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Linear Ensemble: motivation and the finite case

Some scenarios — not necessarily linear — which can be cast into the setting
of ensemble control:

@ “Broadcast control” in the sense that a “swarm” of (almost identical non-
interacting) systems which cannot be addressed individually has to be
controlled:

- swarms of micro-satellites or micro-robots;

- NMR-spectroscopy;

- more general, huge number of quantum/nano particles (which are in general
not accessible to measurement based feedback methods);

- infinite platoons of vehicles (apply Fourier transform, see H. Zwart);
- (desynchronization of) neuron populations for the treatment of epilepsy;
- Mass transport ...
@ “Robust open-loop control” in the sense that one seeks for open-loop
control strategies which counteract (uniformly distributed) model un-
certainties;
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Linear Ensemble: motivation and the finite case

Some scenarios — not necessarily linear — which can be cast into the setting
of ensemble control:

@ “Broadcast control” in the sense that a “swarm” of (almost identical non-
interacting) systems which cannot be addressed individually has to be
controlled:

- swarms of micro-satellites or micro-robots;

- NMR-spectroscopy;

- more general, huge number of quantum/nano particles (which are in general
not accessible to measurement based feedback methods);

- infinite platoons of vehicles (apply Fourier transform, see H. Zwart);
- (desynchronization of) neuron populations for the treatment of epilepsy;
- Mass transport ...
@ “Robust open-loop control” in the sense that one seeks for open-loop
control strategies which counteract (uniformly distributed) model un-
certainties;

Terminology:

ensemble control = simultaneous control = controlling families of systems
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Starter:

A prime example from quantum control!
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Starter:

A prime example from quantum control!

It's a bilinear ensemble!

The movie “Dancing Arrows” is taken from
Steffen Glaser (TU Munich)
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Controlled Bloch Equation:

X(t) 0 —wo EoUg(t) X(t)
():’(U) = ( wo 0 —60U1(f)> (Y(f)) (B)
Z(t) —€0U2(t) €0U1(t) 0 Z(t)

Control Inputs: uq(t), u2(t)
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Controlled Bloch Equation:

(X(t)) ( 0 —wo EoUg(t) ) (X(t))
y(t) = wo 0 —EolUy (t) y(t) (B)
Z(t) *€0U2(t) €0U1(t) 0 Z(t)

Control Inputs: v (1), u(t)

Dispersion effects
@ Lamor dispersion (results form B-field inhomogeneities)
@ Transverse dispersion (results from inhomogeneities of rf-pulses)
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Controlled Bloch Equation:

x(1) 0 —w  elp(t) x(1)
(}:/(t)) = ( w 0 €U1(t)) (Y(f)) (B)
z(1) —elp(t) eu(f) 0 z(t)

Control inputs: uy(t), u2(t) are independent of w and ¢!

Dispersion effects = uncertain model parameters
@ Lamordispersion — w € [wp— Aw,wp + Aw] =W
@ Transverse dispersion =— ¢ € [gg — Ac, 50 + Ag] =: &

Dirr (UW) BIRS 2023 5/49



Dispersion of the Bloch Equation:

Abbildung: S. Glaser, TU Minchen, presented 2009 at KITP
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Dispersion of the Bloch Equation:
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Dispersion of the Bloch Equation:
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Dispersion of the Bloch Equation:
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Dispersion of the Bloch Equation:
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Dispersion of the Bloch Equation:

Abbildung: S. Glaser, 2009
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Bottom line (so far):

The infinite bilinear ensemble defined by
the controlled Bloch Equation (under dispersion)
seems to be (approximately) controllable

Why?

Dirr (UW) BIRS 2023 8/49



Linear Ensemble: motivation and the finite case

Back to linear ensembles — the finite case:

Consider a finite parameter set, e.g. P := {1,2,..., N} and finitely many
linear systems (A;, B;, C;), i = 1,..., N with

@ (possibly different) state spaces: x; € R™;
@ common input space: u := u; € R™;
@ common output space: y := y; € RP;

How to build the corresponding ensemble:

Dirr (UW) BIRS 2023 9/49



Linear Ensemble: motivation and the finite case

Back to linear ensembles — the finite case:
Consider a finite parameter set, e.g. P := {1,2,..., N} and finitely many
linear systems (A;, B;, C;), i = 1,..., N with

@ (possibly different) state spaces: x; € R™;

@ common input space: u := u; € R™;

@ common output space: y := y; € RP;

How to build the corresponding ensemble:

@ ensemble state space: x = (xy,...,Xy) € R™ x -+« x R™;
@ ensemble dynamics:
A By
A= B: :
An By

., C:=(Ci ... C). (%)
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Linear Ensemble: motivation and the finite case

Back to linear ensembles — the finite case:
Consider a finite parameter set, e.g. P := {1,2,..., N} and finitely many
linear systems (A;, B;, C;), i = 1,..., N with

@ (possibly different) state spaces: x; € R™;

@ common input space: u := u; € R™;

@ common output space: y := y; € RP;

How to build the corresponding ensemble:

@ ensemble state space: x = (xy,...,Xy) € R™ x -+« x R™;
@ ensemble dynamics:
A By
A= B: :
An By

., C:=(Ci ... C). (%)

Parallel connection!
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Linear Ensemble: motivation and the finite case

Controllability' condition for (Zg):

)-(1 A1 X1 B1
)'(N AN XN BN
A simple test:

Lemma A (Brockett ??77?)

For the assertions

(a) the “ensemble” (¥g) is controllable;

(b) all subsystems (A;, B;) are controllable;

(©) o(A)No(A) =0 fori;

one has the following implications:

(a) = (b), (b)&(c) = (a) andform=1 (b)&(c) < (a)

Proof: Trivial, e.g. Hautus-Test.

' No observability and no discrete-time systems in this talk
Dirr (UW) BIRS 2023 10/49



Linear Ensemble: motivation and the finite case

The general case:

Recall:
@ (A, B) is controllable if and only if (zI — A) and B are left-coprime.
@ There exists always a right-coprime factorizations

Ni(z)Di(z)™' = (z1 - A)~'B

of the “transfer function”.

Theorem A (Fuhrmann/Helmke)

The “ensemble” (k) is controllable if and only if the following conditions are
satisfied:

(a) all subsystems (A;, B;) are controllable;
(b) the matrices D;(2), ..., Dn(z) are mutually left coprime;

Remark: For m = 1 one can choose D;(z) = det(z/ — A;) and thus Theorem A
reduces to Lemma A.

Dirr (UW) BIRS 2023 11/49



Infinite Linear Ensembles — the countable/ continuum case

Let P = Nor let P ¢ RY be compact and consider the infinite parallel
connections:

Linear Ensemble
Xi(t) = A,'X,'(t) + B,'U(t) R X,'(O) € (Cn, ieN (ZEO)

and

%(t, 0) = A(0)x(t,0) + B(O)u(t), x(0,0)=x(0)eC", 9P (X9

Dirr (UW) BIRS 2023 12/49



Infinite Linear Ensembles - the countable/ continuum case

Let P = Nor let P ¢ RY be compact and consider the infinite parallel
connections:

Linear Ensemble
Xi(t) = A,'X,'(t) + B,'U(t) R X,'(O) € (Cn, ieN (ZEO)

and

%(t, 0) = A(0)x(t,0) + B(O)u(t), x(0,0)=x(0)eC", 9P (X9

Problem / Freedom of choosing the right state space?
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Infinite Linear Ensembles — the countable/ continuum case

Countable Case:

Linear Ensemble

).(,‘(t) = A,'X,'(t) + B,'U(t) R X,'(O) € (Cn, ieN (ZEO)

Choose our favorite sequence space X C S(N,C"), e.g.:

@ Possible state spaces: X = l4(N, C") with (1 < g < 00);
@ Ensemble matrices:

(Aiien € I (N, C™");

(Bi)ien € Ip(N,C™™);
@ Control: u(+) € L} .(Ry,C™);

loc

Dirr (UW) BIRS 2023 13/49



Infinite Linear Ensembles — the countable/ continuum case

Countable Case:

Linear Ensemble

).(,‘(t) = A,'X,'(t) + B,'U(t) R X,'(O) € (Cn, ieN (ZEO)

Choose our favorite sequence space X C S(N,C"), e.g.:

@ Possible state spaces: X = l4(N, C") with (1 < g < 00);
@ Ensemble matrices:

(Aiien € I (N, C™");

(Bi)ien € Ip(N,C™™);
@ Control: u(+) € L} .(Ry,C™);

loc

Remark: Real versus complex!

Dirr (UW) BIRS 2023 13/49



Infinite Linear Ensembles — the countable/ continuum case

Continuum Case:

Linear Ensemble

%(t, 0) = AO)x(t,0) + B(O)u(t), x(0,0)=x(0)eC", OeP (X2

Again choose our favorite function space X c F(P,C"), e.g.:

@ Possible state spaces: X = C(P,C") or X = LI(P,C") with 1 < g < o0;
@ Ensemble matrices:

A(-) € C(P,C™7);

B(:) = (bi(:) --- bm(:)) with bj(8) € C(P,C") or bi(-) € LI(P,C");
@ Control: u(+) € L (RS, C™);

loc

Dirr (UW) BIRS 2023 14/49



Infinite Linear Ensembles - the countable/ continuum case

Unified notation: x(t,/) := x;(t) fori € N.

“The” ensemble control problem
Given a pair of initial and final states xp(-), x.(-) € X.

(4,0 = A@X(1,6)+ BOU(D), o€ P (=)

Does there exist a parameter-independent control u(t) which steers xp(-) in
some finite time T > 0 (approximately) to x.(:)?

More precisely: Given any xp(-), x.(-) € X. Does there exist foralle > 0 a
time T > 0 and a control u € L'([0, T],C™) such that

[X(T, x0,u) = X ||, <e?

Dirr (UW) BIRS 2023 15/49



Infinite Linear Ensembles - the countable/ continuum case

Ensembles as infinite-dimensional linear systems

@ State space X, e.g. X = C(P,C") or X = L9(P,C") or X = l4(P,C")
@ System operator (= multiplication operator)

A: X = X, (Ax)(0) = A(0)x(9)
@ Input operator (= finite rank operator)

B:C"— X, (Bu)(®)=B(0)u

Resulting infinite-dimensional linear system

x = Ax + Bu (Xx)

General assumption
Let X be a Banach space and A be a bounded operator.

Dirr (UW) BIRS 2023 16/49



Infinite Linear Ensembles - the countable/ continuum case

First observations I:

Lemma B (Triggiani 75)
The following assertions are equivalent:

@ X = (A(0), B(9)),p is ensemble controllable (with respect to X);

@ Yx = (A, B) is approximately controllable;

@ Forevery T > 0 the closure of the image of the reachability map
T
Rr:uws / "OT=9B()u(s)ds
0

is equal to X.

@ The generalized Kalman condition R(A, B) := >.2,imA¥B = X holds;

@ The approximation conditions {37, pi(A)b; : p; € C[z]} = X holds;

@ The the operator A is m-cyclic with cyclic vectors by (-), ..., bn(:);

v

Dirr (UW) BIRS 2023 17/49



Infinite Linear Ensembles — the countable/ continuum case

First observations Il:

@ Many standard results on approximate controllability for infinite-dimen-
sional systems do not apply as the multiplication operator .A has mostly
continuous spectrum;

@ Most infinite ensemble systems are not (exactly) controllable (Triggiani
75); therfore, only approximate notions of controllability are reasonable in
general;

Dirr (UW) BIRS 2023 18/49



Infinite Linear Ensembles — the countable/ continuum case

First observations Il:

@ Many standard results on approximate controllability for infinite-dimen-
sional systems do not apply as the multiplication operator .A has mostly
continuous spectrum;

@ Most infinite ensemble systems are not (exactly) controllable (Triggiani
75); therfore, only approximate notions of controllability are reasonable in
general;

Reason:

B has finite-dimensional range and this results in general in a compact
input-to-state operator;

Dirr (UW) BIRS 2023 18/49



Infinite Linear Ensembles — the countable/ continuum case
A useful result for parallel connections of infinite-dimensional systems:

Theorem B (Schénlein, D. 2021)

Suppose the (possible co-dimensional) linear systems (A+, By) and (Ag, By)
satisfy the following conditions:

a) (A¢,By) and (Az, By) are approximately controllable;
b

c

(@)
(b) o(A1) and o(Az) have only finitely many connected components;
(c) o(At1) and o(Az) are non-separating (i.e. C \ o(A;) is connected);
(d) o(Ar) Na(Az) = 0;

Then the parallel connection iy O , B ) is approximately
0 A B>

controllable.

Idea of Proof: ...

Dirr (UW) BIRS 2023 19/49



Uniform Ensemble Control, i.e. X := C(P,C")

Some results for particular state spaces.
Case l: X := C(P,C")

Suppose the ensemble (A(6), B(9))

Then (A(9), B(G))QGK is also uniformly ensemble controllable on any compact
subset of K C P.

ocp 1S Uniformly ensemble controllable.

Proof: Use Tietze’s Extension Theorem

Dirr (UW) BIRS 2023 20/49



Uniform Ensemble Control, i.e. X := C(P,C")

Corollary A (Helmke, Schénlein, D. 2014/2021)

Let P  RY and suppose the single-input ensemble (A(6), b(6))
uniformly ensemble controllable. Then

0eP is

N1) For every ¢ € P the linear system (A(6), B()) is controllable.

N2) For every 6 € P the eigenvalues of A(6) have geometric multiplicity one.
)
)

N3) The spectral map is one-to-one, i.e. c(A(01)) Na(A(62)) = 0.
N4) For d > 2 the set P has no interior points.

(
(
(
(

Proof:

@ (N1) — (N3) follow straightforward from Lemma A and C;
@ to show (N4) reduce problem to the particular case P = 9D,;

Dirr (UW) BIRS 2023 21/49



Uniform Ensemble Control, i.e. X := C(P,C")

Lemma D (Helmke, Schénlein, D. 2014/2021)

Let P c C be a compact and contractible set with empty interior. Then the
following assertions are equivalent:

(@) (a(),b(9)),.p is uniformly ensemble controllable;

(b) a: P — Cis one-to-one and b(#) # 0 for all § € P;

Dirr (UW) BIRS 2023

22/49



Uniform Ensemble Control, i.e. X := C(P,C")

Lemma D (Helmke, Schénlein, D. 2014/2021)

Let P c C be a compact and contractible set with empty interior. Then the
following assertions are equivalent:

(@) (a(),b(9)),.p is uniformly ensemble controllable;

(b) a: P — Cis one-to-one and b(#) # 0 for all § € P;

Proof:
@ (a) = (b): see Corollary A;
@ (b) = (a): For simplicity assume a: [0y, 6;] — R and w.l.lo.g. b = 1;
@ Then the approximation condition boils down to
{p(a(")) : peCl[z]} = C([61,62],C) (*)
and, since the map a: [01,602] — R is one-to-one, (x) is equivalent to
{p(:) - p € Clz]} = C(a([b:, 02]),C)

@ The above approximation problem can be solved by the Weierstral3 Approxi-

mation Theorem and in the complex case by Mergelyan’s Theorem.
Dirr (UW)

BIRS 2023 22/49



Uniform Ensemble Control, i.e. X := C(P,C")

The Magic Result (Helmke, Scherlein, Schénlein 2014/2016)

Let P c C be a compact and contractible and let (A(6), b(@))eep satisfy the
necessary conditions (N1) — (N4) as well as the magic condition (MC), i.e. the
characteristic polynomials x(z, 8) are of the form

n—1

x(z,0)=2"—ap 12" — - — a1z — ay(h) (MC)

for some ay, ..., a,_1 € C and some ay € C(P,C). Then (A(6), b(9))
formly ensemble controllable.

0cP IS uni-

Remark: Lemma D is obviously a special case of the “magic condition”.

Dirr (UW) BIRS 2023 23/49



Uniform Ensemble Control, i.e. X := C(P,C")

The Magic Result (Helmke, Scherlein, Schénlein 2014/2016)

Let P C C be a compact and contractible and let (A(9), b(e))eep satisfy the
necessary conditions (N1) — (N4) as well as the magic condition (MC), i.e. the
characteristic polynomials x(z, #) are of the form

x(2,0)=2"—a,_1z2" ' — ... —a;z — a(h) (MC)

for some ay, ..., a,—1 € C and some & € C(P,C). Then (A(6), b(0)),,_p is uni-
formly ensemble controllable.
Proof:

@ (a)Usethe T(0) = (b(6) ... A"'(6)b(0)) to obtain the canonical from

0 ap(0)
1 aq
A~ | . .|, bO)~e.
' 1 a,,.,1
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Uniform Ensemble Control, i.e. X := C(P,C")

The Magic Result (Helmke, Scherlein, Schénlein 2014/2016)

Let P C C be a compact and contractible and let (A(9), b(e))eep satisfy the
necessary conditions (N1) — (N4) as well as the magic condition (MC), i.e. the
characteristic polynomials x(z, #) are of the form

x(2,0)=2"—a,_1z2" ' — ... —a;z — a(h) (MC)
for some ay, ..., a,—1 € C and some & € C(P,C). Then (A(6), b(0)),,_p is uni-
formly ensemble controllable.
Proof:
@ (a)Usethe T(0) = (b(6) ... A"'(6)b(0)) to obtain the canonical from
(1) ag(0)
Aoy~ . | b ~en

1 a,_4

@ Simply start computing A*(6)b(6). — Think mathematically — act computationally!

Dirr (UW) BIRS 2023 23/49



Uniform Ensemble Control, i.e. X := C(P,C")

The Magic Result (Helmke, Scherlein, Schénlein 2014/2016)

Let P C C be a compact and contractible and let (A(9), b(e))eep satisfy the
necessary conditions (N1) — (N4) as well as the magic condition (MC), i.e. the
characteristic polynomials x(z, #) are of the form

X(2,0)=2"—a, 12" " — - — a1z — a(h) (MC)
for some ay, ..., a,—1 € C and some & € C(P,C). Then (A(6), b(0)),,_p is uni-
formly ensemble controllable.

Proof:
@ (a)Usethe T(0) = (b(6) ... A"'(6)b(0)) to obtain the canonical from
(1) ag(0)
Aoy~ . | b ~en

’ 1 a,,.,1
@ Simply start computing A*(6)b(6).
@ Finally, again Weierstra3 / Mergelyan does the job.

Dirr (UW) BIRS 2023 23/49



Uniform Ensemble Control, i.e. X := C(P,C")

Glueing Result (Schénlein, D. 2014/2021)

Let P c C be a compact and contractible and let (A(9), b(e))eep satisfy the
necessary conditions (N1) — (N4). If the following conditions are additionally
satisfied then (A(6), b(9)) . is uniformly ensemble controllable.

(@) (A(6),b(9)),.p satisfies a technical spectral condition;

(b) The corresponding subsystems satisfy the magic condition;

Proof:
@ Use the spectral condition to decompose (A(6), b(e))eep into subsystems

Aq1(6) by (9)
o (") o ()
Ar(6) br(0)

@ Apply the magic result and “glue” things together via Theorem B.

Dirr (UW) BIRS 2023 24/49



L9-Ensemble Control

Case lI: X := L9(P,C") with respect to some regular (Borel) measure u

Corollary B (Schénlein, D. 2021)

Let P  C compact and suppose the single-input ensemble (A(9), b(6))
L9-ensemble controllable. Then

eeP

(N1) For almost all § € P the linear system (A(6), B(6)) is controllable.

(N2) For almost all # € P the eigenvalues of A(#) have geometric multiplicity
one.

(N3) Every L>°-eigenvalue selection of A(-) is essentially one-to-one.

Proof: similar to Corollary A

Remark: So far interior points are not excluded!

Dirr (UW) BIRS 2023 25/49



L9-Ensemble Control

Lemma E (Schénlein, D. 2021)

Let P C C be a compact and g € [1, c0). Then the following assertions are
equivalent:

(a) (a(9), b(@))aep is LP ensemble controllable;

(b) a: P — C s essentially one-to-one and b(6) # 0 for all almost all § € P
and

o / lp(a)b — ab|| %y = 0.
P

peC[z]

A few remarks concerning the proof:

@ (a) = (b): use Corollary B, the fact that ab € L(P, C) and the result that the

multiplication operator induced by a(-) is cyclic if and only if a(-) is essentially
one-to-one.

o (b) = (a): ...

Dirr (UW) BIRS 2023 26/49



L9-Ensemble Control

No-Go Theorem (Chen 2021)

Let P c R, d > 2 be compact with non-empty interior and let 1. be the d-di-
mensional Lebesgue-measure on P. If the ensemble (A(6), B(9)),,_, is real
analytic at some interior point of P then it is never L%-controllable for g > 2.

Dirr (UW) BIRS 2023 27/49



L9-Ensemble Control

No-Go Theorem (Chen 2021)

Let P c R, d > 2 be compact with non-empty interior and let 1. be the d-di-
mensional Lebesgue-measure on P. If the ensemble (A(6), B(9)),,_, is real
analytic at some interior point of P then it is never L%-controllable for g > 2.

4

Corollary

For d > 2 and g > 2 cyclic vectors of the multiplication operator induced by
A(-) are nowhere real analytic (in the interior of P).

A few remarks concerning the proof:

@ Transform A(8) locally to a block-triangular structure such that the problem can be
reduced to the scalarcase Pc C=R?and a: P — C;

@ A further reduction yields a(6) = 6;

@ Consider w.l.o.g. P = D and assume that B(#) is holomorphic; then the closure of
by (0)6%, ..., bn(0)0 is contained in the Hardy H?(ID) and thus not equal to L3(DD);

Dirr (UW) BIRS 2023 27/49



L9-Ensemble Control

No-Go Theorem (Chen 2021)

Let P c R, d > 2 be compact with non-empty interior and let 1. be the d-di-
mensional Lebesgue-measure on P. If the ensemble (A(6), B(9)),,_, is real
analytic at some interior point of P then it is never L%-controllable for g > 2.

4

Corollary

For d > 2 and g > 2 cyclic vectors of the multiplication operator induced by
A(-) are nowhere real analytic (in the interior of P).

A few remarks concerning the proof:

@ Transform A(8) locally to a block-triangular structure such that the problem can be
reduced to the scalarcase Pc C=R?and a: P — C;

@ A further reduction yields a(6) = 6;

@ Consider w.l.o.g. P = D and assume that B(#) is holomorphic; then the closure of
by (0)6%, ..., bn(0)0 is contained in the Hardy H?(ID) and thus not equal to L3(DD);

@ The tricky part results from the assumption that the b;(9) are only real analytic;
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Finite Bilinear Ensembles

A few words about general bilinear systems

Xx=(A+u(t)B)x,  x(0)€R" (1S)

X=(A+u(®)B)X, X(0)e G C GLy(C) (L)

System Lie algebra: real Lie algebra (A, B); 4 generated by A and B
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Finite Bilinear Ensembles

A few words about general bilinear systems

Xx=(A+u(t)B)x,  x(0)€R" (1S)

X=(A+u(®)B)X, X(0)e G C GLy(C) (L)

System Lie algebra: real Lie algebra (A, B); 4 generated by A and B

Accessibility & Controllability (Brockett, Sussmann, Jurdjevic, ...)

Let G be a path-connected subgroup of GL,(C) with Lie algebra g ¢ C™" and
let A, B € g. Then one has

(a) (L) is accessible (relativeto G) <= (A,B)ia=g (LARC)
(b) If G is additionally compact or e/ is (almost) periodic, then

(L) is controllable (relative to G) <= (A, B)ia=g¢g
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Toy Example

Consider the following two systems

).(1 = U(t)b1X1 s X4 € R+, U(t) S R, (21)
X0 = u(t)boxo, Xo €RT, u(t) eR. (X2)

Both evolve on the Lie group R* and, for b; # 0 and b, # 0, both systems are
controllable.
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Toy Example

Consider the following two systems

).(1 = U(t)b1X1 s X4 € R+, U(t) S R, (21)
X0 = u(t)boxo, Xo €RT, u(t) eR. (X2)

Both evolve on the Lie group R* and, for b; # 0 and b, # 0, both systems are
controllable.

However, the “parallel connection” given by

[)8 i}—u(t)[lg 32] [)8 )?J u(t) eR (=)

is not controllable on

xp 0] +l o pt o pt
{[O Xz] DX, X% €R }_R x R
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Finite Bilinear Ensembles

Finite bilinear ensembles — general setting

Given a finite parameter set P := {1,2,..., N} and finitely many bilinear
systems

).(,' = (A,-—i—Zuk(t)B,-,k)X,-, (U1(f),...,Um(t)) ERm, ieP. (Z,‘)
k=1

defined on Lie groups G; C GL,(C).

Note: uk(t) is independent of i € P
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Finite Bilinear Ensembles

Finite bilinear ensembles — general setting

Given a finite parameter set P := {1,2,..., N} and finitely many bilinear
systems

Xi=(A+> utBi)Xi, (un(t),....un(1)) €ER™, i€P. (%)
k=1

defined on Lie groups G; C GL,(C).
Note: uk(t) is independent of j € P

Key problem
What can be said about the controllability of the ensemble (X;);cp?

For simplicity from now on: m < 2
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Finite Bilinear Ensembles

The state space of the ensemble is canonically given by the direct product
G =Gy x---x Gy

which, for convenience, will be embedded in GL5(C) as follows:

X0
0 X
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Finite Bilinear Ensembles

The state space of the ensemble is canonically given by the direct product
G =Gy x---x Gy

which, for convenience, will be embedded in GL5(C) as follows:

X 0
SIRNER
0 Xs
X 0 Ay 0 By 0 X4 0
DO T
0 Xs 0 As 0 Bs 0 Xs

Block structure is preserved!

Hence
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Finite Bilinear Ensembles

Definition

(a) The ensemble (X;)icp is called simultaneously accessible if X is acces-
sible on G.

(b) The ensemble (%;);cp is called ensemble controllable if Y is controllable
on G.

Dirr (UW) BIRS 2023 33/49



Finite Bilinear Ensembles

Definition

(a) The ensemble (X;)icp is called simultaneously accessible if X is acces-
sible on G.

(b) The ensemble (%;);cp is called ensemble controllable if Y is controllable
on G.

Key notion:

Definition

Given A,Be gand A, B’ € g, where g and g’ are arbitrary Lie algebras. We
call the pairs (A, B) and (A, B') Lie-related, if there exists a Lie algebra
isomorphism 7 : g — g’ such that

A =71(A) and B =r71(B)
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Finite Bilinear Ensembles

Definition

(a) The ensemble (X;)icp is called simultaneously accessible if X is acces-
sible on G.

(b) The ensemble (%;);cp is called ensemble controllable if Y is controllable
on G.

Key notion:

Definition

Given A,Be gand A, B’ € g, where g and g’ are arbitrary Lie algebras. We
call the pairs (A, B) and (A, B') Lie-related, if there exists a Lie algebra
isomorphism 7 : g — g’ such that

A =71(A) and B =r71(B)

The standard Lie algebra isomorphism/automorphism are:

A~ TAT' (inner automorphism) and A~ —A"
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Finite Bilinear Ensembles

A general result for semisimple Lie groups:

Theorem (D. 2012, Turinici 2014)

Letg=g1 @ - ® gn be a semisimple (matrix) Lie algebra with simple ideals
g;i and let G be the corresponding connected (matrix) Lie group. Then the
following statements are equivalent:

(a)

X=(A+u(t)B)X, u(t)eR. ()
is accessible on G.

@ Forallie {1,...,N} one has (A;, Bi). = g; and for all i # | the pairs
(Ai, Bi) and (A;, B;) are Lie-unrelated.

Here, A; and B; denote the i-th component of A and B with respect to the
decompositiong=g1 & --- D gn.
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Finite Bilinear Ensembles

A few comments:

°
semisimple = direct sum of simple Lie algebras

simple = no non-trivial ideals

@ Examples of simple Lie algebras: sl,(R), s(,(C), sup, ...
@ Given simple Lie algebras g; C gl,(C), i=1,...,N. Then

Xi 0
0 Xs

constitutes a semisimple Lie subalgebra of gl;(C) with n:=ny +--- + ns.

@ Not every semisimple Lie algebra is of the above “block form”, for
instance so4 = 503 @ s03.

@ If G is compact then accessibility can be replaced by controllability.
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Finite Bilinear Ensembles

Application to bilinear ensembles:

Corollary

Let g; be simple (matrix) Lie algebras and let G; ¢ GL,,(C) be the respective
Lie subgroup. Moreover, let A;, B; € g; fori = 1,...,s. Then the following
statements are equivalent:

(a) The bilinear ensemble

Xi=(Ai+u(®)B)X;, u(t)eR, i=1,...N (X))
is simultaneously accessible (ensemble controllable in the compact case).

(b) Foralli=1,...,None has (A;, Bj). = g; and for all i # j the pairs (A;, B;)
and (A;, B;) are Lie-unrelated.

Proof: Apply the previous result to the Lie algebra g := go x - -+ X go.
N———
s-times
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Sketch of the proof of the Theorem

Proof: For simplicity assume N =2 and g1 & go = {[)6‘ )?2} c Xi€gi,i= 1,2}.

“=—": Assume that <A1 R B1>/_ =51 76 g1. Then

<[1‘; ,22} , [%‘ §2}>LC51 D g2 # g1 D g2

Next, assume (Ay, By) and (A, Bz) are Lie-related, i.e. there exists a Lie iso-
morphism 7 : gy — go such that

A2 = T(A1) and BQ = T(B1)
Clearly, this implies

<H)1 /(\)2} ’ [%1 E?Z]>L: H)O(T(OX)} ‘XGEH} S 01 @ g

Hence the LARC fails in both cases and thus accessibility does not hold.
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Sketch of the Proof of the Theorem

Proof: “<=": To prove this direction, we need the following result:

Lemma

Let g = g1 @ go be simple and assume (A, B>); = g». If the Lie algebra s
generated by [’(‘; j’z} and [E(’; ,22} is a graph over g1, i.e.

o= {[Bobo] [Xi€m}

for some map ¢ : g1 — go, then ® : gy — g» is a Lie algebra isomorphism.
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Sketch of the Proof of the Theorem

Proof: “<=": To prove this direction, we need the following result:

Lemma

Let g = g1 @ go be simple and assume (A, B>); = g». If the Lie algebra s

generated by [’(‘; j’z} and [E(’; ,22} is a graph over g1, i.e.

o= {[Bobo] [Xi€m}

for some map ¢ : g1 — go, then ® : gy — g» is a Lie algebra isomorphism.

Proof of the lemma:

® : g1 — go has to be onto due to the assumption (Az, Bo); = g2
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Sketch of the Proof of the Theorem

Proof: “<=": To prove this direction, we need the following result:

Lemma

Let g = g1 @ go be simple and assume (A, B>); = g». If the Lie algebra s

generated by [’(‘; j’z} and [E(’; ,22} is a graph over g1, i.e.

o= {[Bobo] [Xi€m}

for some map ¢ : g1 — go, then ® : gy — g» is a Lie algebra isomorphism.

Proof of the lemma:
® : g1 — go has to be onto due to the assumption (Az, Bo); = g2
The kernel of ® : g1 — g» is an ideal of g1, hence ker ® = {0} or ker ® = gy.
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Sketch of the Proof of the Theorem

Proof: “<=": To prove this direction, we need the following result:

Lemma

Let g = g1 @ go be simple and assume (A, B>); = g». If the Lie algebra s

generated by [’(‘; j’z} and [E(’; ,22} is a graph over g1, i.e.

o= {[Bobo] [Xi€m}

for some map ¢ : g1 — go, then ® : gy — g» is a Lie algebra isomorphism.

Proof of the lemma:

® : g1 — go has to be onto due to the assumption (Az, Bo); = g2

The kernel of ® : g1 — g» is an ideal of g1, hence ker ® = {0} or ker ® = gy.
Since g # {0}, we conclude ker ® = {0} and hence ¢ yields an isomorphism.
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Sketch of the Proof of the Theorem

Proof: Now back to the proof of “<=". Assume that the system is not
accessible. Then the LARC implies

o= ([52].[38]), 2m o

Consider the canonical projections
T L gD g2 — g1, 7T1<{)8‘)?2D:X1
T2 i g1D g2 — g2, Wz({oxz}>=X2-

It is easy to see that 71 and 7> are Lie algebra homomorphisms. Moreover, by
assumption 71 |s and 2| are onto.

Simplicity of go then guarantees that the kernel of 71|, is either {0} or go; the
later case can be excluded by the assumption s # g1 @ go

Hence, s is a graph over g1 and the result follows by the previous lemma.
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Infinite Bilinear Ensembles — the countable/continuum case

Given A parameter dependent family of bilinear systems (= bilinear ensemble)

X z

S (L0) = (A0) + D u(DBe(0)) X(6), u(t)eR™, 6€P (%)
k=1

defined on a common Lie group G C GL,(C) with parameter set P.

Note: uk(t) is independent of § € P

Possible parameter sets: P := N or P ¢ R? compact

Key problems:
What's the “right” state space for the “ensemble”?

What can be said about the controllability of the “ensemble”?
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Infinite Bilinear Ensembles — the countable/continuum case

“Nice” state spaces in the countable case P := N
First approach: G = G" and g = g"

Problem: Does there exist a suitable Lie group structure for GN?
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Infinite Bilinear Ensembles — the countable/continuum case

“Nice” state spaces in the countable case P := N
First approach: G = G" and g = g"

Problem: Does there exist a suitable Lie group structure for GN?
Answer: G constitutes a Frechet Lie group with Lie algebra gV, but ...

BETTER: Consider suitable subgroups/subalgebras of GV and g, which can
be equipped with a Banach Lie group/algebra structure, e.g.

lp(g) == { (Ak)ken Z | AP < oo} C p-Schatten class operators
k=1

acting on £2(R"), if g C gl,(R).
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Infinite Bilinear Ensembles — the countable/continuum case

“Nice” state spaces in the countable case P := N
First approach: G = G" and g = g"

Problem: Does there exist a suitable Lie group structure for GN?
Answer: G constitutes a Frechet Lie group with Lie algebra gV, but ...

BETTER: Consider suitable subgroups/subalgebras of GV and g, which can
be equipped with a Banach Lie group/algebra structure, e.g.

lp(g) == { (Ak)ken : Z | AP < oo} C p-Schatten class operators
k=1
acting on £2(R"), if g C gl,(R).

So far almost no results available!
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Infinite Bilinear Ensembles — the countable/continuum case

“Nice” state spaces in the continuum case P c R?

First approach: G = Gl and § = gl®"]

Bad idea: g[*"! is “only” a locally convex space
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Infinite Bilinear Ensembles — the countable/continuum case

“Nice” state spaces in the continuum case P c R?
First approach: G = Gl and § = gl®"]
Bad idea: g[®'! is “only” a locally convex space

BETTER: Consider again suitable subgroups/subalgebras of G and g%,
which can be equipped with a Banach Lie group/algebra structure, e.g.

C(P,G) and C(P,g)

acting on C(P,R") or LP(P,IR") as bounded multiplication operators, if
g C gly(R).
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Infinite Bilinear Ensembles — the countable/continuum case

“Nice” state spaces in the continuum case P c R?
First approach: G = Gl and § = gl®"]
Bad idea: g[®'! is “only” a locally convex space

BETTER: Consider again suitable subgroups/subalgebras of G and g%,
which can be equipped with a Banach Lie group/algebra structure, e.g.

C(P,G) and C(P,g)

acting on C(P,R") or LP(P,IR") as bounded multiplication operators, if
g C gly(R).

Here some results are available!
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Infinite Bilinear Ensembles — the continuous case

Theorem (Bloch Equation) [Khaneja & Li 2009]

Let P = [a, b] with a > 0 and let G := C([a, b], SO(3)). Then the infinite
ensemble

%(t, 9) = (U1(t)991 =+ U2(t)(991)X(t, 9), (U1(t), Ug(t)) € Rz

is uniformly ensemble controllable on G. Here, 1 and 4 denote the standard
generators of rotations around the x- and y-axis, respectively, i.e.

00 O 00 —1
Q1::[oof} and Qg::[ooo].
01 0 10 0

Remark: A similar result has been proven by Beauchard, Coron, Rouchon 2010

Uniformly ensemble controllability: For all Xy, X, € G and all ¢ > 0 there exists
a T >0anda control u: [0, T] — R? such that

max_||X(T, Xp, u)(0) — X.(0)] < e.
0€la,b]
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Infinite Bilinear Ensembles — the continuous case

Sketch of the proof:
@ Computing commutators between the control vector fields Q4 and 09, yields:

[091,000] = 0°Qz,  [6°Qa, 0] = £60°Qz,  [0°Q3,09] = +6°Qy,
[094,0°Q] = 0°Qs,  [0*Qs,004] = £6°Q,

@ Again Weierstra3 shows that the closure of all these vector fields yields the
entire Lie algebra and thus the closure of the reachable set coincides which
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Infinite Bilinear Ensembles — the continuous case

Theorem [Chen 2019]

Let P ¢ RY be compact and G C GL(C) be a semisimple (matrix) Lie Group
with Lie algebra g. Then there exist Lie algebra elements B; € g and function
pj : P — R such that the bilinear ensemble

%(t,ﬁ):( +Zu,, )i(6 )(te) uj € R

is uniformly ensemble controllable.

Idea of the proof: Use the root space decomposition of g and the Stone-
Weierstral3 Approximation Theorem.
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Infinite Bilinear Ensembles — the continuous case

Theorem (D. 2018 unpublished )
Let P = [a, b] and let G := C([a, b], SU(n)). Then the ensemble

OX.(1,6) = i(Ho(9) + n (0 (6) + (D)D) X(L0),  un (1), o) € R

is uniformly ensemble controllable on G if none of the off-diagonal entries of
H>(6) vanishes and

A1(p)
Hi(0) = ( ) is strongly regular in the following sense:
An(P)

@ X\i(0) — \(0) # Xk(6) — \i(6) for all @ € P and (i,]) # (k, /) with i # j, k # 1.
@ X\i(0) — X\j(0) # X(0') — \(0) forall 0,0 € Pwith 0 # 6" and i # j, k # I.

Note: The above results covers the previous result by Khaneja & Li.
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Infinite Bilinear Ensembles — the continuous case

Proof:
@ Consider the linear operator
adin, (o) : C([a, b], su(n)) — C([a, b], su(n))

restricted to the subspace of all iH(-) which vanish on the diagonal. Then
iHa(-) is a cyclic vector of i adp,(.y according to part | and the strong regu-
larity assumption.
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Infinite Bilinear Ensembles — the continuous case

Proof:

@ Consider the linear operator
adin, (o) : C([a, b], su(n)) — C([a, b], su(n))

restricted to the subspace of all iH(-) which vanish on the diagonal. Then
iHa(-) is a cyclic vector of i adp,(.y according to part | and the strong regu-
larity assumption.

@ Reconstruct the diagonal elements of C([a, b], su(n)) as “usual” by
taking further commutators.

@ This shows that the closure of the system algebra coincides with
C([a, b],su(n)) and thus we conclude uniform ensemble controllability.

Remark:
@ Note that we did not use any compactness or recurrence arguments.
@ If we have only one control even accessibility is not guaranteed!
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Thanks a lot for your attention!
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