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Stable hyperdefinable sets

Definition

An (A-)hyperdefinable set is a quotient X /E, where X is
(A-)type-definable and E is an (A-)type-definable equivalence
relation on X.

| \

Definition
An A-hyperdefinable set X /E is stable if for every A-indiscernible
sequence (a;, bj)i<w with a; € X/E for all (equivalently, some)
I < w, we have
tp(aj, bj/A) = tp(aj, bi/A)

for all (some) i # j < w.

A\
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Characterizations of stability

Let Fx /e be the family of all functions f: X x €™ — R which
factor through X/E x €™ and can be extended to a CL-formula
€A x €™ — R over (), where m ranges over w.

Proposition

X /E is stable as a hyperdefinable set if and only if every f € Fx/E
is stable.

Using this and various results of Ben-Yaacov and Usvyatsov on
stability in continuous logic, we deduced:
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Characterizations of stability — cont.

Theorem

Let X/E be a O-hyperdefinable set. The following conditions are
equivalent:

@ X/E is stable.
Q@ VM T Vfe Fxe Vp e S¢(M) (pis definable).
© N |TIVMET (M <X = |Sx/e(M)| <)

@ Any global invariant (over some A) type p € Sx/e(€) is
generically stable.

Moreover, they imply:

@ Any indiscernible sequence of elements of X/E is totally
indiscernible.

And, under NIP, they are equivalent to (5).
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Characterizations of stability — cont.

Using item (5) of the last theorem, we easily get an extension of a
result of Onshuus and Peterzil to a hyperdefinable context.

Proposition

Assume NIP. An A-hyperdefinable set X/E is stable if and only if
it is weakly stable in the sense that for every A-indiscernible
sequence (a;, b, ¢)j<,, with a;, bj € X/E for all (equivalently,
some) i < w, we have

tp(ai, bj, c/A) = tp(aj, bi, c/A)

for all (some) i # j < w.

Fact (Haskel and Pillay)

Stable hyperdefinable sets are closed under taking Cartesian
products, type-definable quotients, and hyperdefinable subsets.
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Maximal stable quotients of NIP groups

Theorem (Haskel and Pillay)

Let G be a group 0-type-definable in a NIP theory. Then there
exists a smallest type-definable (over a small set of parameters)
subgroup G** of G with stable quotient G/G*t. Moreover, G* is
0-type-definable and normal. Similarly, there is also a
0-/\-definable subgroup G which is defined as the intersection
of all relatively definable (with parameters) subgroups H of G such
that G/H is stable.

Example

Consider a monster model K of ACVF, and G := (V,+), where V
is the valuation ring of K. Then Gt = G0 is precisely the
additive group of the maximal ideal of V, and G/G*" is the
additive group of the residue field.
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Maximal stable quotients of NIP groups — cont.

Assume NIP.

@ A dense indiscernible sequence [ is distal if for any distinct
Dedekind cuts c1, ¢o, if a fills ¢; and b fills ¢y, then
IU{a} U {b} is indiscernible.

@ The theory T is distal if all dense indiscernible sequences (of
tuples from the home sort) are distal.

o We say that T"¢9 js distal if all dense indiscernible sequences
(ai/E)iez of hyperimaginaries (where E is 0-\-definable) are
distal.

Theorem

If (aj)iez is a (dense) distal sequence, then (a;/E);c7 is a distal
sequence of hyperimaginaries. Thus, if T is distal, then T" is
distal.
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Maximal stable quotients of NIP groups — cont.

For a distal theory T, a hyperdefinable set X/E is stable if and
only if E is a bounded equivalence relation. In particular, for a
group G A-definable in a distal theory, G5t = G%.

Let M :=(R,+,/), where [ :=[0,1]. Let T := Th(M). Let

N = (R,+,—, R),en+, where R.(x,y) holds if and only if
0<y—x<r. Then M and N are interdefinable over (). Let

G := (R, +), and G* the interpretation of G in the monster model.

Proposition

G*$t is precisely the subgroup of all infinitesimals, and
o G*StO ?é G*St 7& G*OO G*.
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Maximal stable quotients of types

When we lack a group structure, a counterpart of quotienting by a
subgroup is taking a quotient by an equivalence relation. However,
a naive counterpart of Haskell and Pillay’s theorem does not work,
i.e. for any non-stable type-definable set X a finest type-definable
equivalence relation E on X with stable quotient X /E does not
exist. Indeed, suppose for a contradiction that it exists. By
assumption, there is a non-trivial E-class [a]g. Then EN=, is a
type-definable equivalence relation on X with stable quotient
X/(EN=,) and EN=, is strictly finer than E, a contradiction.
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The main theorem

¢ always denotes a monster model of the theory in question.

Theorem

Assume NIP. Let p(x) € S(€) be an A-invariant type. Assume that
¢ is at least 3(22\T\+\A\+M)+—saturated. Then, there exists a finest

equivalence relation E** on p(€’) (the set of realizations of p in the
bigger monster model ') relatively type-definable over a small set
of parameters of € and with stable quotient p(¢’)/E*t.

Is ESt type-definable over A?

If yes, we could drop the specific high degree of saturation
assumption in the above theorem.
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Examples

Example

Let T := Th((R, Ry, f),cq+ seq). Where f5(x) := x + s and
R/(x,y) holds if and only if 0 <y — x < r.

Let p € 54(€) be the complete global type determined by

/\ /\ (GRa(x, €) A =Ra(c, ).

cel ncw

Then ESt is the equivalence relation on p(€’) defined by

A (Re(x.y) V Re(y. ).

reQ+t

The same is true for T := Th((R, 4+, —, 1, R-(x,¥))recq+)-

Krzysztof Krupiriski Maximal stable quotients of invariant types in NIP theories



On the proof of the main theorem

The proof of the main theorem is a non-trivial adaptation of the
proof of Haskel and Pillay’s result on the existence of G** (which
in turn is based on the proof of the existence of G%). The key
new idea is to use relatively type-definable subsets of Aut(¢) which
were studied and used by Hrushovski, Pillay, and myself to prove
G-compactness of all amenable theories; another point is an
application of strong heir extensions.
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Relatively type-definable subsets of Aut(C)

Definition

By a relatively type-definable subset of Aut(€), we mean a subset
of the form {0 € Aut(€) : € = 7(o(a), b))} for some partial type
m(x, y) (without parameters), where x and y are short tuples of
variables, and a, b are corresponding tuples from €.

In particular, given a partial type 7(x, y, z) over the empty set and
(short) tuples a, b, c in € corresponding to x, y, z, respectively, we
have a relatively type-definable subset of Aut(€) of the form

Aw(x;y,z),a,b,c = {0 € AUt(Q:) ¢ ): 77(0(3)’ b» C)}

When [x| = [y/,
Aﬂ,a,c = ATr(x;y,z),a,a,C'
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Some ingredients of the proof of the main theorem

From now on, ¢ < ¢’ are monster model such that ¢ is small in ¢’
and p € 5(€) is a global A-invariant type, where A C € is small.
Relatively type-definable subsets of Aut(€’) are used to prove:

Let a € ¢ and (a;)i<w C €' be such that ag = a; for all i < w and
a

al=pla,. Let m(x,y,z) be a partial type over the empty set
such that for every i < w the partial type 7(x, y, a;) defines an
equivalence relation on p[,(¢"). Assume that there is a formula

©(x,y, z) implied by 7(x,y, z) such that for every i < w
(€, €, 3) N (placu(€))* € (€, €, ).
i#j

Then, T has IP.
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Some ingredients of the proof of the main theorem

Proof.

[On the proof of Lemma 1] Since p|,_,, is complete, the
non-inlcusion in the lemma is equivalent to

(7(¢,a,3) N pla(€) Z (€, a,a),
J#i

which in turn can be expressed as

AUt(Q://a<w) N A/\j#, m(x:y,2j),a,3,(aj)j#i Z Ago(x;y,z,-),a,a,a,-'

Then, we work with relatively type-definable subsets to get IP.
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Some ingredients of the proof of the main theorem

On the proof of Lemma 1 — cont.

For every i < w, choose some

g € AUt(Q://a<w) N A/\j#i ﬂ(X;y,Zj),a,a,(aj)j7£i \ AL,O(X;_)/Ji):a:a:ai’

and let o, denote the composition [, o, for any finite / C w.

We prove that there is a formula 6(x, y, z) implied by 7(x,y, z)
such that for all / < w the set

(Aut(€'/a;) N Ar,a.5;) - (Aut(€'/a;)) N Agaa;) - (Aut(€'/a;) N Araa)
is contained in Aut(¢’/a;) N Ay 4,4

Claim For any finite | C w, = 0(0/(a),a,a;) < i ¢ I.

Thus, 6 has IP. ]
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Some ingredients of the proof of the main theorem

Lemma 2

Assume NIP. Let p(x) € S(€) be an A-invariant type, let 7(x,y, z)
be a partial type over the empty set, and let ag C ¢’ be such that
7(x,y, ao) defines an equivalence relation on p[,,(€'). Then, for
any (a;)i<x, where \ > 3 2o+ +ITI+14D )+ Satisfying aj = = a0 for all

i < A, there exists i < A such that

() 7(&, €, 3)) N (pla(€) € m(€, &, &)
J#i
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Some ingredients of the proof of the main theorem

On the proof of Lemma 2.

Suppose for a contradiction that it does not hold, and choose pairs
(bi, ¢i)i< witnessing it. Extract an A-indiscernible sequence
(al b, ¢f)icw from (aj, by, ci)i<x. Then

(ij 1) DW(Q:lv <, aj) N(p ra§<w(¢,))2a
JF=1

and there is ¢(x, y, z) implied by 7(x,y, z) with = —w(b’ cl,a)).
Pick any a = p[a . Since p is A-invariant and a} =4 a’, we get

a; =5 a. Then the sequence (a%);<, together with a, 7r(x y,Z),
and ¢(x,y, z) satisfy the assumptions of Lemma 1, so we get

IP. O
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Some ingredients of the proof of the main theorem

Let v:=21

(2 ALY+

Claim

If for every countable partial type 7(x,y, z) over the empty set and
countable tuple ag from € such that m(x,y, ap) defines an
equivalence relation E,, on p(€’) with stable quotient there is no
sequence (a;)i<, of (countable) tuples a; in € such that for all

I < v we have a; f ag and ﬂj<,- Eaj & E,,;, then the theorem holds.

Proof of Claim

Let E;, i € I, be all relatively type-definable over small subsets of &
equivalence relations on p(€’) with stable p(¢’)/E;. Each

Ei = Njey, E/, where E/ .= (¢, &', &) N p(€’)? for some
countable ﬂ'{(x,y,z) and a{ Since the number of possible 7T’IS and
tp(al /A)'s is < 2ITIHIAI+IXI < cf (1), by assumption, we get that
Nics Ei is an intersection of < v relations of the form EIJ 0l
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Some ingredients of the proof of the main theorem

On the proof of the main theorem.

Suppose it fails. By the claim, there exists a countable type
7(x,y, z) over () and a countable tuple ag in € such that
7(x,y, ao) defines an equivalence relation on p(¢’) with

p(') /71-(@:’7():/7 a0) N p(¢’)? stable and there is (a;)i<, C € such
that for all i < v, a; =4 ag and

Ni<i (&, &, a;) N p(e)? & m(¢, &, a;).

Enlarging ag, we can assume that ag enumerates an Ng-saturated
model in L, of size at most 2/ TIH1Al and 7(x, y, ap) defines an

equivalence relation on p[,,(€"). Using strong heirs, this relation
also yields stable quotient.

Then we use extracting indiscernibles, Lemma 2, and stability of
the quotient to produce a data satisfying the assumption of
Lemma 1, which yields IP. L]
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