two-variable Euler system

$$
\begin{cases}c_{M}(n, Q) \in H^{1}\left(K, E\left[p^{M}\right]\right), & \nu\left(N^{-} Q\right) \text { even } \\ \ell_{M}(n, Q) \in \mathbb{Z} / p^{M}, & \nu\left(N^{-} Q\right) \text { odd }\end{cases}
$$

Two-variable Euler system relations:

- Horizontal:

$$
\operatorname{ord} \operatorname{loc}_{\ell} c_{M}(n, Q)=\operatorname{ord} \operatorname{loc}_{\ell} c_{M}(n \ell, Q)
$$

- Vertical:

$$
\begin{aligned}
\operatorname{ord} \operatorname{loc}_{q_{1}} c_{M}(n, Q) & =\operatorname{ord} \operatorname{loc}_{q_{2}} c_{M}\left(n, Q q_{1} q_{2}\right) \\
& =\operatorname{ord} \ell_{M}\left(n, Q q_{1}\right)
\end{aligned}
$$

Proof strategy

- Produce a single $Q=q_{1} \cdots q_{t}$ such that

$$
\ell_{M}(1, Q) \neq 0
$$

and $q_{1} \cdots q_{i}$ are all level-raising sets.

- By vertical relation:

$$
\ell_{M}\left(n, q_{1} \cdots q_{i}\right) \neq 0 \Longrightarrow c_{M}\left(n, q_{1} \cdots q_{i-1}\right) \neq 0
$$

- By horizontal and vertical relation:

$$
c_{M}\left(n, q_{1} \cdots q_{i}\right) \neq 0 \Longrightarrow \ell_{M}\left(n^{\prime}, q_{1} \cdots q_{i-1}\right) \neq 0
$$

where n^{\prime} may have one additional prime factor.

- So for some $n, c_{M}(n, 1) \neq 0$ or $\ell_{M}(n, 1) \neq 0$.

Proof strategy

- Produce a single $Q=q_{1} \cdots q_{t}$ such that

$$
\ell_{M}(1, Q) \neq 0
$$

and $q_{1} \cdots q_{i}$ are all level-raising sets.

- By vertical relation:

$$
\ell_{M}\left(n, q_{1} \cdots q_{i}\right) \neq 0 \Longrightarrow c_{M}\left(n, q_{1} \cdots q_{i-1}\right) \neq 0
$$

- By horizontal and vertical relation:

$$
c_{M}\left(n, q_{1} \cdots q_{i}\right) \neq 0 \Longrightarrow \ell_{M}\left(n^{\prime}, q_{1} \cdots q_{i-1}\right) \neq 0
$$

where n^{\prime} may have one additional prime factor.

- So for some $n, c_{M}(n, 1) \neq 0$ or $\ell_{M}(n, 1) \neq 0$.

The role of lifting

Suppose the level-raising map $\mathbb{Z}\left[X_{N^{+}, N^{-} Q}\right]^{0} \rightarrow \mathbb{Z} / p^{M}(f)$ lifts to a Hecke eigenfunction ϕ_{g}. Then:

$$
\ell_{M}(1, Q) \equiv L^{a l g}(g / K, 1) \quad\left(\bmod p^{M}\right)
$$

By work of Skinner-Urban, Wan, Kato, Ribet-Takahashi, Pollack-Weston, ...

$$
v_{\mathfrak{p}} L^{\text {alg }}(g / K, 1)={ }^{*} \lg _{\mathcal{O}_{\mathfrak{p}}} \operatorname{Sel}\left(K, A_{g}\left[\mathfrak{p}^{\infty}\right]\right)+\sum_{\ell \mid N^{+}} v_{\mathfrak{p}} \operatorname{tg}_{g}(\ell)
$$

The role of lifting

Suppose the level-raising map $\mathbb{Z}\left[X_{N^{+}, N^{-}-Q}\right]^{0} \rightarrow \mathbb{Z} / p^{M}(f)$ lifts to a Hecke eigenfunction ϕ_{g}. Then:

$$
\ell_{M}(1, Q) \equiv L^{a l g}(g / K, 1) \quad\left(\bmod p^{M}\right)
$$

By work of Skinner-Urban, Wan, Kato, Ribet-Takahashi, Pollack-Weston, ...

$$
v_{\mathfrak{p}} L^{a l g}(g / K, 1)={ }^{*} \lg _{\mathcal{O}_{\mathfrak{p}}} \operatorname{Sel}\left(K, A_{g}\left[\mathfrak{p}^{\infty}\right]\right)+\sum_{\ell \mid N^{+}} v_{\mathfrak{p}} \operatorname{tg}_{g}(\ell)
$$

By choosing M large and Q wisely, the right hand side can be made $<M$.

Deformation theory

- We want to choose a level-raising set Q such that there exists g of level $N Q$, congruent to f modulo p^{M}.
- By modularity lifting, suffices to find

$$
\tau_{g}: G_{\mathbb{Q}, S \cup Q} \rightarrow G L_{2}\left(\mathbb{Z}_{p}\right)
$$

with appropriate local behavior and

$$
\tau_{g} \equiv \rho_{E} \quad\left(\bmod p^{M}\right)
$$

- Also want $v_{\mathfrak{p}} L^{\text {alg }}(g / K, 1)$ to be small, i.e., $\operatorname{Sel}_{Q}\left(K, E\left[p^{M}\right]\right)$ to be small.

Deformation theory (Ramakrishna,
 Fakhruddin-Khare-Patrikis)

Suffices to find k and Q s.t.:

- the image of

$$
\operatorname{Sel}_{S \cup Q}\left(\mathbb{Q}, \operatorname{ad}^{0} E\left[p^{k}\right]\right) \rightarrow \operatorname{Sel}_{S \cup Q}\left(\mathbb{Q}, \operatorname{ad}^{0} E[p]\right)
$$

is trivial $\left(\right.$ gives τ, then $\left.g \equiv f\left(\bmod p^{M}\right)\right)$

Deformation theory (Ramakrishna, Fakhruddin-Khare-Patrikis)

Suffices to find k and Q s.t.:

- the image of

$$
\operatorname{Sel}_{S \cup Q}\left(\mathbb{Q}, \operatorname{ad}^{0} E\left[p^{k}\right]\right) \rightarrow \operatorname{Sel}_{S \cup Q}\left(\mathbb{Q}, \operatorname{ad}^{0} E[p]\right)
$$

is trivial $\left(\right.$ gives τ, then $\left.g \equiv f\left(\bmod p^{M}\right)\right)$

- $\nu\left(N^{-} Q\right)$ is odd
- A_{g} will have small Selmer group, i.e. $\operatorname{Sel}_{Q}\left(K, E\left[p^{M}\right]\right)$ is small

Then $v_{p} L^{\text {alg }}(g / K, 1)$ is small, so

$$
\ell_{M}(1, Q) \neq 0
$$

