Baby PIH: Parameterized Inapproximability of Min CSP

Venkatesan Guruswami
UC Berkeley

Xuandi Ren
UC Berkeley
UC Berkeley

Outline

- Background
- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
- Baby PIH
- Proof Overview

Outline

- Background
- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
- Baby PIH
- Proof Overview

Parameterized Complexity

- Each input instance x is associated with a parameter $k \in \mathbb{N}$
- Complexity is measured as a function of both $n=|x|$ and k.
- FPT (Fixed-Parameter Tractable):
- problems that admit $f(k) \cdot n^{O(1)}$ time algorithms, f can be any computable function

Parameterized Complexity

- Each input instance x is associated with a parameter $k \in \mathbb{N}$
- Complexity is measured as a function of both $n=|x|$ and k.
- FPT (Fixed-Parameter Tractable):
- problems that admit $f(k) \cdot n^{O(1)}$ time algorithms, f can be any computable function
k-Vertex Cover
- Input:
- $G=(V, E)$
- Output:
- $\exists v_{1}, \ldots, v_{k} \in V$ covering all the edges?
(Multi-colored) k-Clique
- Input:
- $G=\left(V=V_{1} \cup \cdots \cup V_{k}, E\right)$
- Output:
- $\exists v_{1} \in V_{1}, \ldots, v_{k} \in V_{k}$ which form a clique?

Parameterized Complexity

- Each input instance x is associated with a parameter $k \in \mathbb{N}$
- Complexity is measured as a function of both $n=|x|$ and k.
- FPT (Fixed-Parameter Tractable):
- problems that admit $f(k) \cdot n^{O(1)}$ time algorithms, f can be any computable function
k-Vertex Cover
- Input:
- $G=(V, E)$
- Output:
- $\exists v_{1}, \ldots, v_{k} \in V$ covering all the edges?
(Multi-colored) k-Clique
- Input:
- $G=\left(V=V_{1} \cup \cdots \cup V_{k}, E\right)$
- Output:
- $\exists v_{1} \in V_{1}, \ldots, v_{k} \in V_{k}$ which form a clique?

Constraint Satisfaction Problem

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- X : a set of variables
- Σ : the domain of each variable
- Φ : a set of 2 -ary constraints
- Output:
- $\exists \sigma: X \rightarrow \Sigma$ satisfying all constraints?

Constraint Satisfaction Problem.

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- X : a set of variables
- Σ : the domain of each variable
- Φ : a set of 2 -ary constraints
- Output:
- $\exists \sigma: X \rightarrow \Sigma$ satisfying all constraints?
- Let $n=|\Pi|$,
- 2-CSP is NP-Complete (e.g. from 3-Coloring)
- no $n^{O(1)}$ time algorithm assuming $\mathrm{NP} \neq \mathrm{P}$

CSP Value

max. fraction of constraints satisfiable by some $\sigma: X \rightarrow \Sigma$

Constraint Satisfaction Problem.

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- X : a set of variables
- Σ : the domain of each variable
- Φ : a set of 2-ary constraints
- Output:
- $\exists \sigma: X \rightarrow \Sigma$ satisfying all constraints?
- Let $n=|\Pi|$,
- 2-CSP is NP-Complete (e.g. from 3-Coloring)
- no $n^{O(1)}$ time algorithm assuming $N P \neq P$
- PCP Theorem:
- no $n^{O(1)}$ time algorithm for (l vs 0.9) gap 2-CSP assuming $\mathrm{NP} \neq \mathrm{P}$

Parameterized 2-CSP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- X : a set of variables
- Σ : the domain of each variable
- Φ : a set of 2-ary constraints
- Output:

CSP Value

 max. fraction of constraints satisfiable by some $\sigma: X \rightarrow \Sigma$- $\exists \sigma: X \rightarrow \sum$ satisfying all constraints?
- Let $k=|X|, n=|\Sigma|$,
- Parameterized 2-CSP is W[1]-Complete (e.g. from Multi-colored k-Clique)
- no $f(k) \cdot n^{O(1)}$ time algorithm assuming W[1] $\neq \mathrm{FPT}$

Parameterized 2-CSP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- X : a set of variables
- Σ : the domain of each variable
- Φ : a set of 2 -ary constraints
- Output:

CSP Value

max. fraction of constraints satisfiable by some $\sigma: X \rightarrow \Sigma$

- $\exists \sigma: X \rightarrow \Sigma$ satisfying all constraints?
- Let $k=|X|, n=|\Sigma|$,
- Parameterized 2-CSP is W[1]-Complete (e.g. from Multi-colored k-Clique)
- no $f(k) \cdot n^{O(1)}$ time algorithm assuming W[1] $\neq \mathrm{FPT}$
- PIH (Parameterized Inapproximability Hypothesis) [LRSZ20]:
- no $f(k) \cdot n^{O(1)}$ time algorithm for (1 vs 0.9) gap version assuming $W[1] \neq F P T$
- Parameterized analog of the PCP theorem!

Parameterized Inapproximability Hypothesis

Parameterized Inapproximability Hypothesis

Parameterized Inapproximability Hypothesis

Outline

- Background
- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
- Baby PIH
- Proof Overview

List Satisfiability of CSP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- Output:
- \exists multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value
max. list size of a list-satisfying multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$

- A constraint on (x, y) is list-satisfied iff $\exists u \in \sigma(x), v \in \sigma(y)$, s.t. (u, v) satisfies this constraint.

List Satisfiability of CSP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- Output:
- \exists multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value
max. list size of a list-satisfying multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$

- A constraint on (x, y) is list-satisfied iff $\exists u \in \sigma(x), v \in \sigma(y)$, s.t. (u, v) satisfies this constraint.

$$
\Sigma=\{0,1,2,3\}
$$

List Satisfiability of CSP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- Output:
- \exists multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$

- A constraint on (x, y) is list-satisfied iff $\exists u \in \sigma(x), v \in \sigma(y)$, s.t. (u, v) satisfies this constraint.

List Satisfiability of CSP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- Output:
- \exists multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$

- A constraint on (x, y) is list-satisfied iff $\exists u \in \sigma(x), v \in \sigma(y)$, s.t. (u, v) satisfies this constraint.

List Satisfiability of CSP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- Output:
- \exists multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$

- A constraint on (x, y) is list-satisfied iff $\exists u \in \sigma(x), v \in \sigma(y)$, s.t. (u, v) satisfies this constraint.

List Satisfiability of CSP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- Output:
- \exists multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$

- A constraint on (x, y) is list-satisfied iff $\exists u \in \sigma(x), v \in \sigma(y)$, s.t. (u, v) satisfies this constraint.

List Satisfiability of CSP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- Output:
- \exists multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value
max. list size of a list-satisfying multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$

- We say a 2-CSP is r-list satisfiable iff $\exists \sigma$ with $\max _{x \in X}|\sigma(x)| \leq r$ list-satisfying all constraints.

List Satisfiability of CSP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- Output:
- \exists multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value

max. list size of a list-satisfying multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$

- We say a 2-CSP is r-list satisfiable iff $\exists \sigma$ with $\max _{x \in X}|\sigma(x)| \leq r$ list-satisfying all constraints.
- CSP Value $=1 \Leftrightarrow$ l-list satisfiable $\Rightarrow r$-list satisfiable for $r \geq 2$
- r-list satisfiable $\Rightarrow \operatorname{CSP}$ Value $\geq 1 / r^{2}$

Baby PCP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- Output:
- \exists multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value

max. list size of a list-satisfying multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$

- We say a 2-CSP is r-list satisfiable iff $\exists \sigma$ with $\max _{x \in X}|\sigma(x)| \leq r$ list-satisfying all constraints.
- CSP Value $=1 \Leftrightarrow$ l-list satisfiable $\Rightarrow r$-list satisfiable for $r \geq 2$
- r-list satisfiable \Rightarrow CSP Value $\geq 1 / r^{2}$
- Baby PCP [Barto-Kozik'22]
- For any $r>1$, It's NP-hard to distinguish between [l-list satisfiable] and [not even r-list satisfiable].

Baby PCP

2-CSP

- Input: $\Pi=(X, \Sigma, \Phi)$
- Output:
- \exists multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value

max. list size of a list-satisfying multi-assignment $\sigma: X \rightarrow 2^{\Sigma}$

- We say a 2-CSP is r-list satisfiable iff $\exists \sigma$ with $\max _{x \in X}|\sigma(x)| \leq r$ list-satisfying all constraints.
- CSP Value $=1 \Leftrightarrow$ l-list satisfiable $\Rightarrow r$-list satisfiable for $r \geq 2$
- r-list satisfiable \Rightarrow CSP Value $\geq 1 / r^{2}$
- Baby PCP [Barto-Kozik'22]
- For any $r>1$, It's NP-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable].
- $\Leftarrow \mathrm{PCP}$
- For any $\varepsilon>0$, It's NP-hard to distinguish between [CSP Value =1] and [CSP Value $<\varepsilon$].

Baby PCP

- Baby PCP [Barto-Kozik'22]
- Assuming $\mathrm{NP} \neq \mathrm{P}$, for any $r>1$, distinguishing between
[l-list satisfiable] and [not even r-list satisfiable] cannot be done in $|\Pi|^{O(1)}$ time.
- (A combinatorial proof)
- (Enough to prove the NP-hardness of some PCSPs (e.g., $(2+\varepsilon)$-SAT))

Baby PIH

- Baby PCP [Barto-Kozik'22]
- Assuming $\mathrm{NP} \neq \mathrm{P}$, for any $r>1$, distinguishing between
[l-list satisfiable] and [not even r-list satisfiable] cannot be done in $|\Pi|^{O(1)}$ time.
- (A combinatorial proof)
- (Enough to prove the NP-hardness of some PCSPs (e.g., $(2+\varepsilon)-\mathrm{SAT})$)
- Baby PIH [This work]
- Assuming W[1] \neq FPT, ... cannot be done in $f(|X|) \cdot|\Sigma|^{0(1)}$ time.
- (An itself interesting inapproximability result for list-satisfiability of CSP)
- (A step towards PIH)
- (Enough to get some applications of PIH?)

Baby PIH

- Baby PCP [Barto-Kozik'22]
- Assuming $\mathrm{NP} \neq \mathrm{P}$, for any $r>1$, distinguishing between
[l-list satisfiable] and [not even r-list satisfiable] cannot be done in $|\Pi|^{O(1)}$ time.
- (A combinatorial proof)
- (Enough to prove the NP-hardness of some PCSPs (e.g., $(2+\varepsilon)$-SAT))
- Baby PIH [This work]
- Assuming W[1] \neq FPT, ... cannot be done in $f(|X|) \cdot|\Sigma|^{0(1)}$ time.
- (An itself interesting inapproximability result for list-satisfiability of CSP)
- (A step towards PIH)
- (Enough to get some applications of PIH?)
- not sure..., but something stronger is enough!
- PIH \Rightarrow Average Baby PIH \Rightarrow Baby PIH

Outline

- Background
- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
- Baby PIH
- Proof Overview

Proof Overview

- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction

$$
\begin{gathered}
\text { 2-CSP } \\
\Pi=(X, \Sigma, \Phi)
\end{gathered}
$$

t-wise Direct Product 2-CSP

$$
\Pi^{\odot t}=\left(\binom{X}{t}, \Sigma^{t}, \Phi^{\prime}\right)
$$

partial satisfying assignments for the set of variables

Proof Overview

- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction

$$
\begin{gathered}
\text { 2-CSP } \\
\Pi=(X, \Sigma, \Phi)
\end{gathered}
$$

t-wise Direct Product 2-CSP

consistency checks

Proof Overview

- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction

$$
\begin{gathered}
\text { 2-CSP } \\
\Pi=(X, \Sigma, \Phi)
\end{gathered}
$$

Proof Overview

- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction

$$
\begin{gathered}
\text { 2-CSP } \\
\Pi=(X, \Sigma, \Phi)
\end{gathered}
$$

$$
t \text {-wise Direct Product 2-CSP }
$$

$$
\Pi^{\odot t}=\left(\binom{X}{t}, \Sigma^{t}, \Phi^{\prime}\right)
$$

partial satisfying assignments
consistency checks for the set of variables

- (Want to show):
- For any $r>1$, there exists t depending on r, such that for every Π,
- (Completeness) If Π is satisfiable, then so is $\Pi^{\odot t}$.
- (Soundness) If Π is not satisfiable, then $\Pi^{\odot t}$ is not r-list satisfiable.
- Reduction time: $n^{O_{r}(1)}$ where $n=|\Pi|$
- a unified proof for both Baby PCP and Baby PIH!

Proof Overview

t-wise Direct Product 2-CSP

$$
\Pi^{\odot t}=\left(\binom{X}{t}, \Sigma^{t}, \Phi^{\prime}\right)
$$

- For some sufficiently large $t=t(r)$,
- given an r-list satisfying multi-assignment σ of $\Pi^{\odot t}$,
- want to construct an $(r-1)$-list satisfying multi-assignment σ^{\prime} of $\Pi^{\odot} t^{\prime}$, for some $t^{\prime}<t$.

Proof Overview

t-wise Direct Product 2-CSP
 $$
\Pi^{\odot t}=\left(\binom{X}{t}, \Sigma^{t}, \Phi^{\prime}\right)
$$

- For some sufficiently large $t=t(r)$,
- given an r-list satisfying multi-assignment σ of Π^{\odot},
- want to construct an $(r-1)$-list satisfying multi-assignment σ^{\prime} of $\Pi^{\odot} t^{\prime}$, for some $t^{\prime}<t$.
- If we end up with the l-list satisfiability of $\Pi \odot(\geq 2)$, then we are done!

Proof Overview

$$
\begin{gathered}
t \text {-wise Direct Product 2-CSP } \\
\Pi^{\odot t}=\left(\binom{X}{t}, \Sigma^{t}, \Phi^{\prime}\right)
\end{gathered}
$$

- For some sufficiently large $t=t(r)$,
- given an r-list satisfying multi-assignment σ of $\Pi^{\odot t}$,
- want to construct an $(r-1)$-list satisfying multi-assignment σ^{\prime} of $\Pi \odot t^{\prime}$, for some $t^{\prime}<t$.
- for each set $S \in\binom{X}{t}$, choose a set $T \in\binom{X}{t}$ with $S \subseteq T$
- the list $\sigma^{\prime}(S)$ is inherited from the list $\sigma(T)$ (at the hope of decreasing the list size by l)
- If we end up with the 1 -list satisfiability of $\Pi^{\odot}(\geq 2)$, then we are done!

Proof Overview

Proof Overview

- How can we discard one assignment safely?
- the one that is never used to meet any consistency constraints!

Proof Overview

- How can we discard one assignment safely?
- the one that is never used to meet any consistency constraints!
- Suppose we have the following bipartite direct product instance:

Proof Overview

- How can we discard one assignment safely?
- the one that is never used to meet any consistency constraints!
- Suppose we have the following bipartite direct product instance:

Proof Overview

- How can we discard one assignment safely?
- the one that is never used to meet any consistency constraints!
- Suppose we have the following bipartite direct product instance:

Proof Overview

- How can we discard one assignment safely?
- the one that is never used to meet any consistency constraints!
- Suppose we have the following bipartite direct product instance:

Proof Overview

- How can we discard one assignment safely?
- the one that is never used to meet any consistency constraints!
- Suppose we have the following bipartite direct product instance:

Proof Overview

- Bipartite ($r, 1$)-case \dagger
- Bipartite (r, q)-case
\uparrow
- Non-bipartite r-case

Proof Overview

- Bipartite ($r, 1$)-case \uparrow
- Bipartite (r, q)-case \uparrow
- Non-bipartite r-case

Takeaway

- Parameterized Inapproximability Hypothesis - parameterized analog of PCP
- Baby PIH - inapproximability of the list-satisfiability of (parameterized) 2CSP
- W[l]-hard to distinguish between [l-list satisfiable] and [not even r-list satisfiable]
- Proof Idea: induction on the list size

Takeaway

- Parameterized Inapproximability Hypothesis - parameterized analog of PCP
- Baby PIH - inapproximability of the list-satisfiability of (parameterized) 2CSP
- W[l]-hard to distinguish between [l-list satisfiable] and [not even r-list satisfiable]
- Proof Idea: induction on the list size
- Average Baby PIH?
- \Rightarrow constant inapproximability of k-ExactCover

Takeaway

- Parameterized Inapproximability Hypothesis - parameterized analog of PCP
- Baby PIH - inapproximability of the list-satisfiability of (parameterized) 2CSP
- W[l]-hard to distinguish between [l-list satisfiable] and [not even r-list satisfiable]
- Proof Idea: induction on the list size
- Average Baby PIH?
- \Rightarrow constant inapproximability of k-ExactCover
- Thanks!

