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Setup

Fix:
• p a prime,
• F a cuspidal holomorphic eigenform with
− even weight k ≥ 4,
− level N with p ∤ N,
− trivial nebentypus.

Then we get:
• πF a cuspidal automorphic representation of GL2(A),
• ρF : GQ → GL2(Qp) the Galois representation, by Deligne.
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Main Theorem

Assume:
• L(s, πF ,Sym

3) vanishes to odd order at s = 1
2 ,

• F is not CM,
• 4, 9 ∤ N,
• The Hecke polynomial of F at p has simple roots.

Then, under Arthur’s conjectures, we have that the Bloch–Kato
Selmer group

H1
f (Q, (Sym3 ρF )

∨(3k2 − 1))

is nontrivial.

This is a special case of the Bloch–Kato conjecture, which predicts
in this case:

ords=1/2 L(s, πF , Sym
3) = dimH1

f (Q, (Sym3 ρF )
∨(3k2 − 1)).
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Some remarks:
• In the special case of N = 1, the four bulleted hypotheses in

the theorem are automatic. So the theorem reads:

dimH1
f (Q, (Sym3 ρF )

∨(3k2 − 1)) ̸= 0

under Arthur.

• The proof of the main theorem makes use of a p-adic
deformation of automorphic representations on the exceptional
group G2.

• Arthur, both local and global, is needed for:
− Proving a multiplicity formula for certain CAP forms on G2,
− Studying those CAP forms at infinity,
− Cases of functoriality from G2 to GL7.
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Let G2 now be the split group over Q with Dynkin diagram:
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Roots and parabolics

Let P = MN be the long root parabolic; M contains α.
Let P∨ = M∨N∨ be the short root parabolic; M∨ contains β.

Then M ∼= GL2 and M∨ ∼= GL2.

G2 = G∨
2 , and passing to dual switches long and short simple roots.
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Step 1. Cohomology.
For this step, k ≥ 4, N is arbitrary, and F is allowed to be CM.
Assume L(12 , πF , Sym

3) = 0.

Parabolically induce πF along P to Π, an automorphic
representation of G2(A). More precisely, Π is the Langlands
quotient of

Ind
G2(A)
P(A) (πF ⊗ δ

1/10+1/2
P(A) ).

Locate the finite part Πf in the cohomology of the locally
symmetric spaces attached to G2,

H∗(XG2 ,Vλ0).

Here λ0 is the weight k−4
2 (2α+ 3β), and Vλ0 denotes the

representation of G2(C) of highest weight λ0
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Step 1. Cohomology.

We locate Πf separately in both:

• Eisenstein cohomology. (Key input: Franke–Schwermer plus
Langlands–Shahidi.)
• Cuspidal cohomology. (Key input: Arthur’s multiplicity

formula, and Adams–Johnson.)

In cuspidal cohomology, Πf appears in different degrees depending
on the sign ϵ(12 , πF , Sym

3).
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Step 2. p-adic deformation.

Now assume p ∤ N, and ϵ(12 , πF ,Sym
3) = −1.

• Take a particular “critical p-stabilization” Πcrit
f of Πf .

• Use Step 1 along with the machinery of Urban’s eigenvariety
to compute the “cuspidal overconvergent multiplicity” of Πcrit

f . It
depends on the “classical” multiplicity of Πf in H∗(XG2 ,Vλ0), and
is nonzero when ϵ(12 , πF ,Sym

3) = −1.
• Urban’s eigenvariety p-adically deforms Πcrit

f in a generically
cuspidal family E over all p-adic weights.
• Use the theory of types (due to Fintzen) to show that the

members of E have the same ramification properties at Πf at
primes ℓ|N; here we use 4, 9 ∤ N.

Sam Mundy Eisenstein series and G2



The main theorem
The three main steps

More on the p-adic family E

Step 3. Galois representations.

Now assume F is not CM. Then ρF has large image, and Sym2 ρF
and Sym3 ρF are irreducible.

• Construct a Galois representation ρE : GQ → G2(Frac(O(E)))
interpolating those for the members of E . (Key input: Lafforgue’s
pseudocharacters.)
• Construct a particular lattice L in ρE .
• Show that the specialization of L at Πcrit

f gives an unramified
(by the local properties of E), crystalline (use here in particular
that the Hecke polynomial of F at p has simple roots) extension

0 → (Sym3 ρF )
∨(3k2 − 1) → E → Qp → 0.

Then σ := [E ] ∈ H1
f (Q, (Sym3 ρF )

∨(3k2 − 1)).
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The Skinner–Urban method; we use G = G2, π = πF .
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Overview

• To construct the family E deforming Πcrit
f , we need to use the

machinery in the construction of Urban’s eigenvariety.

• Urban’s eigenvariety is constructed for groups with discrete
series, which G2 has.

• The family E will be a family of representations, not a family
of forms.
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Preliminaries: Groups

B is the Borel with maximal torus T and unipotent radical U.

Let Kp
f ⊂ G2(Ap

f ) be an open compact subgroup such that Πf has
fixed vectors by Kp

f · G2(Zp).

Let I ⊂ G2(Zp) be the Iwahori subgroup;

I = {g ∈ G2(Zp) | (g mod p) ∈ B(Fp)} .

Let T+ ⊂ T (Qp) be the monoid defined by

T+ =
{
t ∈ T (Qp)

∣∣ tU(Zp)t
−1 ⊂ U(Zp)

}
.
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Preliminaries: Hecke algebras

Let Up be the Zp-subalgebra of C∞
c (I\G2(Qp)/I ,Zp) generated by

1

Vol(I )
char(ItI ), t ∈ T+.

Let Hp(K
p
f ) be the Hecke algebra defined by

Hp(K
p
f ) = Up ⊗Zp C

∞
c (Kp

f \G2(Ap
f )/K

p
f ,Qp).

It is a subalgebra of C∞
c (G2(Af ),C), identifying Qp

∼= C.
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Distributions
For µ a dominant integral weight of T , define the distribution

I cl0 (f , µ,K
p
f ) = Tr(f |H∗

cusp(XG2 ,Vµ)), f ∈ Hp(K
p
f ).

Let X be the rigid analytic weight space, defined by

X(L) = Homcont(T (Zp), L
×),

for L/Qp finite.

Urban defines, this time for any µ ∈ X(Qp), a distribution

I †0 (·, µ,K
f
p ) : Hp(K

p
f ) → Qp.

The distributions I †0 (·, µ,K f
p ) are analytic in µ, and for µ dominant

integral and regular, they contain I cl0 (·, µ,K
p
f ) as a summand.

Sam Mundy Eisenstein series and G2



The main theorem
The three main steps

More on the p-adic family E

p-stabilizations

A p-stabilization of an irreducible smooth G2(Af )-representation σ
with I · Kp

f -fixed vectors is, by definition, an irreducible constituent

of σI ·Kp
f when it is viewed as an Hp(K

p
f )-module.

The p-stabilizations of σ are determined by the I -fixed vectors in
the local constituent σp of σ at p.

Each p-stabilization of σ has a slope, which is a Q-valued weight
of T determined by the p-adic valuation of eigenvalues of
operators in Up.
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Theorem (Urban)

If µ is dominant, integral and regular and τ is an irreducible
constituent of I cl0 (·, µ,K

p
f ) whose slope is not too large with respect

to µ (technically, noncritical), then there is a generically cuspidal
p-adic family of automorphic representations passing through τ .
This means there are
• A rigid analytic space Y, generically finite over a neighborhood

U of µ in X,
• A distribution I : Hp(K

p
f ) → O(Y),

• A point y0 ∈ Y(Qp) over µ,
such that the specialization of I at y0 contains τ as a summand,
and for generic y in Y over a dominant integral and regular weight
µy , the specialization of I at y is an irreducible constituent of
I cl0 (·, µy ,K

p
f ).
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Problem

Unfortunately, Urban’s theorem does not apply here:

• The p-stabilization Πcrit
f of Πf we must use has critical slope;

• The weight λ0 of Π is also irregular.
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Solution

Urban’s theorem above is actually an immediate corollary of:

Theorem (Urban)

If µ is any p-adic weight and τ is an irreducible constituent of
I †0 (·, µ,K

p
f ), then there is a generically cuspidal p-adic family of

automorphic representations passing through τ .

So it suffices to show that Πcrit
f is a constituent of I †0 (·, λ0,K

p
f ).
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One defines the distribution I †0 (·, µ,K
p
f ) in terms of another one,

I †(·, µ,Kp
f ), and analogous distributions for smaller Levis of G2.

Definition

We let

I †0 (f , µ,K
p
f ) = I †(f , µ,Kp

f )−∑
Q∈{P,P∨,B}

∑
w∈W

MQ
Eis

(−1)dim(NQ)−ℓ(w)I †MQ ,0
(fMQ ,w ,w∗µ+2ρQ ,K

p
f ,MQ

).

The sum over proper parabolics can be made completely explicit.
What about the term I †(·, µ,Kp

f )?
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Theorem (Urban)

I cl(f , µ,Kp
f ) =

∑
w∈WG2

(−1)ℓ(w)I †(f w ,µ,w ∗ µ,Kp
f ).

Slope considerations show that Πcrit
f can only be a constituent of

I †(f w ,λ0 ,w ∗ λ0,K
p
f ) for w = 1,wβ.

Combined with the definition of I †0 , one computes everything
explicitly and obtains:

Theorem

Πcrit
f appears with multiplicity at least 3 in I †0 (·, λ0,K

p
f ) if

ϵ(12 , πF ,Sym
3) = −1 (under Arthur).
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Thank you!
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