Baby PIH: Parameterized Inapproximability of Min CSP

Venkatesan GuruswamiXuandi RenSai SandeepUC BerkeleyUC BerkeleyUC Berkeley

Outline

Background

- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
 - Baby PIH
- Proof Overview

Outline

Background

- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
 - Baby PIH
- Proof Overview

Parameterized Complexity

- Each input instance x is associated with a parameter $k \in \mathbb{N}$
- Complexity is measured as a function of both n = |x| and k.
- FPT (Fixed-Parameter Tractable):
 - problems that admit $f(k) \cdot n^{O(1)}$ time algorithms, f can be any computable function

Parameterized Complexity

- Each input instance x is associated with a parameter $k \in \mathbb{N}$
- Complexity is measured as a function of both n = |x| and k.
- FPT (Fixed-Parameter Tractable):
 - problems that admit $f(k) \cdot n^{O(1)}$ time algorithms, f can be any computable function

k-Vertex Cover

- Input:
 - G = (V, E)
- Output:
 - $\exists v_1, \dots, v_k \in V$ covering all the edges?

(Multi-colored) k-Clique

- Input:
 - $G = (V = V_1 \cup \cdots \cup V_k, E)$
- Output:
 - $\exists v_1 \in V_1, \dots, v_k \in V_k$ which form a clique?

Parameterized Complexity

- Each input instance x is associated with a parameter $k \in \mathbb{N}$
- Complexity is measured as a function of both n = |x| and k.
- FPT (Fixed-Parameter Tractable):
 - problems that admit $f(k) \cdot n^{O(1)}$ time algorithms, f can be any computable function

Constraint Satisfaction Problem

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
 - X: a set of variables
 - Σ: the domain of each variable
 - Φ : a set of 2-ary constraints
- Output:
 - $\exists \sigma: X \to \Sigma$ satisfying all constraints?

CSP Value

Constraint Satisfaction Problem

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
 - X: a set of variables
 - Σ: the domain of each variable
 - Φ : a set of 2-ary constraints
- Output:
 - $\exists \sigma: X \to \Sigma$ satisfying all constraints?
- Let $n = |\Pi|$,
 - 2-CSP is NP-Complete (e.g. from 3-Coloring)
 - no $n^{O(1)}$ time algorithm assuming NP \neq P

CSP Value

Constraint Satisfaction Problem

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
 - X: a set of variables
 - Σ: the domain of each variable
 - Φ : a set of 2-ary constraints
- Output:
 - $\exists \sigma: X \to \Sigma$ satisfying all constraints?

CSP Value

- Let $n = |\Pi|$,
 - 2-CSP is NP-Complete (e.g. from 3-Coloring)
 - no $n^{O(1)}$ time algorithm assuming NP \neq P
 - **PCP** Theorem:
 - no $n^{O(1)}$ time algorithm for (1 vs 0.9) gap 2-CSP assuming NP \neq P

Parameterized 2-CSP

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
 - X: a set of variables
 - Σ: the domain of each variable
 - Φ : a set of 2-ary constraints
- Output:
 - $\exists \sigma: X \to \Sigma$ satisfying all constraints?

CSP Value

- Let $k = |X|, n = |\Sigma|$,
 - Parameterized 2-CSP is W[1]-Complete (e.g. from Multi-colored k-Clique)
 - no $f(k) \cdot n^{O(1)}$ time algorithm assuming W[1] \neq FPT

Parameterized 2-CSP

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
 - X: a set of variables
 - Σ: the domain of each variable
 - Φ : a set of 2-ary constraints
- Output:
 - $\exists \sigma: X \to \Sigma$ satisfying all constraints?

CSP Value

- Let $k = |X|, n = |\Sigma|$,
 - Parameterized 2-CSP is W[1]-Complete (e.g. from Multi-colored k-Clique)
 - no $f(k) \cdot n^{O(1)}$ time algorithm assuming W[1] \neq FPT
 - <u>PIH</u> (Parameterized Inapproximability Hypothesis) [LRSZ20]:
 - no $f(k) \cdot n^{O(1)}$ time algorithm for (1 vs 0.9) gap version assuming W[1] \neq FPT
 - Parameterized analog of the PCP theorem!

Parameterized Inapproximability Hypothesis

Parameterized Inapproximability Hypothesis

Parameterized Inapproximability Hypothesis

Outline

Background

- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
 - Baby PIH
- Proof Overview

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
- Output:
 - \exists multi-assignment $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \to 2^{\Sigma}$

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
- Output:
 - \exists multi-assignment $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \to 2^{\Sigma}$

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
- Output:
 - \exists multi-assignment $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \to 2^{\Sigma}$

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
- Output:
 - \exists multi-assignment $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \to 2^{\Sigma}$

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
- Output:
 - \exists multi-assignment $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \to 2^{\Sigma}$

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
- Output:
 - \exists multi-assignment $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \to 2^{\Sigma}$

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
- Output:
 - \exists multi-assignment $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \to 2^{\Sigma}$

• We say a 2-CSP is *r*-list satisfiable iff $\exists \sigma$ with $\max_{x \in X} |\sigma(x)| \le r$ list-satisfying all constraints.

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
- Output:
 - \exists multi-assignment $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \to 2^{\Sigma}$

- We say a 2-CSP is *r*-list satisfiable iff $\exists \sigma$ with $\max_{x \in X} |\sigma(x)| \le r$ list-satisfying all constraints.
 - CSP Value=1 \Leftrightarrow 1-list satisfiable \Rightarrow *r*-list satisfiable for $r \ge 2$
 - *r*-list satisfiable \Rightarrow CSP Value $\ge 1/r^2$

Baby PCP

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
- Output:
 - \exists multi-assignment $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \to 2^{\Sigma}$

- We say a 2-CSP is *r*-list satisfiable iff $\exists \sigma$ with $\max_{x \in X} |\sigma(x)| \le r$ list-satisfying all constraints.
 - CSP Value=1 \Leftrightarrow 1-list satisfiable \Rightarrow *r*-list satisfiable for $r \ge 2$
 - *r*-list satisfiable \Rightarrow CSP Value $\ge 1/r^2$
- Baby PCP [Barto-Kozik'22]
 - For any r > 1, It's NP-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable].

Baby PCP

2-CSP

- Input: $\Pi = (X, \Sigma, \Phi)$
- Output:
 - \exists multi-assignment $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \to 2^{\Sigma}$

€

- We say a 2-CSP is *r*-list satisfiable iff $\exists \sigma$ with $\max_{x \in X} |\sigma(x)| \le r$ list-satisfying all constraints.
 - CSP Value=1 \Leftrightarrow 1-list satisfiable \Rightarrow r-list satisfiable for $r \ge 2$
 - *r*-list satisfiable \Rightarrow CSP Value $\ge 1/r^2$
- Baby PCP [Barto-Kozik'22]
 - For any r > 1, It's NP-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable].
- \leftarrow PCP
 - For any $\varepsilon > 0$, It's NP-hard to distinguish between [CSP Value =1] and [CSP Value $< \varepsilon$].

 $(\text{when } \varepsilon < 1/r^2)$

Baby PCP

- Baby PCP [Barto-Kozik'22]
 - Assuming NP≠P, for any r > 1, distinguishing between [1-list satisfiable] and [not even r-list satisfiable] cannot be done in $|\Pi|^{O(1)}$ time.
 - (A combinatorial proof)
 - (Enough to prove the NP-hardness of some PCSPs (e.g., $(2 + \varepsilon)$ -SAT))

Baby PIH

- Baby PCP [Barto-Kozik'22]
 - Assuming NP \neq P, for any r > 1, distinguishing between [1-list satisfiable] and [not even r-list satisfiable] cannot be done in $|\Pi|^{O(1)}$ time.
 - (A combinatorial proof)
 - (Enough to prove the NP-hardness of some PCSPs (e.g., $(2 + \varepsilon)$ -SAT))
- Baby PIH [This work]
 - Assuming W[1] \neq FPT, ... cannot be done in $f(|X|) \cdot |\Sigma|^{O(1)}$ time.
 - (An itself interesting inapproximability result for list-satisfiability of CSP)
 - (A step towards PIH)
 - (Enough to get some applications of PIH?)

Baby PIH

- Baby PCP [Barto-Kozik'22]
 - Assuming NP \neq P, for any r > 1, distinguishing between [1-list satisfiable] and [not even r-list satisfiable] cannot be done in $|\Pi|^{O(1)}$ time.
 - (A combinatorial proof)
 - (Enough to prove the NP-hardness of some PCSPs (e.g., $(2 + \varepsilon)$ -SAT))
- Baby PIH [This work]
 - Assuming W[1] \neq FPT, ... cannot be done in $f(|X|) \cdot |\Sigma|^{O(1)}$ time.
 - (An itself interesting inapproximability result for list-satisfiability of CSP)
 - (A step towards PIH)
 - (Enough to get some applications of PIH?)
 - not sure..., but something stronger is enough!
 - $PIH \Rightarrow Average Baby PIH \Rightarrow Baby PIH$

Outline

Background

- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
 - Baby PIH
- Proof Overview

- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction

2-CSP

$$\Pi = (X, \Sigma, \Phi)$$

$$\Pi^{\odot t} = \left(\begin{pmatrix} X \\ t \end{pmatrix}, \Sigma^{t}, \Phi' \right)$$
partial satisfying assignments

for the set of variables

- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction

- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction

- (Want to show):
- For any r > 1, there exists t depending on r, such that for every Π ,
 - (Completeness) If Π is satisfiable, then so is $\Pi^{\odot t}$.
 - (Soundness) If Π is not satisfiable, then $\Pi^{\odot t}$ is not *r*-list satisfiable.

- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction

- (Want to show):
- For any r > 1, there exists t depending on r, such that for every Π ,
 - (Completeness) If Π is satisfiable, then so is $\Pi^{\odot t}$.
 - (Soundness) If Π is not satisfiable, then $\Pi^{\odot t}$ is not *r*-list satisfiable.
- Reduction time: $n^{O_r(1)}$ where $n = |\Pi|$
 - a unified proof for both **Baby PCP** and **Baby PIH**!

$$\frac{2\text{-}CSP}{\Pi = (X, \Sigma, \Phi)}$$

t-wise Direct Product 2-CSP $\Pi^{\odot t} = \left(\begin{pmatrix} X \\ t \end{pmatrix}, \Sigma^{t}, \Phi' \right)$

- For some sufficiently large t = t(r),
 - given an *r*-list satisfying multi-assignment σ of $\Pi^{\odot t}$,
 - want to construct an (r-1)-list satisfying multi-assignment σ' of $\Pi^{\odot t'}$, for some t' < t.

$$\frac{2\text{-CSP}}{\Pi = (X, \Sigma, \Phi)}$$

t-wise Direct Product 2-CSP $\Pi^{\odot t} = \left(\begin{pmatrix} X \\ t \end{pmatrix}, \Sigma^{t}, \Phi' \right)$

- For some sufficiently large t = t(r),
 - given an *r*-list satisfying multi-assignment σ of $\Pi^{\odot t}$,
 - want to construct an (r-1)-list satisfying multi-assignment σ' of $\Pi^{\odot t'}$, for some t' < t.

• If we end up with the 1-list satisfiability of $\Pi^{\bigcirc(\geq 2)}$, then we are done!

$$\frac{2\text{-}CSP}{\Pi = (X, \Sigma, \Phi)}$$

t-wise Direct Product 2-CSP $\Pi^{\odot t} = \left(\begin{pmatrix} X \\ t \end{pmatrix}, \Sigma^{t}, \Phi' \right)$

- For some sufficiently large t = t(r),
 - given an *r*-list satisfying multi-assignment σ of $\Pi^{\odot t}$,
 - want to construct an (r-1)-list satisfying multi-assignment σ' of $\Pi^{\odot t'}$, for some t' < t.
 - for each set $S \in \binom{X}{t}$, choose a set $T \in \binom{X}{t}$ with $S \subseteq T$
 - the list $\sigma'(S)$ is inherited from the list $\sigma(T)$ (at the hope of decreasing the list size by 1)
- If we end up with the 1-list satisfiability of $\Pi^{\bigcirc(\geq 2)}$, then we are done!

A 2-list satisfying assignment for $\Pi^{\odot 3}$?

• How can we discard one assignment safely?

• the one that is never used to meet any consistency constraints!

- How can we discard one assignment safely?
 - the one that is never used to meet any consistency constraints!
- Suppose we have the following *bipartite* direct product instance:

- How can we discard one assignment safely?
 - the one that is never used to meet any consistency constraints!
- Suppose we have the following *bipartite* direct product instance:

- How can we discard one assignment safely?
 - the one that is never used to meet any consistency constraints!
- Suppose we have the following *bipartite* direct product instance:

- How can we discard one assignment safely?
 - the one that is never used to meet any consistency constraints!
- Suppose we have the following *bipartite* direct product instance:

- How can we discard one assignment safely?
 - the one that is never used to meet any consistency constraints!
- Suppose we have the following *bipartite* direct product instance:

- Bipartite (r, 1)-case
- Bipartite (*r*, *q*)-case
- Non-bipartite *r*-case

- Bipartite (r, 1)-case
- Bipartite (*r*, *q*)-case
- Non-bipartite *r*-case

Takeaway

- Parameterized Inapproximability Hypothesis parameterized analog of PCP
- Baby PIH inapproximability of the list-satisfiability of (parameterized) 2CSP
 - W[1]-hard to distinguish between [1-list satisfiable] and [not even *r*-list satisfiable]
 - Proof Idea: induction on the list size

Takeaway

- Parameterized Inapproximability Hypothesis parameterized analog of PCP
- Baby PIH inapproximability of the list-satisfiability of (parameterized) 2CSP
 - W[1]-hard to distinguish between [1-list satisfiable] and [not even *r*-list satisfiable]
 - Proof Idea: induction on the list size
- Average Baby PIH?
 - \Rightarrow constant inapproximability of *k*-ExactCover

Takeaway

- Parameterized Inapproximability Hypothesis parameterized analog of PCP
- Baby PIH inapproximability of the list-satisfiability of (parameterized) 2CSP
 - W[1]-hard to distinguish between [1-list satisfiable] and [not even *r*-list satisfiable]
 - Proof Idea: induction on the list size
- Average Baby PIH?
 - \Rightarrow constant inapproximability of *k*-ExactCover
- Thanks!

