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• Each input instance 𝑥 is associated with a parameter 𝑘 ∈ ℕ
• Complexity is measured as a function of both 𝑛 = |𝑥| and 𝑘.

• FPT (Fixed-Parameter Tractable):
• problems that admit 𝑓 𝑘 ⋅ 𝑛!(#) time algorithms, 𝑓 can be any computable function
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2-CSP
• Input: Π = 𝑋, Σ,Φ

• 𝑋: a set of variables
• Σ: the domain of each variable
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• Parameterized 2-CSP is W[1]-Complete (e.g. from Multi-colored 𝑘-Clique)

• no 𝑓 𝑘 ⋅ 𝑛!(#) time algorithm assuming W[1]≠FPT
• PIH (Parameterized Inapproximability Hypothesis) [LRSZ20]:
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(Gap) 𝑘-Clique

W[1]≠FPT

(Gap) 𝑘-SetCover

(Gap) 𝑘-ExactCover 

Error-Correcting Codes [Lin21, KK22, LRSW23b]

Sidon Sets [CFLL23]
Distributed PCP Framework [KLM19]

Threshold Graphs [Lin19, KL21, LRSW23a]

and so on …
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(Gap) 𝑘-Clique

W[1]≠FPT

(Gap) 𝑘-SetCover

(Gap) 𝑘-ExactCover and so on …

(Gap) Parameterized 2CSP

PIH

Canonical Reductions



W[1]≠FPT

(Gap) Parameterized 2CSP

PIH

ETHGap-ETH

(Unknown)[DM18, CFM17]
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2-CSP
• Input: Π = 𝑋, Σ,Φ
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• ∃ multi-assignment 𝜎: 𝑋 → 2# 
list-satisfying all constraints?

List Value
max. list size of a list-satisfying 

multi-assignment 𝜎: 𝑋 → 2#

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.
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• Baby PCP [Barto-Kozik’22]
• For any 𝑟 > 1, It’s NP-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable].

• ⇐ PCP
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[1-list satisfiable] and [not even 𝑟-list satisfiable] cannot be done in Π &(!) time.
• (A combinatorial proof)
• (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + 𝜀)-SAT))
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• Assuming NP≠P, for any 𝑟 > 1, distinguishing between 

[1-list satisfiable] and [not even 𝑟-list satisfiable] cannot be done in Π &(!) time.
• (A combinatorial proof)
• (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + 𝜀)-SAT))

• Baby PIH [This work]
• Assuming W[1]≠FPT, … cannot be done in 𝑓 𝑋 ⋅ Σ &(!) time.
• (An itself interesting inapproximability result for list-satisfiability of CSP)
• (A step towards PIH)
• (Enough to get some applications of PIH?)

• not sure…, but something stronger is enough!
• PIH ⇒ Average Baby PIH ⇒ Baby PIH
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• Direct Product Construction

2-CSP
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Π⊙* =
𝑋
𝑡  , Σ* , Φ′

partial satisfying assignments 
for the set of variables
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• (Completeness) If Π is satisfiable, then so is Π⊙) .
• (Soundness) If Π is not satisfiable, then Π⊙) is not 𝑟-list satisfiable.
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• Direct Product Construction

2-CSP
Π = 𝑋, Σ,Φ

𝑡-wise Direct Product 2-CSP

Π⊙* =
𝑋
𝑡  , Σ* , Φ′

• (Want to show):
• For any 𝑟 > 1, there exists 𝑡 depending on 𝑟, such that for every Π,

• (Completeness) If Π is satisfiable, then so is Π⊙) .
• (Soundness) If Π is not satisfiable, then Π⊙) is not 𝑟-list satisfiable.

• Reduction time: 𝑛!!(#) where 𝑛 = |Π|
• a unified proof for both Baby PCP and Baby PIH!

partial satisfying assignments 
for the set of variables

consistency checks
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↦
A 3-list satisfying assignment for Π⊙+
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(𝑥!, 𝑥$, 𝑥+)and so on …

(1,1,1)
(3,1,2)↦

inherit



(𝑥!, 𝑥%, 𝑥+, 𝑥!,) (𝑥!, 𝑥$, 𝑥-, 𝑥.)

(𝑥!, 𝑥$, 𝑥+, 𝑥/)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

A 3-list satisfying assignment for Π⊙+

(𝑥!, 𝑥%, 𝑥+) (𝑥!, 𝑥$, 𝑥-)

(𝑥!, 𝑥$, 𝑥+)and so on …
(1,1,3)
(2,2,3)↦

inherit



(𝑥!, 𝑥%, 𝑥+) (𝑥!, 𝑥$, 𝑥-)

(𝑥!, 𝑥$, 𝑥+)and so on …
(1,1,3)
(2,2,3)↦

(1,1,1)
(3,1,2)↦

(1,3,1)
(2,2,3)

↦

A 2-list satisfying assignment for Π⊙%?



§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!



§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ Suppose we have the following bipartite direct product instance:

(𝑥!, 𝑥$, 𝑥%)
(1,2,1)

(3,3,2)

↦

(𝑥!, 𝑥$, 𝑥+)
(1,2,1)

(2,3,3)

↦

(𝑥!, 𝑥%, 𝑥+)
(1,1,1)

(3,3,2)

↦

(𝑥$, 𝑥%, 𝑥+)
(1,3,1)

(2,1,1)

↦

(𝑥!, 𝑥$, 𝑥%)

(𝑥!, 𝑥$, 𝑥+)

(𝑥!, 𝑥%, 𝑥+)

(𝑥$, 𝑥%, 𝑥+)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦



§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ Suppose we have the following bipartite direct product instance:

(𝑥!, 𝑥$, 𝑥%)
(1,2,1)

(3,3,2)

↦

(𝑥!, 𝑥$, 𝑥+)
(1,2,1)

(2,3,3)

↦

(𝑥!, 𝑥%, 𝑥+)
(1,1,1)

(3,3,2)

↦

(𝑥$, 𝑥%, 𝑥+)
(1,3,1)

(2,1,1)

↦

(𝑥!, 𝑥$, 𝑥%)

(𝑥!, 𝑥$, 𝑥+)

(𝑥!, 𝑥%, 𝑥+)

(𝑥$, 𝑥%, 𝑥+)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

𝑥! never 
equals to 3



§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ Suppose we have the following bipartite direct product instance:

(𝑥!, 𝑥$, 𝑥%)
(1,2,1)

(3,3,2)

↦

(𝑥!, 𝑥$, 𝑥+)
(1,2,1)

(2,3,3)

↦

(𝑥!, 𝑥%, 𝑥+)
(1,1,1)

(3,3,2)

↦

(𝑥$, 𝑥%, 𝑥+)
(1,3,1)

(2,1,1)

↦

(𝑥!, 𝑥$, 𝑥%)

(𝑥!, 𝑥$, 𝑥+)

(𝑥!, 𝑥%, 𝑥+)

(𝑥$, 𝑥%, 𝑥+)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

𝑥! never 
equals to 3

can safely 
remove the 
assignment 
with 𝑥! = 3



§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ Suppose we have the following bipartite direct product instance:

(𝑥!, 𝑥$, 𝑥%)
(1,2,1)

(3,3,2)

↦

(𝑥!, 𝑥$, 𝑥+)
(1,2,1)

(2,3,3)

↦

(𝑥!, 𝑥%, 𝑥+)
(1,1,1)

(3,3,2)

↦

(𝑥$, 𝑥%, 𝑥+)
(1,3,1)

(2,1,1)

↦

(𝑥!, 𝑥$, 𝑥%)

(𝑥!, 𝑥$, 𝑥+)

(𝑥!, 𝑥%, 𝑥+)

(𝑥$, 𝑥%, 𝑥+)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

for each 𝑆, inherit 
from such a 𝑇 that 

3 ∉ 𝜎 𝑇 |3! 

for each 𝑆, inherit 
from such a 𝑇 that 

3 ∈ 𝜎 𝑇 |3! 



§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ Suppose we have the following bipartite direct product instance:

(𝑥!, 𝑥$, 𝑥%)
(1,2,1)

(3,3,2)

↦

(𝑥!, 𝑥$, 𝑥+)
(1,2,1)

(2,3,3)

↦

(𝑥!, 𝑥%, 𝑥+)
(1,1,1)

(3,3,2)

↦

(𝑥$, 𝑥%, 𝑥+)
(1,3,1)

(2,1,1)

↦

(𝑥!, 𝑥$, 𝑥%)

(𝑥!, 𝑥$, 𝑥+)

(𝑥!, 𝑥%, 𝑥+)

(𝑥$, 𝑥%, 𝑥+)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

for each 𝑆, inherit 
from such a 𝑇 that 

3 ∉ 𝜎 𝑇 |3! 

for each 𝑆, inherit 
from such a 𝑇 that 

3 ∈ 𝜎 𝑇 |3! 

by discarding this 
assignment, list size 

is decreased by 1



§ Bipartite (𝑟, 1)-case

§ Bipartite (𝑟, 𝑞)-case

§ Non-bipartite 𝑟-case



§ Bipartite (𝑟, 1)-case

§ Bipartite (𝑟, 𝑞)-case

§ Non-bipartite 𝑟-case



§ Parameterized Inapproximability Hypothesis – parameterized analog of PCP

§ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP
§ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]
§ Proof Idea: induction on the list size
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§ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP
§ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]
§ Proof Idea: induction on the list size

§ Average Baby PIH?
§ ⇒ constant inapproximability of 𝑘-ExactCover



§ Parameterized Inapproximability Hypothesis – parameterized analog of PCP

§ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP
§ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]
§ Proof Idea: induction on the list size

§ Average Baby PIH?
§ ⇒ constant inapproximability of 𝑘-ExactCover

§ Thanks!


