Translating between NIP integral domains and topological fields

Will Johnson

Fudan University

February 21, 2023

э

The big idea

- NIP topological fields come from NIP integral domains.
- Facts about NIP integral domains imply facts about NIP topological fields.

Section 1

Ring and field topologies

э

・ロト ・四ト ・ヨト ・ヨト

Ring and field topologies

Let K be a field.

- A *ring topology* on *K* is a non-discrete non-trivial topology on *K* respecting the ring operations.
- A *field topology* on *K* is a ring topology respecting division. Examples:
 - The order topology on an ordered field.
 - The valuation topology on a valued field.
 - The standard topology on \mathbb{C} .

Remark

Ring topologies on K are Hausdorff.

< □ > < □ > < □ > < □ > < □ > < □ >

Bounded sets

Fix a field K with a ring topology τ .

Definition

A set $B \subseteq K$ is *bounded* if for any neighborhood $U \ni 0$, there is $c \in K^{\times}$ with $cB \subseteq U$.

Fact

- Finite sets are bounded.
- Subsets of bounded sets are bounded.
- If B₁, B₂ are bounded, then so are

 $B_1+B_2, B_1\cup B_2, B_1\cdot B_2, \overline{B_1}.$

5/35

< □ > < □ > < □ > < □ > < □ > < □ >

Locally bounded ring topologies

Definition

 (K, τ) is *locally bounded* if there is a bounded neighborhood of 0.

- Topologies from field orders, absolute values, and valuations are locally bounded.
- ② The topology on ${\mathbb Q}$ induced by the diagonal embedding

$$\mathbb{Q} \hookrightarrow \mathbb{Q}_2 \times \mathbb{Q}_3 \times \mathbb{Q}_5 \times \cdots$$

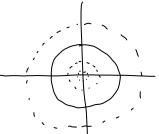
is not locally bounded.

Locally bounded ring topologies

Suppose (K, τ) is locally bounded and B is a bounded neighborhood of 0.

- The family $\{cB : c \in K^{\times}\}$ is a neighborhood basis of 0.
- ② The family {cB : c ∈ K[×]} is cofinal among bounded sets—X is bounded iff ∃c ∈ K[×] : X ⊆ cB.

Example: $B = \{z \in \mathbb{C} : |z| \le 1\}.$



Ring topologies from subrings

Suppose R is a proper subring of K and K = Frac(R).

Fact

There is a locally bounded ring topology τ_R on K such that

- The family $\{cR : c \in K^{\times}\}$ is a nbhd basis of 0.
- The family of non-zero ideals in R is a nbhd basis of 0.

R is a bounded neighborhood of 0 in τ_R .

Example

If R is a valuation ring, τ_R is the valuation topology.

Fact

 τ_R is a field topology iff the Jacobson radical of R is nonzero. If R is local or semilocal, then τ_R is a field topology.

Will Johnson (Fudan University)

NIP topological fields

イロト イヨト イヨト イヨト

э

Definable topologies

Definition

Let *D* be a definable set in a structure *M*. A topology τ on *D* is *definable* if there is a definable family $\{B_x\}_{x \in E}$ such that $\{B_x : x \in E\}$ is a basis of open sets for τ .

Example

In an o-minimal structure (M, <, ...), the product topology on M^n is definable.

Example

If R is a definable subring of K, then τ_R is a definable topology on K.

9/35

Section 2

From topological fields to rings

э

イロト イポト イヨト イヨト

Goal

Theorem

Let $(K, +, \cdot, ...)$ be an NIP expansion of a field, and τ be a definable ring topology on K.

- τ is locally bounded.
- If K is sufficiently saturated, then τ = τ_R for some externally definable subring R ⊆ K.

Remark

The expansion $(K, +, \cdot, \dots, R)$ is NIP by work of Shelah. In particular, R is NIP.

3

(日)

The lazy path from topologies to rings

Fix a small model K and a monster model $\mathbb{M} \succeq K$ and definable ring topology τ .

• Let I_K be the "K-infinitesimals", the intersection

 $\bigcap \{ U(\mathbb{M}) : U \text{ is a } K \text{-definable nbhd of } 0 \}.$

- $I_{\mathcal{K}}$ is a type-definable and externally definable subgroup of $(\mathbb{M}, +)$.
- Let $R_{\mathcal{K}} = \{x \in \mathbb{M} : xI_{\mathcal{K}} \subseteq I_{\mathcal{K}}\}.$
- Then R_K is an externally definable proper subring of \mathbb{M} , and $Frac(R_K) = \mathbb{M}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application of the lazy path

Fact ([Joh22])

If R is an NIP integral \mathbb{F}_p -algebra, then R is a henselian local ring, and Frac(R) is "large" in the sense of Pop.

Corollary

If $(K, +, \cdot, ...)$ has characteristic p > 0, is NIP, and admits a definable ring topology τ , then K is large.

But what can we say about τ ?

イロト イヨト イヨト ・

The better path

Theorem (to prove)

If τ is a definable ring topology on an NIP field K, then τ is locally bounded.

Take a monster $\mathbb{M} \succeq K$ and let R be the ring of "bounded elements" over K:

 $R = \bigcup \{B(\mathbb{M}) : B \text{ is } K \text{-definable and bounded} \}.$

Theorem

R is an externally definable subring of \mathbb{M} , and τ_R equals the definable extension of τ to \mathbb{M} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proving local boundedness

Let τ be a definable ring topology, \mathbf{not} locally bounded.

Definition (in \mathbb{M})

A special nbhd is an intersection $G = \bigcap_{i=1}^{\infty} U_i$ where

- $U_1 \supseteq U_2 \supseteq \cdots$ and the U_i are basic nbhds of 0.
- G is a \mathbb{Q} -linear subspace of $(\mathbb{M}, +)$.

Key facts:

- Special nbhds are nbhds of 0.
- Special nbhds form a basis.
- Special nbhds are externally definable and type-definable.

15 / 35

Proving local boundedness

Lemma (to prove)

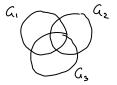
There is an independent sequence of special nbhds G_1, G_2, G_3, \ldots

$$a_{S} \in G_{i} \iff i \in S \text{ for } i \in \mathbb{N}, \ S \subseteq \mathbb{N}$$

Corollary

There is an independent sequence of basic nbhds U_1, U_2, U_3, \ldots

This contradicts NIP.



э

Building the independent sequence

Given G_1 , G_2 , choose a_0 , a_1 , a_2 , a_{12} . The nbhd $G_1 \cap G_2$ isn't bounded, so there is a special nbhd G with

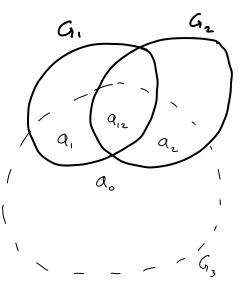
 $\forall c \in \mathbb{M}^{\times} : G_1 \cap G_2 \not\subseteq c^{-1}G.$

Take c so small that

$$c \cdot \{a_0, a_1, a_2, a_{12}\} \in G,$$

and set $G_3 = c^{-1}G$.

- *G*₃ *intersects* each cell in the venn diagram.
- G₃ ⊉ G₁ ∩ G₂, so G₃ doesn't contain any cell in the venn diagram.



17 / 35

Section 3

Applications of the main theorem

イロト イポト イヨト イヨト

э

From ring topologies to field topologies

Theorem (Simon)

If R is an NIP ring, then the poset of prime ideals has finite width.

Corollary

Any NIP integral domain R is semilocal, so τ_R is a field topology.

Corollary

Any definable ring topology on an NIP field is a field topology.

э

イロト 不得 トイヨト イヨト

Henselianity

A local ring (R, \mathfrak{m}) is *henselian* if it satisfies

Hensel's Lemma If $a_0, \ldots, a_n \in R$ and $\alpha_i = res(a_i)$ and the polynomial $\alpha_0 + \alpha_1 x + \cdots + \alpha_n x^n$ has a simple root $\beta \in R/\mathfrak{m}$, then the polynomial $a_0 + a_1 x + \cdots + a_n x^n$

has a root $b \in R$ with res $(b) = \beta$.

Example

 \mathbb{Z}_p and K[[t]] are henselian.

э

イロト 不得 トイヨト イヨト

Generalized t-henselianity

Definition (Dittman-Walsberg-Ye)

A field topology is *gt-henselian* if it satisfies the implicit function theorem for polynomial equations.

Fact

If R is a henselian local ring, then τ_R is gt-henselian.

Fact ([Joh22, Joh23a])

Let R be a NIP integral domain. If char(R) > 0 or $dp-rk(K) < \aleph_0^-$, then R is a henselian local ring.

Corollary

If K is an NIP field with positive characteristic or finite dp-rank, any definable field topology on K is gt-henselian.

Will Johnson (Fudan University)

NIP topological fields

V-topologies

A field topology τ is a *V*-topology if there is a bounded neighborhood $B \ni 0$ such that for any $x \in K$

$$x \in B$$
 or $x^{-1} \in B$.

These are V-topologies:

1: Valuation topologies.

2: Topologies from absolute values.

3: The order topology on an ordered field.

All V-topologies come from (1) or (2).

Up to elementary equivalence, all V-topologies come from (1).

Dp-minimal fields

Theorem (d'Elbée-Halevi)

If R is a dp-minimal integral domain then R is a local ring, and if R/\mathfrak{m} is infinite then R is a valuation ring.

Corollary

If τ is a definable field topology on a dp-minimal field, then τ is a V-topology.

A 回 > A 回 > A 回 >

Finite breadth

Definition

An integral domain R has $br(R) \le n$ if for any $x_0, \ldots, x_n \in Frac(R)$, there is *i* such that

$$x_i \in x_0R + x_1R + \cdots + \widehat{x_iR} + \cdots + x_nR.$$

 $br(R) = 1 \iff R$ is a valuation ring.

Definition

A field topology τ has $br(\tau) \leq n$ if there is a bounded neighborhood $U \ni 0$ such that for any $x_0, \ldots, x_n \in K$, there is *i* such that

$$x_i \in x_0 U + x_1 U + \cdots + \widehat{x_i U} + \cdots + x_n U.$$

 $\mathsf{br}(au) = 1 \iff au$ is a V-topology.

Two examples

 Let v₁, v₂ be two independent valuations on K. Consider the diagonal embedding

$$K \hookrightarrow (K, v_1) \times (K, v_2).$$

The induced topology on K has breadth 2.

② Let $(K, \leq, \partial) \models \text{CODF}$. Consider the embedding

$$egin{aligned} &\mathcal{K}\hookrightarrow (\mathcal{K},\leq) imes (\mathcal{K},\leq)\ &x\mapsto (x,\partial x) \end{aligned}$$

The induced topology on K has breadth 2.

Finite breadth

Fact ([Joh23a])

If R is a dp-finite integral domain, then R is a local ring, and if R/\mathfrak{m} is infinite then $br(R) \leq dp-rk(R)$.

Corollary

If τ is a definable field topology on a dp-finite field, then τ has finite breadth.

There are examples where τ has breadth 2.

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Section 4

A conjecture and a question

э

イロト イヨト イヨト

The henselianity conjecture

Theorem (Delon, Gurevich, Schmitt)

Let (K, \mathcal{O}) be a valued field such that the residue field is NIP of characteristic 0. If the valuation ring \mathcal{O} is henselian, then (K, \mathcal{O}) is NIP.

Conjecture (Henselianity conjecture)

If (K, \mathcal{O}) is an NIP valued field, then \mathcal{O} is henselian.

This is implied by the conjectural classification of NIP fields.

イロト イヨト イヨト イヨト

The generalized henselianity conjecture

Conjecture (Henselianity conjecture)

If \mathcal{O} is an NIP valuation ring, then \mathcal{O} is henselian.

Conjecture ("Generalized henselianity conjecture")

If R is an NIP integral domain, then R is a henselian local ring.

Equivalent forms:

Weaker: If R is an NIP integral domain, then R is a local ring.Stronger: If R is an NIP commutative ring, then R is a finite product of henselian local rings.

< □ > < □ > < □ > < □ > < □ > < □ >

Evidence for the generalized henselianity conjecture

The generalized henselianity conjecture holds in the following cases:

- Frac(R) has positive characteristic [Joh22]
- R is dp-finite [Joh23a].

The henselianity conjecture implies the generalized henselianity conjecture in the following cases [Joh23a]:

- R is Noetherian.
- $br(R) < \infty$.

Topological consequences

Theorem ([Joh23b])

(Assuming GHC) If τ is a definable field topology on an NIP field K, then τ is gt-henselian and K is large.

Theorem ([Joh23b])

(Assuming HC) If τ is a definable field topology on an NIP field K, and $br(\tau) < \infty$, then τ is gt-henselian and K is large.

イロト イヨト イヨト イヨト

A question

Question

Is there a definable field topology τ on an NIP field K with $br(\tau) = \infty$?

Example

The ring

$$R = \mathbb{Q}^{\mathrm{alg}} \oplus t\mathbb{C}[[t] = \{a_0 + a_1t + a_2t^2 + \cdots : a_0 \in \mathbb{Q}^{\mathrm{alg}}, a_1, a_2, \ldots \in \mathbb{C}\}$$

is NIP and has $br(R) = \infty$, BUT $\tau_R = \tau_{\mathbb{C}[[t]]}$ is a V-topology, so $br(\tau_R) = 1$.

3

イロト 不得 トイヨト イヨト

Reformulation in terms of rings

Question

Is there a definable field topology τ on an NIP field K with $br(\tau) = \infty$?

is equivalent to

Question

Is there an NIP integral domain R such that for any n and any $e \in R \setminus \{0\}$, there are $a_0, a_1, \ldots, a_n \in R$ with

$$ea_0 \notin \widehat{a_0R} + a_1R + a_2R + \dots + a_nR$$
$$ea_1 \notin a_0R + \widehat{a_1R} + a_2R + \dots + a_nR$$

$$\cdots$$

$$ea_n \notin a_0R + a_1R + a_2R + \cdots + \widehat{a_nR}.$$

33 / 35

< □ > < □ > < □ > < □ > < □ > < □ >

References

Will Johnson.

Henselianity in NIP \mathbb{F}_p -algebras. Model Theory, 1(1):115–128, 2022.

Will Johnson.

Dp-finite and Noetherian NIP integral domains. arXiv:2302.03315v1 [math.LO], February 2023.

Will Johnson.

Translating between NIP integral domains and topological fields. In preparation, 2023.

3 × < 3 ×

Questions?

3