Kolyvagin's Conjecture and Higher Congruences of Modular Forms

Naomi Sweeting

(Harvard)

January 19, 2023 Banff

Kolyvagin's Conjecture and Higher Congruences of Modular Forms

(Harvard)

()

Introduction

• Let E/\mathbb{Q} be an elliptic curve of conductor N.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Kolyvagin's Conjecture and Higher Congruences of Modular Forms

(Harvard)

Introduction

- Let E/\mathbb{Q} be an elliptic curve of conductor N.
- Idea: use $X_0(N) \rightarrow E$ to produce rational points.
- If K/\mathbb{Q} is an imaginary quadratic field in which all $\ell|N$ are split, then $\mathbb{C}/\mathcal{O}_K \to \mathbb{C}/\mathfrak{N}^{-1}$ is a K[1]-rational point y(1) of $X_0(N)$.
- If (n, N) = 1, then have y(n) ∈ X₀(N)(K[n]) CM point of conductor n.

ъ.

Gross-Zagier

Let $y_{\mathcal{K}} \in E(\mathcal{K})$ be the trace of image of y(1).

Theorem (Gross-Zagier) $L'(E/K, 1) \neq 0 \iff y_K \in E(K) \text{ is non-torsion.}$ In particular, $r_{an} = 1 \implies r_{MW} \geq 1.$

Note L(E/K, s) vanishes to odd order at s = 1 by splitting conditions.

Kolyvagin's classes

- Fix auxiliary p with E[p] absolutely irreducible, and image of Galois action on E[p] containing a nontrivial scalar.
- For $n = \prod \ell$ with ℓ inert in K, Kolyvagin defined classes

 $c(n) \in H^1(K, T_p E/I_n)$

using CM points y(n).

•
$$I_n = (a_\ell, \ell+1) \subset \mathbb{Z}_p$$
.

Kolyvagin's classes

- Fix auxiliary p with E[p] absolutely irreducible, and image of Galois action on E[p] containing a nontrivial scalar.
- For $n = \prod \ell$ with ℓ inert in K, Kolyvagin defined classes

 $c(n) \in H^1(K, T_p E/I_n)$

using CM points y(n).

•
$$I_n = (a_\ell, \ell+1) \subset \mathbb{Z}_p.$$

• When n = 1,

$$c(1) = \delta(y_{\mathcal{K}}) \in H^1(\mathcal{K}, T_{\rho}E)$$

where $\delta = \text{Kummer map}$.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ● ●

Kolyvagin's classes

- Fix auxiliary p with E[p] absolutely irreducible, and image of Galois action on E[p] containing a nontrivial scalar.
- For $n = \prod \ell$ with ℓ inert in K, Kolyvagin defined classes

 $c(n) \in H^1(K, T_p E/I_n)$

using CM points y(n).

•
$$I_n = (a_\ell, \ell+1) \subset \mathbb{Z}_p.$$

• When n = 1,

$$c(1) = \delta(y_{\mathcal{K}}) \in H^1(\mathcal{K}, T_p E)$$

where $\delta = \text{Kummer map}$.

• $c_M(n) \in H^1(K, E[p^M]) =$ reduction of c(n) when $M \leq v_p(I_n)$

Kolyvagin's conjecture

Let $\nu \leq \infty$ be the least integer s.t. $\exists n \text{ with } \nu \text{ prime factors and } with c(n) \neq 0.$

Conjecture (Kolyvagin)

There exists n such that $c(n) \neq 0$, i.e. $\nu < \infty$.

・ 日本・ 御 を きゅう きょうゆう しゅう

Kolyvagin's Conjecture and Higher Congruences of Modular Forms

(Harvard)

Kolyvagin's conjecture

Let $\nu \leq \infty$ be the least integer s.t. $\exists n \text{ with } \nu \text{ prime factors and}$ with $c(n) \neq 0$.

Conjecture (Kolyvagin)

There exists n such that $c(n) \neq 0$, i.e. $\nu < \infty$.

Let $r_p^{\pm} = \operatorname{rank}_{\mathbb{Z}_p} \operatorname{Sel}(K, T_p E)^{\pm}$, where \pm denotes τ eigenvalue.

Theorem (Kolyvagin)

Suppose $\nu < \infty$. Then $\max \{r_p^+, r_p^-\} = \nu + 1$, $\min \{r_p^+, r_p^-\} \le \nu$, and total rank is odd.

Gross-Zagier and Kolyvagin

Theorem (Gross-Zagier)

 $L'(E/K, 1) \neq 0 \iff y_K \in E(K)$ is non-torsion.

Theorem (Kolyvagin)

If y_K is non-torsion, then $r_{MW} = r_p^+ + r_p^- = 1$.

• y_K non-torsion $\iff c(1) \neq 0 \iff \nu = 0.$

• Then
$$r_p^+ + r_p^- \le 2\nu + 1 = 1$$
.

э.

Converse to GZK

Proposition 1

Suppose $\nu < \infty$ and $r_p^+ + r_p^- = 1$. Then $L'(E/K, 1) \neq 0$. In particular, $r_{an} = r_{MW} = 1$ and III_p is finite.

- Since $\nu < \infty$, have $r_p^+ + r_p^- \ge \nu + 1$ so $\nu = 0$
- Therefore $c(1) \neq 0$, and y_K is non-torsion.

< 同 > < 三 > < 三 > .

Generalized set-up

- Fix K an imaginary quadratic field, $N = N^+N^-$ with all $\ell | N^+$ split and all $\ell | N^-$ inert, N^- squarefree with $\nu(N^-)$ even.
- X_{N^+,N^-} = Shimura curve associated to quaternion algebra B of discriminant N^- and $\Gamma_0(N^+)$ level structure.
- Can define CM points y(n) ∈ X_{N⁺,N⁻}(K[n]), coming from K → B. In moduli interpretation, these will be (isogenous to) products of CM elliptic curves, with action of B → M₂(K)
- \exists modular parameterization $J_{N^+,N^-} \to E$

Main result

Theorem (S., 2021)

For such *K* and *N*, let E/\mathbb{Q} be a non-CM elliptic curve of conductor *N* and $p \nmid 2D_K N$ a prime. Assume:

- $\nu(N^-)$ is even.
- p̄: G_Q → E[p] is absolutely irreducible and image contains a nontrivial scalar; if p = 3, then p̄ is not induced from a character of G_{Q[√-3]}.
- If p is inert in K or p|a_p, then ∃ ℓ||N of non-split toric reduction.

Then there exists *n* with $c(n) \neq 0$, i.e. $\nu < \infty$.

• In particular,
$$r_p^+ + r_p^- = 1 \iff L'(E/K, 1) \neq 0$$
.

ヘロン 人間 とくほ とくほう

Main result

Theorem (S., 2021)

For such K and N, let E/\mathbb{Q} be a non-CM elliptic curve of conductor N and $p \nmid 2D_K N$ a prime. Assume:

- ν(N⁻) is even.
- $\overline{\rho}: G_{\mathbb{Q}} \to E[p]$ is absolutely irreducible and image contains a nontrivial scalar; if p = 3, then $\overline{\rho}$ is not induced from a character of $G_{\mathbb{Q}[\sqrt{-3}]}$.
- If p is inert in K or p|a_p, then ∃ ℓ||N of non-split toric reduction.

Then there exists *n* with $c(n) \neq 0$, i.e. $\nu < \infty$.

- Zhang proved some $c_1(n) \neq 0$ assuming E[p] is ramified at $\ell | N^+ +$ other hypotheses.
- Moral: rank 0 BSD + congruences \implies Kolyvagin.

"Kolyvagin classes" when $u(N^-)$ odd

• Let X_{N^+,N^-} be the Shimura set associated to quaternion algebra *B* ramified at $N^-\infty$, and $\Gamma_0(N^+)$ level structure.

$$X_{N^+,N^-} = B^{\times} \backslash B(\mathbb{A}_f)^{\times} / \widehat{R}^{\times}$$

• If f is the modular form associated to E, then by JL we have

$$\phi_f: X_{N^+,N^-} \to \mathbb{Z}$$

with the same eigenvalues.

"Kolyvagin classes" when $u(N^-)$ odd

• Let X_{N^+,N^-} be the Shimura set associated to quaternion algebra *B* ramified at $N^-\infty$, and $\Gamma_0(N^+)$ level structure.

$$X_{N^+,N^-} = B^{\times} \backslash B(\mathbb{A}_f)^{\times} / \widehat{R}^{\times}$$

• If f is the modular form associated to E, then by JL we have

$$\phi_f: X_{N^+,N^-} \to \mathbb{Z}$$

with the same eigenvalues.

If ℓ|N⁺ are split and ℓ|N⁻ are inert in K, then have "CM points" y(n) ∈ X_{N⁺,N⁻}.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

"Kolyvagin classes" when $u(N^-)$ odd

- We define $\ell(n) \in \mathbb{Z}_p/I_n$ for Kolyvagin numbers *n* using $\phi_f(y(n))$.
- Likewise $\ell_M(n) \in \mathbb{Z}_p/p^M$.
- $\ell(1)$ is a unit multiple of $L^{alg}(E/K, 1)$ (Gross).
- Let ν ≤ ∞ be the smallest integer s.t. ∃n with ν prime factors s.t. ℓ(n) ≠ 0.

э.

・ロト ・四ト ・ヨト ・ヨト

A result for $\nu(N^-)$ odd

Theorem (S., 2021)

K, N, p, E as before, but $\nu(N^-)$ is odd. Then:

- $\exists n \text{ with } \ell(n) \neq 0, \text{ i.e. } \nu < \infty.$
- max $\left\{ r_p^+, r_p^- \right\} = \nu$.

•
$$r_p^+ + r_p^-$$
 is even.

• When $r_p^{\pm} = 0$, this follows from BSD formula (in rank zero), i.e. $L(E/K, 1) \neq 0 \iff rk_{\mathbb{Z}_p} \operatorname{Sel}(K, T_p E) = 0$.

• Whenever $\nu(N^-Q)$ is even, all q|Q are inert, and

$$T_p J_{N^+,N^-Q} \twoheadrightarrow T_p E/p^M \simeq E[p^M],$$
 (level-raising)

we may define $c_M(n, Q)$ using $y(n, Q) \in J_{N^+, N^-Q}(K[n])$ and induced map

$$H^1(K, T_p J_{N^+, N^- Q}) \rightarrow H^1(K, E[p^M]).$$

.

• Whenever $\nu(N^-Q)$ is even, all q|Q are inert, and

$$T_p J_{N^+,N^-Q} \twoheadrightarrow T_p E/p^M \simeq E[p^M],$$
 (level-raising)

we may define $c_M(n, Q)$ using $y(n, Q) \in J_{N^+, N^-Q}(K[n])$ and induced map

$$H^1(K, T_p J_{N^+, N^- Q}) \rightarrow H^1(K, E[p^M]).$$

• Whenever $u(N^-Q)$ is odd, all q|Q are inert, and

$$\mathbb{Z}[X_{N^+,N^-Q}]^0 \twoheadrightarrow \mathbb{Z}/p^M(f), \qquad (\text{level-raising})$$

can define

$$\ell_M(n,Q) \in \mathbb{Z}/p^M$$

using $y(n, Q) \in X_{N^+, N^-Q}$.

(Harvard)

 Geometric arguments + control on failure of T-freeness for *T_pJ_{N⁺,N⁻Q*} and *X_{N⁺,N⁻Q}* ⇒ plenty of level-raising congruences.

So we have constructed:

$$egin{cases} c_{M}(n,Q)\in H^{1}(K,E[p^{M}]), &
u(N^{-}Q) ext{ even} \ \ell_{M}(n,Q)\in \mathbb{Z}/p^{M}, &
u(N^{-}Q) ext{ odd} \end{cases}$$

for $M \leq v_p(I_n), M(Q)$.

• • = • • = •

$$egin{cases} c_{\mathcal{M}}(n,Q) \in H^1(K,E[p^M]), &
u(N^-Q) ext{ even} \ \ell_{\mathcal{M}}(n,Q) \in \mathbb{Z}/p^M, &
u(N^-Q) ext{ odd} \end{cases}$$

Two-variable Euler system relations:

• Horizontal:

ord loc
$$_{\ell} c_{M}(n, Q)$$
 = ord loc $_{\ell} c_{M}(n\ell, Q)$

• Vertical:

ord loc_{q1}
$$c_M(n, Q) =$$
 ord loc_{q2} $c_M(n, Qq_1q_2)$
= ord $\ell_M(n, Qq_1)$

Kolyvagin's Conjecture and Higher Congruences of Modular Forms

* 3 > < 3 >

Proof strategy

• Produce a single $Q = q_1 \cdots q_t$ such that

 $\ell_M(1, Q) \neq 0,$

and $q_1 \cdots q_i$ are all level-raising sets.

• By vertical relation:

$$\ell_M(n, q_1 \cdots q_i) \neq 0 \implies c_M(n, q_1 \cdots q_{i-1}) \neq 0$$

• By horizontal and vertical relation:

$$c_M(n,q_1\cdots q_i) \neq 0 \implies \ell_M(n',q_1\cdots q_{i-1}) \neq 0,$$

where n' may have one additional prime factor.

• So for some n, $c_M(n,1) \neq 0$ or $\ell_M(n,1) \neq 0$.

< 同 > < 三 > < 三 >

Proof strategy

• Produce a single $Q = q_1 \cdots q_t$ such that

 $\ell_M(1,Q)\neq 0,$

and $q_1 \cdots q_i$ are all level-raising sets.

• By vertical relation:

$$\ell_M(n, q_1 \cdots q_i) \neq 0 \implies c_M(n, q_1 \cdots q_{i-1}) \neq 0$$

• By horizontal and vertical relation:

$$c_M(n, q_1 \cdots q_i) \neq 0 \implies \ell_M(n', q_1 \cdots q_{i-1}) \neq 0,$$

where n' may have one additional prime factor.

• So for some n, $c_M(n,1) \neq 0$ or $\ell_M(n,1) \neq 0$.

< 同 > < 三 > < 三 >

The role of lifting

Suppose the level-raising map $\mathbb{Z}[X_{N^+,N^-Q}]^0 \twoheadrightarrow \mathbb{Z}/p^M(f)$ lifts to a Hecke eigenfunction ϕ_g . Then:

$$\ell_M(1,Q) \equiv L^{alg}(g/K,1) \pmod{p^M}$$

By work of Skinner-Urban, Wan, Kato, Ribet-Takahashi, Pollack-Weston, ...

$$v_{\mathfrak{p}}L^{alg}(g/K,1) =^{*} \lg_{\mathcal{O}_{\mathfrak{p}}} \operatorname{Sel}(K, A_{g}[\mathfrak{p}^{\infty}]) + \sum_{\ell \mid N^{+}} v_{\mathfrak{p}}t_{g}(\ell)$$

伺 ト イヨト イヨト

The role of lifting

Suppose the level-raising map $\mathbb{Z}[X_{N^+,N^-Q}]^0 \twoheadrightarrow \mathbb{Z}/p^M(f)$ lifts to a Hecke eigenfunction ϕ_g . Then:

$$\ell_M(1,Q) \equiv L^{alg}(g/K,1) \pmod{p^M}$$

By work of Skinner-Urban, Wan, Kato, Ribet-Takahashi, Pollack-Weston, ...

$$v_{\mathfrak{p}}L^{alg}(g/K,1) =^{*} \lg_{\mathcal{O}_{\mathfrak{p}}} \operatorname{Sel}(K, A_{g}[\mathfrak{p}^{\infty}]) + \sum_{\ell \mid N^{+}} v_{\mathfrak{p}}t_{g}(\ell)$$

By choosing M large and Q wisely, the right hand side can be made < M.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Deformation theory

- We want to choose a level-raising set Q such that there exists g of level NQ, congruent to f modulo p^M.
- By modularity lifting, suffices to find

$$au_{g}: \mathcal{G}_{\mathbb{Q}, \mathcal{S} \cup \mathcal{Q}} o \mathcal{GL}_{2}(\mathbb{Z}_{p})$$

with appropriate local behavior and

$$\tau_g \equiv \rho_E \pmod{p^M}.$$

Also want v_pL^{alg}(g/K,1) to be small, i.e., Sel_Q(K, E[p^M]) to be small.

Deformation theory (Ramakrishna, Fakhruddin-Khare-Patrikis)

Suffices to find k and Q s.t.:

• the image of

 $\operatorname{Sel}_{S\cup Q}(\mathbb{Q},\operatorname{ad}^0E[p^k]) o \operatorname{Sel}_{S\cup Q}(\mathbb{Q},\operatorname{ad}^0E[p])$

is trivial (gives τ , then $g \equiv f \pmod{p^M}$)

(Harvard)

Kolyvagin's Conjecture and Higher Congruences of Modular Forms

Deformation theory (Ramakrishna, Fakhruddin-Khare-Patrikis)

Suffices to find k and Q s.t.:

• the image of

 $\operatorname{Sel}_{S\cup Q}(\mathbb{Q},\operatorname{ad}^{0}E[p^{k}]) \to \operatorname{Sel}_{S\cup Q}(\mathbb{Q},\operatorname{ad}^{0}E[p])$

is trivial (gives τ , then $g \equiv f \pmod{p^M}$

• $\nu(N^-Q)$ is odd

• A_g will have small Selmer group, i.e. $Sel_Q(K, E[p^M])$ is small Then $v_n L^{alg}(g/K, 1)$ is small, so

 $\ell_M(1, Q) \neq 0$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ● ●