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Linear Ensemble: motivation and the finite case
Some scenarios – not necessarily linear – which can be cast into the setting
of ensemble control:

“Broadcast control” in the sense that a “swarm” of (almost identical non-
interacting) systems which cannot be addressed individually has to be
controlled:

- swarms of micro-satellites or micro-robots;
- NMR-spectroscopy;
- more general, huge number of quantum/nano particles (which are in general

not accessible to measurement based feedback methods);
- infinite platoons of vehicles (apply Fourier transform, see H. Zwart);
- (desynchronization of) neuron populations for the treatment of epilepsy;
- Mass transport ...

“Robust open-loop control” in the sense that one seeks for open-loop
control strategies which counteract (uniformly distributed) model un-
certainties;

Terminology:

ensemble control = simultaneous control = controlling families of systems
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Motivation

Starter:

A prime example from quantum control!

It’s a bilinear ensemble!

The movie “Dancing Arrows” is taken from

Steffen Glaser (TU Munich)
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Motivation

Controlled Bloch Equation:ẋ(t)
ẏ(t)
ż(t)

 =

 0 −ω0 ε0u2(t)
ω0 0 −ε0u1(t)

−ε0u2(t) ε0u1(t) 0

x(t)
y(t)
z(t)

 (B)

Control Inputs: u1(t),u2(t)
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Control Inputs: u1(t),u2(t)

Dispersion effects
Lamor dispersion (results form B-field inhomogeneities)
Transverse dispersion (results from inhomogeneities of rf-pulses)
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Motivation

Controlled Bloch Equation:ẋ(t)
ẏ(t)
ż(t)

 =

 0 −ω εu2(t)
ω 0 −εu1(t)

−εu2(t) εu1(t) 0

x(t)
y(t)
z(t)

 (B)

Control inputs: u1(t),u2(t) are independent of ω and ε!

Dispersion effects = uncertain model parameters
Lamor dispersion =⇒ ω ∈ [ω0 −∆ω, ω0 + ∆ω] =:W
Transverse dispersion =⇒ ε ∈ [ε0 −∆ε, ε0 + ∆ε] =: E
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Motivation

Dispersion of the Bloch Equation:

Abbildung: S. Glaser, TU München, presented 2009 at KITP
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Motivation
Dispersion of the Bloch Equation:

and they can be calculated at each time for a given pulse.
Mopt (t) will satisfy the stationary condition of Eq. (7) when
kopt (t) = 0. For a non-optimal pulse, the gradient calculat-
ed in Eq. (7) for each time point of the two trajectories
gives the proportional adjustment to make in the pulse
phase /.

2.2. Numerical algorithm

The procedure for optimizing the cost can be incorpo-
rated in the following algorithm:

(i) Choose an initial RF sequence xð0Þ
e .

(ii) Evolve M forward in time from the initial state ẑ.
(iii) Evolve k backward in time from the target state x̂.
(iv) /(k+1)(t) fi /(k)(t) + !xrf Æ (kMz #Mkz).
(v) Repeat steps (ii)–(iv) until a desired convergence of U

is reached.

Since the optimization is performed over a range of
chemical-shift offsets and variations in the peak RF cali-
bration, the gradient used in step (iv) is averaged over
the entire range. Additional details of the averaging proce-
dure and the choice of stepsize ! for incrementing the phase
in each iteration are described in [14,15].

3. Results and discussion

In our work to date, we have focused on demonstrat-
ing the capabilities of optimal control theory for NMR
pulse design, establishing the effectiveness of the algo-
rithms and the viability of the resulting pulses. The exci-
tation pulse is a simple example that characterizes
optimal control behavior in NMR while minimizing its
convolution with any particular application. This charac-
terization establishes a foundation for pursuing other
applications. We first assess the performance of the cali-
bration-free phase-modulated pulse derived by the new
algorithm, then consider applications to two commonly
used pulse sequences, illustrating the advantages of the
new pulse.

3.1. Pulse performance

Pulse performance, in general, depends on the pulse
duration, with pulses of sufficient length giving the optimal
control algorithm the flexibility to obtain practically ideal
results in many cases. In addition, excitation (and inver-
sion) efficiency undergoes a steep drop in performance
below a minimum pulse length [16], which depends on
the parameters defining the optimization. Increasing pulse
length significantly above this minimum provides only
marginal improvement, so the shortest pulse that provides
acceptable performance is the goal.

Choosing 2 ms for the pulse length initially and opti-
mizing with the new algorithm provided a pulse that
transforms 99.9% of initial z magnetization to within
1.5! of the x-axis over a resonance offset range of
50 kHz for a constant RF amplitude anywhere in the
range 10–20 kHz (results not shown). This nearly ideal
performance can be traded for shorter pulse length. Since
performance drops rapidly for shorter pulses, we find
that overdigitizing the initial waveform used in the opti-
mal control procedure gives the algorithm additional
flexibility in finding the best solution, as discussed in
Ref. [17]. Every other point of the resulting pulse is used
as the initial input for generating a new pulse, and this
procedure is continued until a minimal digitization with
acceptable performance is reached. For a 1 ms pulse
length, 320,000 random phases were input initially
($3 ns per time step). Such a large number of parameters
would be extremely difficult, if not impossible, to opti-
mize using conventional methods. This ‘‘breeder’’ pulse
resulted in the final 625-point pulse shown in Fig. 1.

3.1.1. Comparison to existing pulses
Although adiabatic pulses accommodate a wide range of

peak power levels, the exceptional bandwidth of adiabatic
inversion for a given peak RF amplitude does not translate
to excitation. The orientation of the effective RF field at the
end of an adiabatic excitation pulse, which, ideally gives
the location of the magnetization, is not in the transverse
plane for non-zero chemical-shift offset. Other existing

Fig. 1. Phase modulation of the constant amplitude 1 ms PM-BEBOP pulse. This pulse performs the point-to-point transformation Iz fi Ix over a 50 kHz
range of resonance offsets for constant RF amplitude set anywhere in the range 10–20 kHz (see Figs. 2 and 3).

T.E. Skinner et al. / Journal of Magnetic Resonance 179 (2006) 241–249 243

Abbildung: S. Glaser, 2009
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below a minimum pulse length [16], which depends on
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length significantly above this minimum provides only
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50 kHz for a constant RF amplitude anywhere in the
range 10–20 kHz (results not shown). This nearly ideal
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inversion for a given peak RF amplitude does not translate
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the location of the magnetization, is not in the transverse
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resulted in the final 625-point pulse shown in Fig. 1.

3.1.1. Comparison to existing pulses
Although adiabatic pulses accommodate a wide range of

peak power levels, the exceptional bandwidth of adiabatic
inversion for a given peak RF amplitude does not translate
to excitation. The orientation of the effective RF field at the
end of an adiabatic excitation pulse, which, ideally gives
the location of the magnetization, is not in the transverse
plane for non-zero chemical-shift offset. Other existing

Fig. 1. Phase modulation of the constant amplitude 1 ms PM-BEBOP pulse. This pulse performs the point-to-point transformation Iz fi Ix over a 50 kHz
range of resonance offsets for constant RF amplitude set anywhere in the range 10–20 kHz (see Figs. 2 and 3).

T.E. Skinner et al. / Journal of Magnetic Resonance 179 (2006) 241–249 243

Abbildung: S. Glaser, 2009

Dirr (UW) BIRS 2023 7 / 49



Motivation

Bottom line (so far):

The infinite bilinear ensemble defined by

the controlled Bloch Equation (under dispersion)

seems to be (approximately) controllable

Why?
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Linear Ensemble: motivation and the finite case
Back to linear ensembles – the finite case:

Consider a finite parameter set, e.g. P := {1,2, . . . ,N} and finitely many
linear systems (Ai ,Bi ,Ci ), i = 1, . . . ,N with

(possibly different) state spaces: xi ∈ Rni ;

common input space: u := ui ∈ Rm;

common output space: y := yi ∈ Rp;

How to build the corresponding ensemble:

ensemble state space: x = (x1, . . . , xN) ∈ Rn1 × · · · × RnN ;
ensemble dynamics:

A :=

A1

. . .
AN

 , B :=

B1
...

BN

 , C :=
(
C1 . . . CN

)
. (ΣE)

Parallel connection!
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Linear Ensemble: motivation and the finite case
Controllability1 condition for (ΣE): ẋ1

...
ẋN

 =

A1

. . .
AN


x1

...
xN

+

B1
...

BN

 u . (ΣE)

A simple test:

Lemma A (Brockett ???)
For the assertions
(a) the “ensemble” (ΣE) is controllable;
(b) all subsystems (Ai ,Bi ) are controllable;
(c) σ(Ai ) ∩ σ(Aj ) = ∅ for i 6= j ;

one has the following implications:

(a) =⇒ (b), (b) & (c) =⇒ (a) and for m = 1 (b) & (c)⇐⇒ (a)

Proof: Trivial, e.g. Hautus-Test.
1 No observability and no discrete-time systems in this talk
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Linear Ensemble: motivation and the finite case

The general case:

Recall:
(A,B) is controllable if and only if (zI − A) and B are left-coprime.
There exists always a right-coprime factorizations

Ni (z)Di (z)−1 = (zI − A)−1B

of the “transfer function”.

Theorem A (Fuhrmann/Helmke)
The “ensemble” (ΣE) is controllable if and only if the following conditions are
satisfied:
(a) all subsystems (Ai ,Bi ) are controllable;
(b) the matrices D1(z), . . . ,DN(z) are mutually left coprime;

Remark: For m = 1 one can choose Di (z) = det(zI − Ai ) and thus Theorem A
reduces to Lemma A.
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Infinite Linear Ensembles – the countable/ continuum case

Let P = N or let P ⊂ Rd be compact and consider the infinite parallel
connections:

Linear Ensemble

ẋi (t) = Aixi (t) + Biu(t) , xi (0) ∈ Cn , i ∈ N (Σ∞E )

and

∂x
∂t

(t , θ) = A(θ)x(t , θ) + B(θ)u(t) , x(0, θ) = x0(θ) ∈ Cn , θ ∈ P (Σc
E)

Problem / Freedom of choosing the right state space?
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Infinite Linear Ensembles – the countable/ continuum case

Countable Case:

Linear Ensemble

ẋi (t) = Aixi (t) + Biu(t) , xi (0) ∈ Cn , i ∈ N (Σ∞E )

Choose our favorite sequence space X ⊂ S(N,Cn), e.g.:

Possible state spaces: X = lq(N,Cn) with (1 ≤ q <∞);

Ensemble matrices:

(Ai )i∈N ∈ l∞(N,Cn×n);

(Bi )i∈N ∈ lp(N,Cn×m);

Control: u(·) ∈ L1
loc(R+

0 ,C
m);

Remark: Real versus complex!

Dirr (UW) BIRS 2023 13 / 49
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Infinite Linear Ensembles – the countable/ continuum case

Continuum Case:

Linear Ensemble

∂x
∂t

(t , θ) = A(θ)x(t , θ) + B(θ)u(t) , x(0, θ) = x0(θ) ∈ Cn , θ ∈ P (Σc
E)

Again choose our favorite function space X ⊂ F(P,Cn), e.g.:

Possible state spaces: X = C(P,Cn) or X = Lq(P,Cn) with 1 ≤ q <∞;

Ensemble matrices:

A(·) ∈ C(P,Cn×n);

B(·) =
(
b1(·) · · · bm(·)

)
with bi (θ) ∈ C(P,Cn) or bi (·) ∈ Lq(P,Cn);

Control: u(·) ∈ L1
loc(R+

0 ,C
m);

Dirr (UW) BIRS 2023 14 / 49



Infinite Linear Ensembles – the countable/ continuum case

Unified notation: x(t , i) := xi (t) for i ∈ N.

“The” ensemble control problem
Given a pair of initial and final states x0(·), x∗(·) ∈ X .

∂x
∂t

(t , θ) = A(θ)x(t , θ) + B(θ)u(t) , θ ∈ P (ΣE)

Does there exist a parameter-independent control u(t) which steers x0(·) in
some finite time T ≥ 0 (approximately) to x∗(·)?

More precisely: Given any x0(·), x∗(·) ∈ X . Does there exist for all ε > 0 a
time T ≥ 0 and a control u ∈ L1([0,T ],Cm) such that∥∥x(T , x0,u)− x∗

∥∥
X ≤ ε ?
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Infinite Linear Ensembles – the countable/ continuum case

Ensembles as infinite-dimensional linear systems

State space X , e.g. X = C(P,Cn) or X = Lq(P,Cn) or X = lq(P,Cn)

System operator (= multiplication operator)

A : X → X , (Ax)(θ) = A(θ)x(θ)

Input operator (= finite rank operator)

B : Cm → X , (Bu)(θ) = B(θ)u

Resulting infinite-dimensional linear system

ẋ = Ax + Bu (ΣX )

General assumption
Let X be a Banach space and A be a bounded operator.
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Infinite Linear Ensembles – the countable/ continuum case

First observations I:

Lemma B (Triggiani 75)
The following assertions are equivalent:

ΣE =
(
A(θ),B(θ)

)
θ∈P is ensemble controllable (with respect to X );

ΣX =
(
A,B

)
is approximately controllable;

For every T ≥ 0 the closure of the image of the reachability map

RT : u 7→
∫ T

0
eA(·)(T−s)B(·)u(s)ds

is equal to X .

The generalized Kalman condition R(A,B) :=
∑∞

k=0 imAkB = X holds;

The approximation conditions {
∑m

i=1 pi (A)bi : pi ∈ C[z]} = X holds;

The the operator A is m-cyclic with cyclic vectors b1(·), . . . , bm(·);
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Infinite Linear Ensembles – the countable/ continuum case

First observations II:

Many standard results on approximate controllability for infinite-dimen-
sional systems do not apply as the multiplication operator A has mostly
continuous spectrum;
Most infinite ensemble systems are not (exactly) controllable (Triggiani
75); therfore, only approximate notions of controllability are reasonable in
general;

Reason:
B has finite-dimensional range and this results in general in a compact
input-to-state operator;
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Infinite Linear Ensembles – the countable/ continuum case

A useful result for parallel connections of infinite-dimensional systems:

Theorem B (Schönlein, D. 2021)
Suppose the (possible∞-dimensional) linear systems (A1,B1) and (A2,B2)
satisfy the following conditions:

(a) (A1,B1) and (A2,B2) are approximately controllable;

(b) σ(A1) and σ(A2) have only finitely many connected components;

(c) σ(A1) and σ(A2) are non-separating (i.e. C \ σ(Ai ) is connected);

(d) σ(A1) ∩ σ(A2) = ∅;

Then the parallel connection
((

A1 0
0 A2

)
,

(
B1
B2

))
is approximately

controllable.

Idea of Proof: ...
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Uniform Ensemble Control, i.e. X := C(P,Cn)

Some results for particular state spaces.

Case I: X := C(P,Cn)

Lemma C
Suppose the ensemble

(
A(θ),B(θ)

)
θ∈P is uniformly ensemble controllable.

Then
(
A(θ),B(θ)

)
θ∈K is also uniformly ensemble controllable on any compact

subset of K ⊂ P.

Proof: Use Tietze’s Extension Theorem
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Uniform Ensemble Control, i.e. X := C(P,Cn)

Corollary A (Helmke, Schönlein, D. 2014/2021)
Let P ⊂ Rd and suppose the single-input ensemble

(
A(θ),b(θ)

)
θ∈P is

uniformly ensemble controllable. Then

(N1) For every θ ∈ P the linear system
(
A(θ),B(θ)

)
is controllable.

(N2) For every θ ∈ P the eigenvalues of A(θ) have geometric multiplicity one.
(N3) The spectral map is one-to-one, i.e. σ(A(θ1)) ∩ σ(A(θ2)) = ∅.
(N4) For d ≥ 2 the set P has no interior points.

Proof:

(N1) – (N3) follow straightforward from Lemma A and C;
to show (N4) reduce problem to the particular case P = ∂D;
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Uniform Ensemble Control, i.e. X := C(P,Cn)

Lemma D (Helmke, Schönlein, D. 2014/2021)
Let P ⊂ C be a compact and contractible set with empty interior. Then the
following assertions are equivalent:

(a)
(
a(θ),b(θ)

)
θ∈P is uniformly ensemble controllable;

(b) a : P → C is one-to-one and b(θ) 6= 0 for all θ ∈ P;

Proof:
(a) =⇒ (b): see Corollary A;

(b) =⇒ (a): For simplicity assume a : [θ1, θ2]→ R and w.l.lo.g. b ≡ 1;

Then the approximation condition boils down to

{p
(
a(·)

)
: p ∈ C[z]} = C([θ1, θ2],C) (?)

and, since the map a : [θ1, θ2]→ R is one-to-one, (?) is equivalent to

{p(·) : p ∈ C[z]} = C(a([θ1, θ2]),C)

The above approximation problem can be solved by the Weierstraß Approxi-
mation Theorem and in the complex case by Mergelyan’s Theorem.
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Uniform Ensemble Control, i.e. X := C(P,Cn)

The Magic Result (Helmke, Scherlein, Schönlein 2014/2016)

Let P ⊂ C be a compact and contractible and let
(
A(θ),b(θ)

)
θ∈P satisfy the

necessary conditions (N1) – (N4) as well as the magic condition (MC), i.e. the
characteristic polynomials χ(z, θ) are of the form

χ(z, θ) = zn − an−1zn−1 − · · · − a1z − a0(θ) (MC)

for some a1, ...,an−1 ∈ C and some a0 ∈ C(P,C). Then
(
A(θ),b(θ)

)
θ∈P is uni-

formly ensemble controllable.

Remark: Lemma D is obviously a special case of the “magic condition”.

Proof:
(a) Use the T (θ) =

(
b(θ) . . . An−1(θ)b(θ)

)
to obtain the canonical from

A(θ) ∼


0 a0(θ)
1 a1

. . .
...

1 an−1

 , b(θ) ∼ e1 .

Simply start computing Ak (θ)b(θ).

Finally, again Weierstraß / Mergelyan does the job.
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Uniform Ensemble Control, i.e. X := C(P,Cn)

Glueing Result (Schönlein, D. 2014/2021)
Let P ⊂ C be a compact and contractible and let

(
A(θ),b(θ)

)
θ∈P satisfy the

necessary conditions (N1) – (N4). If the following conditions are additionally
satisfied then

(
A(θ),b(θ)

)
θ∈P is uniformly ensemble controllable.

(a)
(
A(θ),b(θ)

)
θ∈P satisfies a technical spectral condition;

(b) The corresponding subsystems satisfy the magic condition;

Proof:
Use the spectral condition to decompose

(
A(θ), b(θ)

)
θ∈P into subsystems

A(θ) ∼

( A1(θ)

. . .
Ar (θ)

)
, b(θ) ∼

( b1(θ)

...
br (θ)

)
.

Apply the magic result and “glue” things together via Theorem B.
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Lq-Ensemble Control

Case II: X := Lq(P,Cn) with respect to some regular (Borel) measure µ

Corollary B (Schönlein, D. 2021)
Let P ⊂ C compact and suppose the single-input ensemble

(
A(θ),b(θ)

)
θ∈P is

Lq-ensemble controllable. Then

(N1) For almost all θ ∈ P the linear system
(
A(θ),B(θ)

)
is controllable.

(N2) For almost all θ ∈ P the eigenvalues of A(θ) have geometric multiplicity
one.

(N3) Every L∞-eigenvalue selection of A(·) is essentially one-to-one.

Proof: similar to Corollary A

Remark: So far interior points are not excluded!
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Lq-Ensemble Control

Lemma E (Schönlein, D. 2021)
Let P ⊂ C be a compact and q ∈ [1,∞). Then the following assertions are
equivalent:

(a)
(
a(θ),b(θ)

)
θ∈P is Lp ensemble controllable;

(b) a : P → C is essentially one-to-one and b(θ) 6= 0 for all almost all θ ∈ P
and

inf
p∈C[z]

∫
P
‖p(a)b − āb‖qdµ = 0 .

A few remarks concerning the proof:
(a) =⇒ (b): use Corollary B, the fact that āb ∈ Lq(P,C) and the result that the
multiplication operator induced by a(·) is cyclic if and only if a(·) is essentially
one-to-one.

(b) =⇒ (a): ...
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Lq-Ensemble Control

No-Go Theorem (Chen 2021)
Let P ⊂ Rd , d ≥ 2 be compact with non-empty interior and let µ be the d-di-
mensional Lebesgue-measure on P. If the ensemble

(
A(θ),B(θ)

)
θ∈P is real

analytic at some interior point of P then it is never Lq-controllable for q ≥ 2.

Corollary
For d ≥ 2 and q ≥ 2 cyclic vectors of the multiplication operator induced by
A(·) are nowhere real analytic (in the interior of P).

A few remarks concerning the proof:
Transform A(θ) locally to a block-triangular structure such that the problem can be
reduced to the scalar case P ⊂ C = R2 and a : P → C;

A further reduction yields a(θ) = θ;

Consider w.l.o.g. P = D and assume that B(θ) is holomorphic; then the closure of
b1(θ)θk , . . . , bm(θ)θk is contained in the Hardy H2(D) and thus not equal to L2(D);

The tricky part results from the assumption that the bi (θ) are only real analytic;
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Finite Bilinear Ensembles

A few words about general bilinear systems

ẋ = (A + u(t)B)x , x(0) ∈ Rn (IS)

Ẋ = (A + u(t)B)X , X (0) ∈ G ⊂ GLn(C) (L)

System Lie algebra: real Lie algebra 〈A,B〉LA generated by A and B

Accessibility & Controllability (Brockett, Sussmann, Jurdjevic, ...)
Let G be a path-connected subgroup of GLn(C) with Lie algebra g ⊂ Cn×n and
let A,B ∈ g. Then one has
(a) (L) is accessible (relative to G) ⇐⇒ 〈A,B〉LA = g (LARC)
(b) If G is additionally compact or etA is (almost) periodic, then

(L) is controllable (relative to G) ⇐⇒ 〈A,B〉LA = g
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Toy Example

Consider the following two systems

ẋ1 = u(t)b1x1 , x1 ∈ R+ , u(t) ∈ R , (Σ1)

ẋ2 = u(t)b2x2 , x2 ∈ R+ , u(t) ∈ R . (Σ2)

Both evolve on the Lie group R+ and, for b1 6= 0 and b2 6= 0, both systems are
controllable.

However, the “parallel connection” given by[
ẋ1 0
0 ẋ2

]
= u(t)

[
b1 0
0 b2

] [
x1 0
0 x2

]
u(t) ∈ R (Σ||)

is not controllable on{[
x1 0
0 x2

]
: x1, x2 ∈ R+

}
∼= R+ × R+
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Finite Bilinear Ensembles

Finite bilinear ensembles – general setting

Given a finite parameter set P := {1,2, . . . ,N} and finitely many bilinear
systems

Ẋi =
(
Ai +

m∑
k=1

uk (t)Bi,k
)
Xi ,

(
u1(t), . . . ,um(t)

)
∈ Rm , i ∈ P . (Σi )

defined on Lie groups Gi ⊂ GLn(C).

Note: uk (t) is independent of i ∈ P

Key problem
What can be said about the controllability of the ensemble (Σi )i∈P?

For simplicity from now on: m ≤ 2
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Finite Bilinear Ensembles

The state space of the ensemble is canonically given by the direct product

G := G1 × · · · ×GN

which, for convenience, will be embedded in GLn̄(C) as follows:

G ∼=

{[
X1 0

. . .
0 Xs

]
: Xi ∈ Gi

}

Hence  Ẋ1 0
. . .

0 Ẋs

 =

([
A1 0

. . .
0 As

]
+ u(t)

[
B1 0

. . .
0 Bs

])[
X1 0

. . .
0 Xs

]
(ΣE)

Block structure is preserved!
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Finite Bilinear Ensembles

Definition
(a) The ensemble (Σi )i∈P is called simultaneously accessible if ΣE is acces-

sible on G.

(b) The ensemble (Σi )i∈P is called ensemble controllable if ΣE is controllable
on G.

Key notion:

Definition
Given A,B ∈ g and A′,B′ ∈ g′, where g and g′ are arbitrary Lie algebras. We
call the pairs (A,B) and (A′,B′) Lie-related, if there exists a Lie algebra
isomorphism τ : g→ g′ such that

A′ = τ(A) and B′ = τ(B)

The standard Lie algebra isomorphism/automorphism are:

A 7→ TAT−1 (inner automorphism) and A 7→ −A>
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Finite Bilinear Ensembles

A general result for semisimple Lie groups:

Theorem (D. 2012, Turinici 2014)
Let g = g1 ⊕ · · · ⊕ gN be a semisimple (matrix) Lie algebra with simple ideals
gi and let G be the corresponding connected (matrix) Lie group. Then the
following statements are equivalent:
(a)

Ẋ =
(
A + u(t)B

)
X , u(t) ∈ R . (Σ)

is accessible on G.
1 For all i ∈ {1, . . . ,N} one has 〈Ai ,Bi〉L = gi and for all i 6= j the pairs

(Ai ,Bi ) and (Aj ,Bj ) are Lie-unrelated.

Here, Ai and Bi denote the i-th component of A and B with respect to the
decomposition g = g1 ⊕ · · · ⊕ gN .
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Finite Bilinear Ensembles

A few comments:

semisimple = direct sum of simple Lie algebras

simple = no non-trivial ideals

Examples of simple Lie algebras: sln(R), sln(C), sun, ...
Given simple Lie algebras gi ⊂ glni

(C), i = 1, . . . ,N. Then

g :=

{[
X1 0

. . .
0 Xs

]
Xi ∈ gi ,

}

constitutes a semisimple Lie subalgebra of gln̄(C) with n̄ := n1 + · · ·+ ns.

Not every semisimple Lie algebra is of the above “block form”, for
instance so4 ∼= so3 ⊕ so3.
If G is compact then accessibility can be replaced by controllability.
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Finite Bilinear Ensembles

Application to bilinear ensembles:

Corollary
Let gi be simple (matrix) Lie algebras and let Gi ⊂ GLni (C) be the respective
Lie subgroup. Moreover, let Ai ,Bi ∈ gi for i = 1, . . . , s. Then the following
statements are equivalent:
(a) The bilinear ensemble

Ẋi = (Ai + u(t)Bi )Xi , u(t) ∈ R, i = 1, . . .N (Σi )

is simultaneously accessible (ensemble controllable in the compact case).

(b) For all i = 1, . . . ,N one has 〈Ai ,Bi〉L = gi and for all i 6= j the pairs (Ai ,Bi )
and (Aj ,Bj ) are Lie-unrelated.

Proof: Apply the previous result to the Lie algebra g := g0 × · · · × g0︸ ︷︷ ︸
s-times

.
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Sketch of the proof of the Theorem

Proof: For simplicity assume N = 2 and g1 ⊕ g2 =
{[

X1 0
0 X2

]
: Xi ∈ gi , i = 1,2

}
.

“=⇒”: Assume that 〈A1,B1〉L =: s1 6= g1. Then〈[
A1 0
0 A2

]
,
[

B1 0
0 B2

]〉
L
⊂ s1 ⊕ g2 6= g1 ⊕ g2.

Next, assume (A1,B1) and (A2,B2) are Lie-related, i.e. there exists a Lie iso-
morphism τ : g1 → g2 such that

A2 = τ(A1) and B2 = τ(B1)

Clearly, this implies〈[
A1 0
0 A2

]
,
[

B1 0
0 B2

]〉
L

=
{[

X 0
0 τ(X)

] ∣∣∣ X ∈ g1

}
$ g1 ⊕ g2.

Hence the LARC fails in both cases and thus accessibility does not hold.
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Sketch of the Proof of the Theorem

Proof: “⇐=”: To prove this direction, we need the following result:

Lemma
Let g = g1 ⊕ g2 be simple and assume 〈A2,B2〉L = g2. If the Lie algebra s

generated by
[

A1 0
0 A2

]
and

[
B1 0
0 B2

]
is a graph over g1, i.e.

s =
{[

X1 0
0 Φ(X1)

] ∣∣∣ X1 ∈ g1

}
for some map Φ : g1 → g2, then Φ : g1 → g2 is a Lie algebra isomorphism.

Proof of the lemma:

Φ : g1 → g2 has to be onto due to the assumption 〈A2,B2〉L = g2

The kernel of Φ : g1 → g2 is an ideal of g1, hence ker Φ = {0} or ker Φ = g1.

Since g2 6= {0}, we conclude ker Φ = {0} and hence Φ yields an isomorphism.
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Sketch of the Proof of the Theorem

Proof: Now back to the proof of “⇐=”. Assume that the system is not
accessible. Then the LARC implies

s :=
〈[

A1 0
0 A2

]
,
[

B1 0
0 B2

]〉
L
6= g1 ⊕ g2.

Consider the canonical projections

π1 : g1 ⊕ g2 → g1, π1

( [
X1 0
0 X2

] )
= x1

π2 : g1 ⊕ g2 → g2, π2

( [
X1 0
0 X2

] )
= x2.

It is easy to see that π1 and π2 are Lie algebra homomorphisms. Moreover, by
assumption π1|s and π2|s are onto.

Simplicity of g2 then guarantees that the kernel of π1|s is either {0} or g2; the
later case can be excluded by the assumption s 6= g1 ⊕ g2

Hence, s is a graph over g1 and the result follows by the previous lemma.
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Infinite Bilinear Ensembles – the countable/continuum case

Given A parameter dependent family of bilinear systems (= bilinear ensemble)

∂X
∂t

(t , θ) =
(
A(θ) +

m∑
k=1

uk (t)Bk (θ)
)
X (θ) , u(t) ∈ Rm , θ ∈ P (ΣE)

defined on a common Lie group G ⊂ GLn(C) with parameter set P.

Note: uk (t) is independent of θ ∈ P

Possible parameter sets: P := N or P ⊂ Rd compact

Key problems:
What’s the “right” state space for the “ensemble”?

What can be said about the controllability of the “ensemble”?
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Infinite Bilinear Ensembles – the countable/continuum case

“Nice” state spaces in the countable case P := N

First approach: G = GN and g = gN

Problem: Does there exist a suitable Lie group structure for GN?

Answer: GN constitutes a Frechet Lie group with Lie algebra gN, but ...

BETTER: Consider suitable subgroups/subalgebras of GN and gN, which can
be equipped with a Banach Lie group/algebra structure, e.g.

`p(g) :=
{

(Ak )k∈N :
∞∑

k=1

‖Ak‖p <∞
}
⊂ p-Schatten class operators

acting on `2(Rn), if g ⊂ gln(R).

So far almost no results available!
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Infinite Bilinear Ensembles – the countable/continuum case

“Nice” state spaces in the continuum case P ⊂ Rd

First approach: Ĝ = G[0,1] and ĝ = g[0,1]

Bad idea: g[0,1] is “only” a locally convex space

BETTER: Consider again suitable subgroups/subalgebras of G[0,1] and g[0,1],
which can be equipped with a Banach Lie group/algebra structure, e.g.

C(P,G) and C(P, g)

acting on C(P,Rn) or Lp(P,Rn) as bounded multiplication operators, if
g ⊂ gln(R).

Here some results are available!
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Infinite Bilinear Ensembles – the continuous case

Theorem (Bloch Equation) [Khaneja & Li 2009]
Let P = [a,b] with a > 0 and let G := C

(
[a,b],SO(3)

)
. Then the infinite

ensemble

∂X
∂t

(t , θ) =
(
u1(t)θΩ1 + u2(t)θΩ1

)
X (t , θ),

(
u1(t),u2(t)

)
∈ R2

is uniformly ensemble controllable on G. Here, Ω1 and Ω1 denote the standard
generators of rotations around the x- and y -axis, respectively, i.e.

Ω1 :=
[ 0 0 0

0 0 −1
0 1 0

]
and Ω2 :=

[ 0 0 −1
0 0 0
1 0 0

]
.

Remark: A similar result has been proven by Beauchard, Coron, Rouchon 2010

Uniformly ensemble controllability: For all X0,X∗ ∈ G and all ε > 0 there exists
a T ≥ 0 and a control u : [0,T ]→ R2 such that

max
θ∈[a,b]

‖X (T ,X0,u)(θ)− X∗(θ)‖ < ε.
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Infinite Bilinear Ensembles – the continuous case

Sketch of the proof:
Computing commutators between the control vector fields θΩ1 and θΩ2 yields:

[θΩ1, θΩ2] = θ2Ω3 , [θ2Ω3, θΩ1] = ±θ3Ω2 , [θ2Ω3, θΩ2] = ±θ3Ω1 ,

[θΩ1, θ
3Ω2] = θ4Ω3 , [θ4Ω3, θΩ1] = ±θ5Ω2 , . . .

Again Weierstraß shows that the closure of all these vector fields yields the
entire Lie algebra and thus the closure of the reachable set coincides which
C
(
[a, b],SO(3)

)
.
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Infinite Bilinear Ensembles – the continuous case

Theorem [Chen 2019]
Let P ⊂ Rd be compact and G ⊂ GL(C) be a semisimple (matrix) Lie Group
with Lie algebra g. Then there exist Lie algebra elements Bi ∈ g and function
ρj : P → R such that the bilinear ensemble

∂X
∂t

(t , θ) =
(

A(θ) +
∑
i,j

uij (t)ρj (θ)Bi

)
X (t , θ), uij ∈ R

is uniformly ensemble controllable.

Idea of the proof: Use the root space decomposition of g and the Stone-
Weierstraß Approximation Theorem.
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Infinite Bilinear Ensembles – the continuous case

Theorem (D. 2018 unpublished )
Let P = [a,b] and let G := C

(
[a,b],SU(n)

)
. Then the ensemble

∂X
∂t

(t , θ) = i
(
H0(θ) + u1(t)H1(θ) + u2(t)H2(θ)

)
X (t , θ), u1(t),u2(t) ∈ R

is uniformly ensemble controllable on G if none of the off-diagonal entries of
H2(θ) vanishes and

H1(θ) =

(
λ1(p)

. . .
λn(p)

)
is strongly regular in the following sense:

λi (θ)− λj (θ) 6= λk (θ)− λl (θ) for all θ ∈ P and (i, j) 6= (k , l) with i 6= j , k 6= l .

λi (θ)− λj (θ) 6= λk (θ′)− λl (θ
′) for all θ, θ′ ∈ P with θ 6= θ′ and i 6= j , k 6= l .

Note: The above results covers the previous result by Khaneja & Li.
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Infinite Bilinear Ensembles – the continuous case

Proof:

Consider the linear operator

adiH1(θ) : C
(
[a,b], su(n)

)
→ C

(
[a,b], su(n)

)
restricted to the subspace of all iH(·) which vanish on the diagonal. Then
iH2(·) is a cyclic vector of i adH1(·) according to part I and the strong regu-
larity assumption.

Reconstruct the diagonal elements of C
(
[a,b], su(n)

)
as “usual” by

taking further commutators.

This shows that the closure of the system algebra coincides with
C
(
[a,b], su(n)

)
and thus we conclude uniform ensemble controllability.

Remark:
Note that we did not use any compactness or recurrence arguments.

If we have only one control even accessibility is not guaranteed!
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