
Baby PIH:
Parameterized
Inapproximability of Min CSP

Venkatesan Guruswami

UC Berkeley

Xuandi Ren

UC Berkeley

Sai Sandeep

UC Berkeley

§ Background
§ Parameterized Complexity
§ Constraint Satisfaction Problem (CSP)
§ Parameterized Inapproximability Hypothesis (PIH)

§ Our Result
§ Baby PIH

§ Proof Overview

§ Background
§ Parameterized Complexity
§ Constraint Satisfaction Problem (CSP)
§ Parameterized Inapproximability Hypothesis (PIH)

§ Our Result
§ Baby PIH

§ Proof Overview

• Each input instance 𝑥 is associated with a parameter 𝑘 ∈ ℕ
• Complexity is measured as a function of both 𝑛 = |𝑥| and 𝑘.

• FPT (Fixed-Parameter Tractable):
• problems that admit 𝑓 𝑘 ⋅ 𝑛!(#) time algorithms, 𝑓 can be any computable function

• Each input instance 𝑥 is associated with a parameter 𝑘 ∈ ℕ
• Complexity is measured as a function of both 𝑛 = |𝑥| and 𝑘.

• FPT (Fixed-Parameter Tractable):
• problems that admit 𝑓 𝑘 ⋅ 𝑛!(#) time algorithms, 𝑓 can be any computable function

(Multi-colored) 𝑘-Clique
• Input:

• 𝐺 = 𝑉 = 𝑉! ∪⋯∪ 𝑉" , 𝐸
• Output:

• ∃𝑣! ∈ 𝑉!, … , 𝑣" ∈ 𝑉"
which form a clique?

𝑘-Vertex Cover
• Input:

• 𝐺 = 𝑉, 𝐸
• Output:

• ∃𝑣!, … , 𝑣" ∈ 𝑉 covering
all the edges?

• Each input instance 𝑥 is associated with a parameter 𝑘 ∈ ℕ
• Complexity is measured as a function of both 𝑛 = |𝑥| and 𝑘.

• FPT (Fixed-Parameter Tractable):
• problems that admit 𝑓 𝑘 ⋅ 𝑛!(#) time algorithms, 𝑓 can be any computable function

(Multi-colored) 𝑘-Clique
• Input:

• 𝐺 = 𝑉 = 𝑉! ∪⋯∪ 𝑉" , 𝐸
• Output:

• ∃𝑣! ∈ 𝑉!, … , 𝑣" ∈ 𝑉"
which form a clique?

𝑘-Vertex Cover
• Input:

• 𝐺 = 𝑉, 𝐸
• Output:

• ∃𝑣!, … , 𝑣" ∈ 𝑉 covering
all the edges?

FPT W[1]⊆

2-CSP
• Input: Π = 𝑋, Σ,Φ

• 𝑋: a set of variables
• Σ: the domain of each variable
• Φ: a set of 2-ary constraints

• Output:
• ∃𝜎: 𝑋 → Σ satisfying all constraints?

CSP Value
max. fraction of

constraints satisfiable
by some 𝜎: 𝑋 → Σ

2-CSP
• Input: Π = 𝑋, Σ,Φ

• 𝑋: a set of variables
• Σ: the domain of each variable
• Φ: a set of 2-ary constraints

• Output:
• ∃𝜎: 𝑋 → Σ satisfying all constraints?

CSP Value
max. fraction of

constraints satisfiable
by some 𝜎: 𝑋 → Σ

• Let 𝑛 = Π ,
• 2-CSP is NP-Complete (e.g. from 3-Coloring)

• no 𝑛!(#) time algorithm assuming NP≠P

2-CSP
• Input: Π = 𝑋, Σ,Φ

• 𝑋: a set of variables
• Σ: the domain of each variable
• Φ: a set of 2-ary constraints

• Output:
• ∃𝜎: 𝑋 → Σ satisfying all constraints?

CSP Value
max. fraction of

constraints satisfiable
by some 𝜎: 𝑋 → Σ

• Let 𝑛 = Π ,
• 2-CSP is NP-Complete (e.g. from 3-Coloring)

• no 𝑛!(#) time algorithm assuming NP≠P
• PCP Theorem:

• no 𝑛!(#) time algorithm for (1 vs 0.9) gap 2-CSP assuming NP≠P

• Let 𝑘 = 𝑋 , 𝑛 = Σ ,
• Parameterized 2-CSP is W[1]-Complete (e.g. from Multi-colored 𝑘-Clique)

• no 𝑓 𝑘 ⋅ 𝑛!(#) time algorithm assuming W[1]≠FPT

2-CSP
• Input: Π = 𝑋, Σ,Φ

• 𝑋: a set of variables
• Σ: the domain of each variable
• Φ: a set of 2-ary constraints

• Output:
• ∃𝜎: 𝑋 → Σ satisfying all constraints?

CSP Value
max. fraction of

constraints satisfiable
by some 𝜎: 𝑋 → Σ

• Let 𝑘 = 𝑋 , 𝑛 = Σ ,
• Parameterized 2-CSP is W[1]-Complete (e.g. from Multi-colored 𝑘-Clique)

• no 𝑓 𝑘 ⋅ 𝑛!(#) time algorithm assuming W[1]≠FPT
• PIH (Parameterized Inapproximability Hypothesis) [LRSZ20]:

• no 𝑓 𝑘 ⋅ 𝑛!(#) time algorithm for (1 vs 0.9) gap version assuming W[1]≠FPT
• Parameterized analog of the PCP theorem!

2-CSP
• Input: Π = 𝑋, Σ,Φ

• 𝑋: a set of variables
• Σ: the domain of each variable
• Φ: a set of 2-ary constraints

• Output:
• ∃𝜎: 𝑋 → Σ satisfying all constraints?

CSP Value
max. fraction of

constraints satisfiable
by some 𝜎: 𝑋 → Σ

(Gap) 𝑘-Clique

W[1]≠FPT

(Gap) 𝑘-SetCover

(Gap) 𝑘-ExactCover

Error-Correcting Codes [Lin21, KK22, LRSW23b]

Sidon Sets [CFLL23]
Distributed PCP Framework [KLM19]

Threshold Graphs [Lin19, KL21, LRSW23a]

and so on …

(U
nk
no
wn
)

(Gap) 𝑘-Clique

W[1]≠FPT

(Gap) 𝑘-SetCover

(Gap) 𝑘-ExactCover and so on …

(Gap) Parameterized 2CSP

PIH

Canonical Reductions

W[1]≠FPT

(Gap) Parameterized 2CSP

PIH

ETHGap-ETH

(Unknown)[DM18, CFM17]

§ Background
§ Parameterized Complexity
§ Constraint Satisfaction Problem (CSP)
§ Parameterized Inapproximability Hypothesis (PIH)

§ Our Result
§ Baby PIH

§ Proof Overview

2-CSP
• Input: Π = 𝑋, Σ,Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2#
list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2#

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

2-CSP
• Input: Π = 𝑋, Σ,Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2#
list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2#

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

𝑥!

𝑥$

𝑥%

𝜎 𝑥! + 𝜎 𝑥" = 2

𝜎 𝑥# + 𝜎 𝑥" = 3

𝜎 𝑥# = 𝜎(𝑥!)

Σ = {0,1,2,3}

2-CSP
• Input: Π = 𝑋, Σ,Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2#
list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2#

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

𝑥!

𝑥$

𝑥%

𝜎 𝑥! + 𝜎 𝑥" = 2

𝜎 𝑥# + 𝜎 𝑥" = 3

𝜎 𝑥# = 𝜎(𝑥!)

Σ = {0,1,2,3} [1]

[1,2][1]

2-CSP
• Input: Π = 𝑋, Σ,Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2#
list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2#

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

𝑥!

𝑥$

𝑥%

𝜎 𝑥! + 𝜎 𝑥" = 2

𝜎 𝑥# + 𝜎 𝑥" = 3

𝜎 𝑥# = 𝜎(𝑥!)

Σ = {0,1,2,3} [1]

[1,2][1]

[1]

2-CSP
• Input: Π = 𝑋, Σ,Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2#
list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2#

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

𝑥!

𝑥$

𝑥%

𝜎 𝑥! + 𝜎 𝑥" = 2

𝜎 𝑥# + 𝜎 𝑥" = 3

𝜎 𝑥# = 𝜎(𝑥!)

Σ = {0,1,2,3}

[1,2][1]

2-CSP
• Input: Π = 𝑋, Σ,Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2#
list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2#

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

𝑥!

𝑥$

𝑥%

𝜎 𝑥! + 𝜎 𝑥" = 2

𝜎 𝑥# + 𝜎 𝑥" = 3

𝜎 𝑥# = 𝜎(𝑥!)

Σ = {0,1,2,3} [1]

[1,2][1]

2-CSP
• Input: Π = 𝑋, Σ,Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2#
list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2#

• We say a 2-CSP is 𝑟-list satisfiable iff ∃𝜎 with max
%∈'

𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.

2-CSP
• Input: Π = 𝑋, Σ,Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2#
list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2#

• We say a 2-CSP is 𝑟-list satisfiable iff ∃𝜎 with max
%∈'

𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.
• CSP Value=1 ⇔ 1-list satisfiable ⇒ 𝑟-list satisfiable for 𝑟 ≥ 2
• 𝑟-list satisfiable ⇒ CSP Value ≥ 1/𝑟$

2-CSP
• Input: Π = 𝑋, Σ,Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2#
list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2#

• We say a 2-CSP is 𝑟-list satisfiable iff ∃𝜎 with max
%∈'

𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.
• CSP Value=1 ⇔ 1-list satisfiable ⇒ 𝑟-list satisfiable for 𝑟 ≥ 2
• 𝑟-list satisfiable ⇒ CSP Value ≥ 1/𝑟$

• Baby PCP [Barto-Kozik’22]
• For any 𝑟 > 1, It’s NP-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable].

2-CSP
• Input: Π = 𝑋, Σ,Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2#
list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2#

• We say a 2-CSP is 𝑟-list satisfiable iff ∃𝜎 with max
%∈'

𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.
• CSP Value=1 ⇔ 1-list satisfiable ⇒ 𝑟-list satisfiable for 𝑟 ≥ 2
• 𝑟-list satisfiable ⇒ CSP Value	≥ 1/𝑟$

• Baby PCP [Barto-Kozik’22]
• For any 𝑟 > 1, It’s NP-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable].

• ⇐ PCP
• For any 𝜀 > 0, It’s NP-hard to distinguish between [CSP Value =1] and [CSP Value <𝜀].

⇐ ⇐

(when 𝜀 < 1/𝑟!)

• Baby PCP [Barto-Kozik’22]
• Assuming NP≠P, for any 𝑟 > 1, distinguishing between

[1-list satisfiable] and [not even 𝑟-list satisfiable] cannot be done in Π &(!) time.
• (A combinatorial proof)
• (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + 𝜀)-SAT))

• Baby PCP [Barto-Kozik’22]
• Assuming NP≠P, for any 𝑟 > 1, distinguishing between

[1-list satisfiable] and [not even 𝑟-list satisfiable] cannot be done in Π &(!) time.
• (A combinatorial proof)
• (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + 𝜀)-SAT))

• Baby PIH [This work]
• Assuming W[1]≠FPT, … cannot be done in 𝑓 𝑋 ⋅ Σ &(!) time.
• (An itself interesting inapproximability result for list-satisfiability of CSP)
• (A step towards PIH)
• (Enough to get some applications of PIH?)

• Baby PCP [Barto-Kozik’22]
• Assuming NP≠P, for any 𝑟 > 1, distinguishing between

[1-list satisfiable] and [not even 𝑟-list satisfiable] cannot be done in Π &(!) time.
• (A combinatorial proof)
• (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + 𝜀)-SAT))

• Baby PIH [This work]
• Assuming W[1]≠FPT, … cannot be done in 𝑓 𝑋 ⋅ Σ &(!) time.
• (An itself interesting inapproximability result for list-satisfiability of CSP)
• (A step towards PIH)
• (Enough to get some applications of PIH?)

• not sure…, but something stronger is enough!
• PIH ⇒ Average Baby PIH ⇒ Baby PIH

§ Background
§ Parameterized Complexity
§ Constraint Satisfaction Problem (CSP)
§ Parameterized Inapproximability Hypothesis (PIH)

§ Our Result
§ Baby PIH

§ Proof Overview

• Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
• Direct Product Construction

2-CSP
Π = 𝑋, Σ,Φ

𝑡-wise Direct Product 2-CSP

Π⊙* =
𝑋
𝑡 , Σ* , Φ′

partial satisfying assignments
for the set of variables

• Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
• Direct Product Construction

2-CSP
Π = 𝑋, Σ,Φ

𝑡-wise Direct Product 2-CSP

Π⊙* =
𝑋
𝑡 , Σ* , Φ′

consistency checks

• Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
• Direct Product Construction

2-CSP
Π = 𝑋, Σ,Φ

𝑡-wise Direct Product 2-CSP

Π⊙* =
𝑋
𝑡 , Σ* , Φ′

partial satisfying assignments
for the set of variables

consistency checks

• (Want to show):
• For any 𝑟 > 1, there exists 𝑡 depending on 𝑟, such that for every Π,

• (Completeness) If Π is satisfiable, then so is Π⊙) .
• (Soundness) If Π is not satisfiable, then Π⊙) is not 𝑟-list satisfiable.

• Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
• Direct Product Construction

2-CSP
Π = 𝑋, Σ,Φ

𝑡-wise Direct Product 2-CSP

Π⊙* =
𝑋
𝑡 , Σ* , Φ′

• (Want to show):
• For any 𝑟 > 1, there exists 𝑡 depending on 𝑟, such that for every Π,

• (Completeness) If Π is satisfiable, then so is Π⊙) .
• (Soundness) If Π is not satisfiable, then Π⊙) is not 𝑟-list satisfiable.

• Reduction time: 𝑛!!(#) where 𝑛 = |Π|
• a unified proof for both Baby PCP and Baby PIH!

partial satisfying assignments
for the set of variables

consistency checks

(𝑥!, 𝑥%, 𝑥+, 𝑥!,) (𝑥!, 𝑥$, 𝑥-, 𝑥.)

(𝑥!, 𝑥$, 𝑥+, 𝑥/)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙+

(𝑥!, 𝑥%, 𝑥+, 𝑥!,) (𝑥!, 𝑥$, 𝑥-, 𝑥.)

(𝑥!, 𝑥$, 𝑥+, 𝑥/)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙+

(𝑥!, 𝑥%, 𝑥+, 𝑥!,) (𝑥!, 𝑥$, 𝑥-, 𝑥.)

(𝑥!, 𝑥$, 𝑥+, 𝑥/)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙+

(𝑥!, 𝑥%, 𝑥+, 𝑥!,) (𝑥!, 𝑥$, 𝑥-, 𝑥.)

(𝑥!, 𝑥$, 𝑥+, 𝑥/)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙+

• For some sufficiently large 𝑡 = 𝑡(𝑟),
• given an 𝑟-list satisfying multi-assignment 𝜎 of Π⊙),
• want to construct an (𝑟 − 1)-list satisfying multi-assignment 𝜎′ of Π⊙)", for some 𝑡* < 𝑡.

2-CSP
Π = 𝑋, Σ,Φ

𝑡-wise Direct Product 2-CSP

Π⊙* =
𝑋
𝑡 , Σ* , Φ′

• For some sufficiently large 𝑡 = 𝑡(𝑟),
• given an 𝑟-list satisfying multi-assignment 𝜎 of Π⊙),
• want to construct an (𝑟 − 1)-list satisfying multi-assignment 𝜎′ of Π⊙)", for some 𝑡* < 𝑡.

• If we end up with the 1-list satisfiability of Π⊙(+,), then we are done!

2-CSP
Π = 𝑋, Σ,Φ

𝑡-wise Direct Product 2-CSP

Π⊙* =
𝑋
𝑡 , Σ* , Φ′

• For some sufficiently large 𝑡 = 𝑡(𝑟),
• given an 𝑟-list satisfying multi-assignment 𝜎 of Π⊙),
• want to construct an (𝑟 − 1)-list satisfying multi-assignment 𝜎′ of Π⊙)", for some 𝑡* < 𝑡.

• for each set 𝑆 ∈ 0
*1 , choose a set 𝑇 ∈ 0

* with 𝑆 ⊆ 𝑇
• the list 𝜎′(𝑆) is inherited from the list 𝜎(𝑇) (at the hope of decreasing the list size by 1)

• If we end up with the 1-list satisfiability of Π⊙(+,), then we are done!

2-CSP
Π = 𝑋, Σ,Φ

𝑡-wise Direct Product 2-CSP

Π⊙* =
𝑋
𝑡 , Σ* , Φ′

(𝑥!, 𝑥%, 𝑥+, 𝑥!,) (𝑥!, 𝑥$, 𝑥-, 𝑥.)

(𝑥!, 𝑥$, 𝑥+, 𝑥/)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙+

(𝑥!, 𝑥%, 𝑥+, 𝑥!,) (𝑥!, 𝑥$, 𝑥-, 𝑥.)

(𝑥!, 𝑥$, 𝑥+, 𝑥/)and so on …

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙+

(𝑥!, 𝑥%, 𝑥+) (𝑥!, 𝑥$, 𝑥-)

(𝑥!, 𝑥$, 𝑥+)and so on …

(1,3,1)
(2,2,3)

↦

inherit

(𝑥!, 𝑥%, 𝑥+, 𝑥!,) (𝑥!, 𝑥$, 𝑥-, 𝑥.)

(𝑥!, 𝑥$, 𝑥+, 𝑥/)and so on …

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

A 3-list satisfying assignment for Π⊙+

(𝑥!, 𝑥%, 𝑥+) (𝑥!, 𝑥$, 𝑥-)

(𝑥!, 𝑥$, 𝑥+)and so on …

(1,1,1)
(3,1,2)↦

inherit

(𝑥!, 𝑥%, 𝑥+, 𝑥!,) (𝑥!, 𝑥$, 𝑥-, 𝑥.)

(𝑥!, 𝑥$, 𝑥+, 𝑥/)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

A 3-list satisfying assignment for Π⊙+

(𝑥!, 𝑥%, 𝑥+) (𝑥!, 𝑥$, 𝑥-)

(𝑥!, 𝑥$, 𝑥+)and so on …
(1,1,3)
(2,2,3)↦

inherit

(𝑥!, 𝑥%, 𝑥+) (𝑥!, 𝑥$, 𝑥-)

(𝑥!, 𝑥$, 𝑥+)and so on …
(1,1,3)
(2,2,3)↦

(1,1,1)
(3,1,2)↦

(1,3,1)
(2,2,3)

↦

A 2-list satisfying assignment for Π⊙%?

§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ Suppose we have the following bipartite direct product instance:

(𝑥!, 𝑥$, 𝑥%)
(1,2,1)

(3,3,2)

↦

(𝑥!, 𝑥$, 𝑥+)
(1,2,1)

(2,3,3)

↦

(𝑥!, 𝑥%, 𝑥+)
(1,1,1)

(3,3,2)

↦

(𝑥$, 𝑥%, 𝑥+)
(1,3,1)

(2,1,1)

↦

(𝑥!, 𝑥$, 𝑥%)

(𝑥!, 𝑥$, 𝑥+)

(𝑥!, 𝑥%, 𝑥+)

(𝑥$, 𝑥%, 𝑥+)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ Suppose we have the following bipartite direct product instance:

(𝑥!, 𝑥$, 𝑥%)
(1,2,1)

(3,3,2)

↦

(𝑥!, 𝑥$, 𝑥+)
(1,2,1)

(2,3,3)

↦

(𝑥!, 𝑥%, 𝑥+)
(1,1,1)

(3,3,2)

↦

(𝑥$, 𝑥%, 𝑥+)
(1,3,1)

(2,1,1)

↦

(𝑥!, 𝑥$, 𝑥%)

(𝑥!, 𝑥$, 𝑥+)

(𝑥!, 𝑥%, 𝑥+)

(𝑥$, 𝑥%, 𝑥+)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

𝑥! never
equals to 3

§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ Suppose we have the following bipartite direct product instance:

(𝑥!, 𝑥$, 𝑥%)
(1,2,1)

(3,3,2)

↦

(𝑥!, 𝑥$, 𝑥+)
(1,2,1)

(2,3,3)

↦

(𝑥!, 𝑥%, 𝑥+)
(1,1,1)

(3,3,2)

↦

(𝑥$, 𝑥%, 𝑥+)
(1,3,1)

(2,1,1)

↦

(𝑥!, 𝑥$, 𝑥%)

(𝑥!, 𝑥$, 𝑥+)

(𝑥!, 𝑥%, 𝑥+)

(𝑥$, 𝑥%, 𝑥+)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

𝑥! never
equals to 3

can safely
remove the
assignment
with 𝑥! = 3

§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ Suppose we have the following bipartite direct product instance:

(𝑥!, 𝑥$, 𝑥%)
(1,2,1)

(3,3,2)

↦

(𝑥!, 𝑥$, 𝑥+)
(1,2,1)

(2,3,3)

↦

(𝑥!, 𝑥%, 𝑥+)
(1,1,1)

(3,3,2)

↦

(𝑥$, 𝑥%, 𝑥+)
(1,3,1)

(2,1,1)

↦

(𝑥!, 𝑥$, 𝑥%)

(𝑥!, 𝑥$, 𝑥+)

(𝑥!, 𝑥%, 𝑥+)

(𝑥$, 𝑥%, 𝑥+)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

for each 𝑆, inherit
from such a 𝑇 that

3 ∉ 𝜎 𝑇 |3!

for each 𝑆, inherit
from such a 𝑇 that

3 ∈ 𝜎 𝑇 |3!

§ How can we discard one assignment safely?
§ the one that is never used to meet any consistency constraints!

§ Suppose we have the following bipartite direct product instance:

(𝑥!, 𝑥$, 𝑥%)
(1,2,1)

(3,3,2)

↦

(𝑥!, 𝑥$, 𝑥+)
(1,2,1)

(2,3,3)

↦

(𝑥!, 𝑥%, 𝑥+)
(1,1,1)

(3,3,2)

↦

(𝑥$, 𝑥%, 𝑥+)
(1,3,1)

(2,1,1)

↦

(𝑥!, 𝑥$, 𝑥%)

(𝑥!, 𝑥$, 𝑥+)

(𝑥!, 𝑥%, 𝑥+)

(𝑥$, 𝑥%, 𝑥+)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

for each 𝑆, inherit
from such a 𝑇 that

3 ∉ 𝜎 𝑇 |3!

for each 𝑆, inherit
from such a 𝑇 that

3 ∈ 𝜎 𝑇 |3!

by discarding this
assignment, list size

is decreased by 1

§ Bipartite (𝑟, 1)-case

§ Bipartite (𝑟, 𝑞)-case

§ Non-bipartite 𝑟-case

§ Bipartite (𝑟, 1)-case

§ Bipartite (𝑟, 𝑞)-case

§ Non-bipartite 𝑟-case

§ Parameterized Inapproximability Hypothesis – parameterized analog of PCP

§ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP
§ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]
§ Proof Idea: induction on the list size

§ Parameterized Inapproximability Hypothesis – parameterized analog of PCP

§ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP
§ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]
§ Proof Idea: induction on the list size

§ Average Baby PIH?
§ ⇒ constant inapproximability of 𝑘-ExactCover

§ Parameterized Inapproximability Hypothesis – parameterized analog of PCP

§ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP
§ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]
§ Proof Idea: induction on the list size

§ Average Baby PIH?
§ ⇒ constant inapproximability of 𝑘-ExactCover

§ Thanks!

