Eisenstein series, p-adic deformations, Galois representations, and the group G_2

Sam Mundy

Princeton University

January 19, 2023

The main theorem

Setup

Fix:

- p a prime,
- F a cuspidal holomorphic eigenform with
 - even weight $k \ge 4$,
 - level N with $p \nmid N$,
 - trivial nebentypus.

Then we get:

- π_F a cuspidal automorphic representation of $GL_2(\mathbb{A})$,
- $\rho_F : G_{\mathbb{Q}} \to GL_2(\overline{\mathbb{Q}}_p)$ the Galois representation, by Deligne.

Main Theorem

Assume:

- $L(s, \pi_F, \text{Sym}^3)$ vanishes to odd order at $s = \frac{1}{2}$,
- F is not CM,
- 4,9 *∤ N*,
- The Hecke polynomial of F at p has simple roots.

Then, under Arthur's conjectures, we have that the Bloch–Kato Selmer group

$$H^1_f(\mathbb{Q},(\operatorname{Sym}^3 \rho_F)^{\vee}(rac{3k}{2}-1))$$

is nontrivial.

This is a special case of the Bloch–Kato conjecture, which predicts in this case:

$$\operatorname{ord}_{s=1/2} L(s, \pi_F, \operatorname{Sym}^3) = \dim H^1_f(\mathbb{Q}, (\operatorname{Sym}^3 \rho_F)^{\vee}(\frac{3k}{2} - 1)).$$

Some remarks:

• In the special case of N = 1, the four bulleted hypotheses in the theorem are automatic. So the theorem reads:

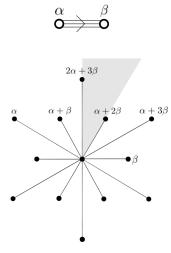
$$\dim H^1_f(\mathbb{Q},(\operatorname{Sym}^3\rho_F)^{\vee}(\tfrac{3k}{2}-1))\neq 0$$

under Arthur.

• The proof of the main theorem makes use of a p-adic deformation of automorphic representations on the exceptional group G_2 .

- Arthur, both local and global, is needed for:
 - Proving a multiplicity formula for certain CAP forms on G_2 ,
 - Studying those CAP forms at infinity,
 - Cases of functoriality from G_2 to GL_7 .

Let G_2 now be the split group over \mathbb{Q} with Dynkin diagram:



Roots and parabolics

Let P = MN be the long root parabolic; M contains α . Let $P^{\vee} = M^{\vee}N^{\vee}$ be the short root parabolic; M^{\vee} contains β .

Then $M \cong GL_2$ and $M^{\vee} \cong GL_2$.

 $G_2 = G_2^{\vee}$, and passing to dual switches long and short simple roots.

The three main steps

 $\begin{array}{l} \underline{\text{Step 1. Cohomology.}}\\ \hline \text{For this step, } k \geq 4, \ N \ \text{is arbitrary, and } F \ \text{is allowed to be CM.} \\ \hline \text{Assume } L(\frac{1}{2}, \pi_F, \text{Sym}^3) = 0. \end{array}$

Parabolically induce π_F along P to Π , an automorphic representation of $G_2(\mathbb{A})$. More precisely, Π is the Langlands quotient of

$$\mathsf{Ind}_{P(\mathbb{A})}^{G_2(\mathbb{A})}(\pi_{\mathsf{F}}\otimes\delta_{P(\mathbb{A})}^{1/10+1/2}).$$

Locate the finite part Π_f in the cohomology of the locally symmetric spaces attached to G_2 ,

$$H^*(X_{G_2},V_{\lambda_0}).$$

Here λ_0 is the weight $\frac{k-4}{2}(2\alpha + 3\beta)$, and V_{λ_0} denotes the representation of $G_2(\mathbb{C})$ of highest weight λ_0

Step 1. Cohomology.

We locate Π_f separately in both:

• Eisenstein cohomology. (Key input: Franke–Schwermer plus Langlands–Shahidi.)

• Cuspidal cohomology. (Key input: Arthur's multiplicity formula, and Adams-Johnson.)

In cuspidal cohomology, Π_f appears in different degrees depending on the sign $\epsilon(\frac{1}{2}, \pi_F, \text{Sym}^3)$.

Step 2. *p*-adic deformation.

Now assume $p \nmid N$, and $\epsilon(\frac{1}{2}, \pi_F, \text{Sym}^3) = -1$.

• Take a particular "critical *p*-stabilization" Π_f^{crit} of Π_f .

• Use Step 1 along with the machinery of Urban's eigenvariety to compute the "cuspidal overconvergent multiplicity" of Π_f^{crit} . It depends on the "classical" multiplicity of Π_f in $H^*(X_{G_2}, V_{\lambda_0})$, and is nonzero when $\epsilon(\frac{1}{2}, \pi_F, \text{Sym}^3) = -1$.

• Urban's eigenvariety *p*-adically deforms Π_f^{crit} in a generically cuspidal family \mathcal{E} over all *p*-adic weights.

• Use the theory of types (due to Fintzen) to show that the members of \mathcal{E} have the same ramification properties at Π_f at primes $\ell | N$; here we use 4,9 $\nmid N$.

Step 3. Galois representations.

Now assume F is not CM. Then ρ_F has large image, and Sym² ρ_F and Sym³ ρ_F are irreducible.

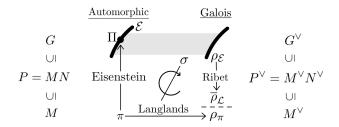
• Construct a Galois representation $\rho_{\mathcal{E}} : G_{\mathbb{Q}} \to G_2(\overline{\operatorname{Frac}(\mathcal{O}(\mathcal{E}))})$ interpolating those for the members of \mathcal{E} . (Key input: Lafforgue's pseudocharacters.)

• Construct a particular lattice \mathcal{L} in $\rho_{\mathcal{E}}$.

• Show that the specialization of \mathcal{L} at $\Pi_f^{\rm crit}$ gives an unramified (by the local properties of \mathcal{E}), crystalline (use here in particular that the Hecke polynomial of F at p has simple roots) extension

$$0 o (\operatorname{Sym}^3
ho_F)^{ee}(rac{3k}{2}-1) o E o \overline{\mathbb{Q}}_p o 0.$$

Then $\sigma := [E] \in H^1_f(\mathbb{Q}, (\operatorname{Sym}^3 \rho_F)^{\vee}(\frac{3k}{2} - 1)).$



The Skinner–Urban method; we use $G = G_2$, $\pi = \pi_F$.

More on the *p*-adic family \mathcal{E}

Overview

• To construct the family \mathcal{E} deforming Π_f^{crit} , we need to use the machinery in the construction of Urban's eigenvariety.

• Urban's eigenvariety is constructed for groups with discrete series, which G_2 has.

 \bullet The family ${\mathcal E}$ will be a family of representations, not a family of forms.

Preliminaries: Groups

B is the Borel with maximal torus T and unipotent radical U.

Let $K_f^p \subset G_2(\mathbb{A}_f^p)$ be an open compact subgroup such that Π_f has fixed vectors by $K_f^p \cdot G_2(\mathbb{Z}_p)$.

Let $I \subset G_2(\mathbb{Z}_p)$ be the lwahori subgroup;

$$I = \{g \in G_2(\mathbb{Z}_p) \mid (g \mod p) \in B(\mathbb{F}_p)\}.$$

Let $T^+ \subset T(\mathbb{Q}_p)$ be the monoid defined by

$$\mathcal{T}^+ = \left\{ t \in \mathcal{T}(\mathbb{Q}_p) \ \middle| \ t U(\mathbb{Z}_p) t^{-1} \subset U(\mathbb{Z}_p)
ight\}.$$

Preliminaries: Hecke algebras

Let \mathcal{U}_p be the \mathbb{Z}_p -subalgebra of $C^\infty_c(I \setminus G_2(\mathbb{Q}_p)/I, \mathbb{Z}_p)$ generated by

$$\frac{1}{\operatorname{Vol}(I)}\operatorname{char}(ItI), \qquad t\in T^+.$$

Let $\mathcal{H}_p(K_f^p)$ be the Hecke algebra defined by

$$\mathcal{H}_{p}(K_{f}^{p}) = \mathcal{U}_{p} \otimes_{\mathbb{Z}_{p}} C_{c}^{\infty}(K_{f}^{p} \setminus G_{2}(\mathbb{A}_{f}^{p})/K_{f}^{p}, \mathbb{Q}_{p}).$$

It is a subalgebra of $C_c^{\infty}(G_2(\mathbb{A}_f), \mathbb{C})$, identifying $\overline{\mathbb{Q}}_p \cong \mathbb{C}$.

Distributions

For μ a dominant integral weight of T, define the distribution

$$I_0^{\rm cl}(f,\mu,K_f^p) = {\rm Tr}(f|H_{\rm cusp}^*(X_{G_2},V_{\mu})), \qquad f\in {\mathcal H}_p(K_f^p).$$

Let $\mathfrak X$ be the rigid analytic weight space, defined by

$$\mathfrak{X}(L) = \operatorname{Hom}_{\operatorname{cont}}(T(\mathbb{Z}_p), L^{\times}),$$

for L/\mathbb{Q}_p finite.

Urban defines, this time for any $\mu \in \mathfrak{X}(\overline{\mathbb{Q}}_p)$, a distribution

$$I_0^{\dagger}(\cdot, \mu, K_p^f) : \mathcal{H}_p(K_f^p) \to \overline{\mathbb{Q}}_p.$$

The distributions $I_0^{\dagger}(\cdot, \mu, K_p^f)$ are analytic in μ , and for μ dominant integral and regular, they contain $I_0^{cl}(\cdot, \mu, K_f^p)$ as a summand.

p-stabilizations

A *p*-stabilization of an irreducible smooth $G_2(\mathbb{A}_f)$ -representation σ with $I \cdot K_f^p$ -fixed vectors is, by definition, an irreducible constituent of $\sigma^{I \cdot K_f^p}$ when it is viewed as an $\mathcal{H}_p(K_f^p)$ -module.

The *p*-stabilizations of σ are determined by the *I*-fixed vectors in the local constituent σ_p of σ at *p*.

Each *p*-stabilization of σ has a *slope*, which is a \mathbb{Q} -valued weight of T determined by the *p*-adic valuation of eigenvalues of operators in \mathcal{U}_p .

Theorem (Urban)

If μ is dominant, integral and regular and τ is an irreducible constituent of $I_0^{cl}(\cdot, \mu, K_f^p)$ whose slope is not too large with respect to μ (technically, noncritical), then there is a generically cuspidal *p*-adic family of automorphic representations passing through τ . This means there are

• A rigid analytic space \mathfrak{Y} , generically finite over a neighborhood \mathfrak{U} of μ in \mathfrak{X} ,

• A distribution $I : \mathcal{H}_p(K_f^p) \to \mathcal{O}(\mathfrak{Y}),$

• A point $y_0 \in \mathfrak{Y}(\overline{\mathbb{Q}}_p)$ over μ ,

such that the specialization of I at y_0 contains τ as a summand, and for generic y in \mathfrak{Y} over a dominant integral and regular weight μ_y , the specialization of I at y is an irreducible constituent of $I_0^{cl}(\cdot, \mu_y, K_f^p)$.

<u>Problem</u>

Unfortunately, Urban's theorem does not apply here:

- The *p*-stabilization Π_f^{crit} of Π_f we must use has critical slope;
- The weight λ_0 of Π is also irregular.

Solution

Urban's theorem above is actually an immediate corollary of:

Theorem (Urban)

If μ is any p-adic weight and τ is an irreducible constituent of $I_0^{\dagger}(\cdot, \mu, K_f^p)$, then there is a generically cuspidal p-adic family of automorphic representations passing through τ .

So it suffices to show that Π_f^{crit} is a constituent of $I_0^{\dagger}(\cdot, \lambda_0, K_f^p)$.

One defines the distribution $I_0^{\dagger}(\cdot, \mu, K_f^p)$ in terms of another one, $I^{\dagger}(\cdot, \mu, K_f^p)$, and analogous distributions for smaller Levis of G_2 .

Definition

We let

$$I_{0}^{\dagger}(f,\mu,K_{f}^{p}) = I^{\dagger}(f,\mu,K_{f}^{p}) - \sum_{Q \in \{P,P^{\vee},B\}} \sum_{w \in W_{\text{Eis}}^{M_{Q}}} (-1)^{\dim(N_{Q})-\ell(w)} I_{M_{Q},0}^{\dagger}(f_{M_{Q},w},w*\mu+2\rho_{Q},K_{f,M_{Q}}^{p}).$$

The sum over proper parabolics can be made completely explicit. What about the term $I^{\dagger}(\cdot, \mu, K_{f}^{p})$?

Theorem (Urban)

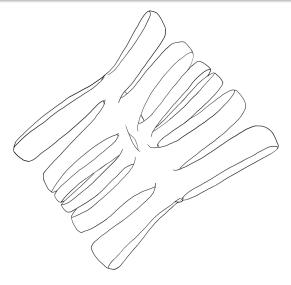
$$I^{cl}(f,\mu,K_{f}^{p}) = \sum_{w \in W_{G_{2}}} (-1)^{\ell(w)} I^{\dagger}(f^{w,\mu},w*\mu,K_{f}^{p}).$$

Slope considerations show that Π_f^{crit} can only be a constituent of $I^{\dagger}(f^{w,\lambda_0}, w * \lambda_0, K_f^p)$ for $w = 1, w_{\beta}$.

Combined with the definition of I_0^{\dagger} , one computes everything explicitly and obtains:

Theorem

$$\Pi_{f}^{\text{crit}}$$
 appears with multiplicity at least 3 in $l_{0}^{\dagger}(\cdot, \lambda_{0}, K_{f}^{p})$ if $\epsilon(\frac{1}{2}, \pi_{F}, \text{Sym}^{3}) = -1$ (under Arthur).



Thank you!