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Difficulties of solving reaction-transport equations in cells

1. The equations are large, mixed dimensional 

systems of PDEs coupled across many 

cellular sub-compartments (plasma 

membrane, cytosol, organelle membranes, 

organelle interiors)

2. Many reactions depend nonlinearly on 

chemical constituents

3. Reaction and transport may involve many 

different physical mechanisms (diffusion, 

convection, electrodynamics, coupling to 

mechanics)

4. Cell geometries are complicated!

Example: ER-mitochondria geometry and dynamics (Guo et 

al 2018, Cell)
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Creation of meshes for complicated cell geometries – GAMer2 
• Example below: meshes for a dendritic spine (bulbous protrusion from the dendrite of a neuron)

• GAMer2 allows for preservation of geometrical features while providing a smoother, better conditioned 

mesh for FEA

Lee et al 2020, PLOS Comp Bio
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Creation of meshes for complicated cell geometries – GAMer2 

Lee et al 

2020, PLOS 
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Spatial algorithms for reaction and transport (SMART) – 

modeling signaling networks in realistic cell geometries

SMART

Outline for today’s talk:

1. Brief overview of formulation of equations and solution techniques in SMART.

2. Calcium dynamics in dendritic spines

3. Calcium dynamics in Purkinje neuron soma
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Formulation of mixed dimensional reaction-transport systems

𝜕𝑡𝑢𝑖
𝑚 − ∇  ∙ 𝐷𝑖∇𝑢𝑖

𝑚 − 𝑓𝑖
𝑚 𝑢𝑚 = 0 in Ω𝑚

For each species in this compartment, with 

concentration 𝑢𝑖
𝑚,  

Consider a volumetric compartment, Ω𝑚,  with 

boundary Γ𝑞 and normal 𝐧𝑚, and adjacent to 

other volumetric compartments Ω𝑛

For each species on the boundary of this 

compartment, with concentration 𝑣𝑗
𝑞
,  

𝜕𝑡𝑣𝑗
𝑞

− ∇  ∙ 𝐷𝑗∇𝑣𝑗
𝑞

− 𝑔𝑗
𝑞

𝑢𝑚, 𝑢𝑛, 𝑣𝑞 = 0 on Γ𝑞

Diffusion Volume reactions

Surface reactions Diffusive flux

𝐷𝑖∇𝑢𝑖
𝑚 ∙ 𝐧𝑚 − 𝑅𝑖

𝑞
𝑢𝑚, 𝑢𝑛, 𝑣𝑞 = 0 on Γ𝑞

Surface diffusion Surface reactions
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Formulation of mixed dimensional reaction-transport systems

𝜕𝑡𝑢𝑖
𝑚 − ∇  ∙ 𝐷𝑖∇𝑢𝑖

𝑚 − 𝑓𝑖
𝑚 𝑢𝑚 = 0 in Ω𝑚

𝜕𝑡𝑣𝑗
𝑞

− ∇  ∙ 𝐷𝑗∇𝑣𝑗
𝑞

− 𝑔𝑗
𝑞

𝑢𝑚, 𝑢𝑛, 𝑣𝑞 = 0 on Γ𝑞

𝐷𝑖∇𝑢𝑖
𝑚 ∙ 𝐧𝑚 − 𝑅𝑖

𝑞
𝑢𝑚, 𝑢𝑛, 𝑣𝑞 = 0 on Γ𝑞

→ Variational form 𝐹𝑖
𝑚

Monolithic formulation – consider the sum of all variational forms for each subproblem:

→ Variational form 𝐺𝑗
𝑞
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Numerical methods and validation in SMART

• Use backward Euler for time discretization

• Assemble nonlinear finite element system using FEniCS

• Solve this system using Newton-Raphson iteration in PETSc

Validated SMART by 

testing problems with 

known analytical 

solutions

8

Francis and Laughlin, 

in preparation



Overview of Ca2+ signaling networks in neurons

Neuron morphology - Smrt and Zhao, Front Biol 2015 The complex signaling environment within a dendritic spine - 

Cugno et al. Sci Rep 2019
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Testing Ca2+ dynamics in idealized geometries for dendritic spines

Model from Bell et al 2019:

• Ca2+ influx through VSCCs and NMDARs

• Ca2+ exits the cytosol through pumps into the 

spine apparatus (SA) or out of the PM

Bell et al 2019, J Gen Physiology

• 4 different geometries of spines with spine 

apparatus; volumes equal in all cases
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Increased spine apparatus surface area allows for faster 

pumping of Ca2+ out of the cytosol

Ca2+ decreases fastest when 

surface area to volume ratios 

are maximized
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Ca2+ dynamics in a realistic spine geometry
Postsynaptic 

density (PSD)

Spine 

apparatus
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Calcium dynamics in a realistic spine geometry
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Calcium dynamics in two realistic dendritic spines

spine 1 spine 2

Ca2+ decreases faster in spine 

1, where the spine apparatus 

surface area to cytosolic 

volume ratio is highest

spine 1

spine 2
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Including Ca2+ release through IP3Rs and RyRs

PM

ER
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• Segmentation of electron micrographs identifies the ER within the main body (soma) of 

Purkinje neurons (collaboration with the Ellisman Lab)

Electron microscopy provides detailed characterization of the 

ER in the soma of Purkinje neurons

16Imaging by Matthias Haberl at UCSD



• ER is localized close to the PM (within 100nm)

• Membrane-adjacent ER is preferentially oriented parallel to the PM

Electron microscopy provides detailed characterization of the 

ER in the soma of Purkinje neurons
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Model of calcium dynamics in the Purkinje neuron

• Detailed signaling model adapted from previous well-mixed model (Doi et al 2005, J Neurosci), 

converted to a spatial model – 26 species overall (21 surface, 5 volume) 

• Inputs chosen to match physiological stimulus used in Doi et al
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Examining Ca2+ dynamics in realistic soma geometries

• Region of Purkinje soma from electron microscopy was segmented into ER and cytosol

• Resulting mesh was conditioned using GAMer2

• Mesh statistics:

• ~62 million tetrahedra total (25m in the cytosol, 37m in the ER)

• ~11.6 million surface triangles (11.5m in ER membrane, .1m in the PM)

• ~10 million points total in the whole geometry
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IP3 and Ca2+ dynamics in a realistic Purkinje soma
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IP3 and Ca2+ dynamics in a realistic Purkinje soma
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ER spacing and orientation controls the timing and 

magnitude of calcium release
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Experimental measurements of receptor distributions
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Whole-cell geometry with receptor gradients

• Gradients in realistic geometry chosen to match those observed experimentally (linear 

gradient as a function of distance from the PM)
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Ca2+ dynamics for uniform receptors vs. realistic receptor gradient
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Receptor 

gradient

Control

Ca2+ dynamics for uniform receptors vs. realistic receptor gradient
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Ca2+ dynamics for uniform receptors vs. realistic receptor gradient

27



Conclusions / Summary

Cugno et al 2019, Sci Reports 

• Together with GAMer2, SMART offers a 

platform to specify biological signaling 

networks in realistic cell geometries

• Realistic representation of cell signaling 

requires consideration of nonlinear reaction 

kinetics, surface-volume coupling, and 

detailed cell geometries

Lessons from spine and Purkinje simulations:

1. Surface to volume ratios are important 

determinants of calcium influx, calcium 

release, and repackaging of calcium into 

the ER.

2. The orientation and spacing of ER with 

respect to the PM modulates the rate of 

calcium release.

3. Changes in receptor distribution influence 

calcium release dynamics.
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