Quadratic Pairs over Schemes and the Canonical Quadratic Pair on Clifford Algebras

Cameron Ruether

Memorial University of Newfoundland

Motives and Invariants: Theory and Applications to Algebraic Groups and their Torsors

BIRS

October 13, 2023

Usual Clifford Algebras

Let $q: V \to \mathbb{F}$ be a non-singular quadratic form, $\dim(V) = 2n$, $\operatorname{char}(\mathbb{F}) \neq 2$.

$$Cl(V,q) = T(V)/\langle v \otimes v - q(v) \cdot 1 \mid v \in V \rangle.$$

Canonical involution $\underline{\sigma} \colon v_1 \otimes \ldots \otimes v_k \mapsto v_k \otimes \ldots \otimes v_1$.

$$\mathrm{Cl}_0(V,q) = \mathsf{Span}_{\mathbb{F}}(\{v_1 \otimes \ldots \otimes v_k \mid k \; \mathsf{even}\}) \subset \mathrm{Cl}(V,q)$$

 $\underline{\sigma}_0 = \underline{\sigma}|_{\mathrm{Cl}_0(V,q)}$ also called canonical involution.

$$\underline{\sigma}_0$$
 is
$$\begin{cases} \text{unitary} & n \text{ odd} \\ \text{symplectic} & n \equiv 2 \pmod{4} \\ \text{orthogonal} & n \equiv 0 \pmod{4}. \end{cases}$$

$$\mathbf{O}(V,q)
ightarrow \mathbf{PGO}(\mathrm{Cl}_0(V,q),\underline{\sigma}_0) \ arphi \mapsto (v_1 \otimes v_2 \mapsto arphi(v_1) \otimes arphi(v_2))$$

Usual Clifford Algebras

Let (A, σ) be a central simple \mathbb{F} -algebra, $\deg(A) = 2n$, σ orthogonal.

$$\operatorname{Cl}(A,\sigma) = \frac{I(A)}{J_1 + J_2}$$

$$\begin{array}{c|cc} (A,\sigma) & (\operatorname{End}_{\mathbb{F}}(V), \sigma_q) \cong (V \otimes_{\mathbb{F}} V, \operatorname{sw}) \\ \hline J_1 & \langle a - \frac{1}{2}\operatorname{Trd}_A(a) \mid \sigma(a) = a \rangle & \langle v \otimes v - q(v) \cdot 1 \rangle \\ J_2 & \operatorname{complicated} & \langle (w_1 \otimes v) \otimes (v \otimes w_2) - q(v) w_1 \otimes w_2 \rangle \end{array}$$

Canonical involution $\underline{\sigma}(a_1 \otimes \ldots \otimes a_k) = \sigma(a_k) \otimes \ldots \otimes \sigma(a_1)$.

$$\underline{\sigma} \text{ is } \begin{cases} \text{unitary} & n \text{ odd} \\ \text{symplectic} & n \equiv 2 \pmod{4} \\ \text{orthogonal} & n \equiv 0 \pmod{4}. \end{cases}$$

$$\mathsf{PGO}(A,\sigma) \to \mathsf{PGO}(\mathrm{Cl}(A,\sigma),\underline{\sigma})$$
$$\varphi \mapsto (\mathsf{a} \mapsto \varphi(\mathsf{a})).$$

Conventions

Over arbitrary \mathbb{F} (later over a scheme S). Let

$$\sigma: A \to A$$

be an involution of the first kind, split A

$$o \sigma' \colon \operatorname{\mathsf{End}}_{\mathbb{F}'}(V) o \operatorname{\mathsf{End}}_{\mathbb{F}'}(V)$$

adjoint to a regular bilinear form $b_{\sigma} \colon V \times V \to \mathbb{F}'$.

$$\text{call } \sigma \begin{cases} \text{orthogonal} & \text{if } b_\sigma \text{ symmetric} \\ \text{weakly-symplectic} & \text{if } b_\sigma \text{ skew-symmetric} \\ \text{symplectic} & \text{if } b_\sigma \text{ alternating.} \end{cases}$$

Quadratic Pairs

 $\mathbb F$ an arbitrary field, A central simple $\mathbb F\text{-algebra}.$

Definition [KMRT]

A quadratic pair on A is (σ, f) where

- \bullet σ is an orthogonal involution,
- $f: \operatorname{\mathsf{Sym}}(A,\sigma) \to \mathbb{F}$ is linear such that

$$f(a + \sigma(a)) = \operatorname{Trd}_A(a) \quad \forall a \in A.$$

If $char(\mathbb{F}) \neq 2$, $s \in Sym(A, \sigma)$

$$f(s) = f\left(\frac{1}{2}(s+\sigma(s))\right) = \frac{1}{2}f(s+\sigma(s)) = \frac{1}{2}\operatorname{Trd}_A(s).$$

Connection to Quadratic Forms

Theorem [KMRT]

Consider $(\operatorname{End}_{\mathbb{F}}(V), \sigma_b)$ for a regular symmetric bilinear $b \colon V \times V \to \mathbb{F}$.

We have $\varphi_b \colon (V \otimes_{\mathbb{F}} V, \mathrm{sw}) \to (\mathsf{End}_{\mathbb{F}}(V), \sigma_b)$. There is a bijection

$$\left\{ \begin{array}{l} f \text{ such that } (\sigma_b, f) \\ \text{ is a quadratic pair} \end{array} \right\} \leftrightarrow \left\{ q \colon V \to \mathbb{F} \text{ with polar } b \right\}$$

$$f \mapsto q_f(v) = f(\varphi_b(v \otimes v))$$

$$f_q(\varphi_b(v \otimes v)) = q(v) \ \leftrightarrow q$$

$$f_q(\varphi_b(v \otimes w + w \otimes v)) = b_q(v, w)$$

Classification [KMRT]

For all (A, σ, f) there exists $\ell \in A$ such that

- $\ell + \sigma(\ell) = 1$
- $f(\underline{\hspace{0.1cm}}) = \operatorname{Trd}_{A}(\ell \cdot \underline{\hspace{0.1cm}})$
- ℓ is unique up to adding an element of $Alt(A, \sigma) = \{a \sigma(a) \mid a \in A\}$.

Conversely, given (A, σ) , any $\ell \in A$ with $\ell + \sigma(\ell) = 1$ defines

$$f_{\ell} = \mathsf{Trd}_{\mathcal{A}}(\ell_)$$

and (σ, f_{ℓ}) is a quadratic pair. $f_{\ell} = f_{\ell'} \Leftrightarrow \ell - \ell' \in Alt(A, \sigma)$.

More Clifford Algebras

Let (A, σ, f) be an \mathbb{F} -c.s.a. with quadratic pair, $\deg(A) = 2n$.

$$\mathrm{Cl}(A,\sigma,f) = \frac{T(A)}{J_1 + J_2}$$

$$\begin{array}{c|c} & (A,\sigma,f) & (\operatorname{End}_{\mathbb{F}}(V),\sigma,f), \ \varphi \colon V \otimes_{\mathbb{F}} V \xrightarrow{\sim} \operatorname{End}_{\mathbb{F}}(V) \\ \hline J_1 & \langle a-f(a) \mid \sigma(a)=a \rangle & \langle v \otimes v-f(\varphi(v \otimes v)) \cdot 1 \rangle \\ J_2 & \operatorname{still \ complicated} & \langle (w_1 \otimes v) \otimes (v \otimes w_2) - f(\varphi(v \otimes v)) w_1 \otimes w_2 \rangle \\ \hline \end{array}$$

Canonical involution $\underline{\sigma}(a_1 \otimes \ldots \otimes a_k) = \sigma(a_k) \otimes \ldots \otimes \sigma(a_1)$.

$$\underline{\sigma}$$
 is orthogonal $\Leftrightarrow \begin{array}{l} n \equiv 0 \pmod{4}, \text{ or} \\ n \equiv 2 \pmod{4} \text{ and } \operatorname{char}(\mathbb{F}) = 2. \end{array}$

For clarity, $c: A \to Cl(A, \sigma, f)$ is the map $a \mapsto c(a) = a$.

Canonical Quadratic Pair

When $\underline{\sigma}$ is orthogonal, $(Cl(A, \sigma, f), \underline{\sigma}, (?))$.

Want:
$$\operatorname{\textbf{PGO}}(A,\sigma,f) \longrightarrow \operatorname{\textbf{Aut}}(\operatorname{Cl}(A,\sigma,f),\underline{\sigma})$$

$$\operatorname{\textbf{PGO}}(\operatorname{Cl}(A,\sigma,f),\underline{\sigma},\overbrace{?})$$

Theorem (Dolphin, Quéguiner-Mathieu (2021))

Let $deg(A) \ge 8$ such that $\underline{\sigma}$ is orthogonal. Take any $a \in A$ with $Trd_A(a) = 1$ and use $\ell = c(a) \in Cl(A, \sigma, f)$. Then,

$$\underline{f} = \operatorname{Trd}_{\operatorname{Cl}(A,\sigma,f)}(c(a) \cdot \underline{\hspace{1cm}})$$

- does not depend on the choice of $a \in A$, and
- \underline{f} fills (?) in the diagram above.

Canonical Quadratic Pair

$$\ell + \underline{\sigma}(\ell) = c(a) + \underline{\sigma}(c(a))$$

 $= c(a) + c(\sigma(a))$
 $= c(a + \sigma(a))$
 $= f(a + \sigma(a)) \cdot 1$ due to J_1
 $= \operatorname{Trd}_A(a) \cdot 1$ by definition of f
 $= 1$ by assumption.

Over a Scheme

Let S be an arbitrary base scheme. (\mathfrak{Sch}_{S} , \mathcal{O}) the ringed fppf-site over S. (\mathcal{A}, σ) is an Azumaya algebra of constant degree 2n with orthogonal involution.

- $\mathcal{A} \colon \mathfrak{Sch}_S \to \mathfrak{Ab}$ is a sheaf, in particular an \mathcal{O} -module, locally isomorphic to $M_{2n}(\mathcal{O})$.
- $\sigma \colon \mathcal{A} \to \mathcal{A}$ is a natural transformation, locally adjoint to symmetric bilinear forms.

$$egin{aligned} & \mathcal{S}\!\mathit{ym}_{\mathcal{A},\sigma} = \ker(\operatorname{Id} - \sigma) \subset \mathcal{A} \ & \mathcal{A}\!\ell t_{\mathcal{A},\sigma} = \operatorname{Img}(\operatorname{Id} - \sigma) \subset \mathcal{A} \ & \mathcal{S}\!\mathit{ymd}_{\mathcal{A},\sigma} = \operatorname{Img}(\operatorname{Id} + \sigma) \subset \mathcal{A}. \end{aligned}$$

Over a Scheme

Definition [Calmès, Fasel]

A quadratic pair on A is (σ, f) where

- \bullet σ is an orthogonal involution, and
- ullet $f: \mathcal{S}\!\mathit{ym}_{\mathcal{A},\sigma} o \mathcal{O}$ is \mathcal{O} -linear such that

$$f(a + \sigma(a)) = \operatorname{Trd}_A(a) \quad \forall T \in \mathfrak{Sch}_S, \ \forall a \in \mathcal{A}(T).$$

For (A, σ, f) :

$$\mathcal{C}\!\ell(\mathcal{A},\sigma,f) = rac{\mathcal{T}(\mathcal{A})}{\mathcal{J}_1 + \mathcal{J}_2}$$

 $c \colon \mathcal{A} \to \mathcal{C}\!\ell(\mathcal{A}, \sigma, f)$, canonical involution $\underline{\sigma} \colon c(a) \mapsto c(\sigma(a))$, and

$$\underline{\sigma}$$
 is orthogonal $\Leftrightarrow \begin{array}{l} n \equiv 0 \pmod{4}, \text{ or} \\ n \equiv 2 \pmod{4} \text{ and } 2 = 0 \in \mathcal{O}(S). \end{array}$

Problem 1

Given (A, σ, f) , there may not exist $\ell \in A(S)$ such that $f(\underline{\ }) = \operatorname{Trd}_{A}(\ell \cdot \underline{\ })$.

Example [Gille, Neher, R.]

S=E an ordinary elliptic curve over \mathbb{F} , char(\mathbb{F}) = 2. Consider the $(\mu_2 \times_{\mathbb{F}} \mathbb{Z}/2\mathbb{Z})$ -torsor $E'=E \xrightarrow{\cdot 2} E$. Then,

$$(Q,\sigma) = E' \wedge^{\mu_2 \times_{\mathbb{F}} \mathbb{Z}/2\mathbb{Z}} (\mathsf{M}_2(\mathcal{O}), \psi)$$

is a quaternion algebra over E.

- There exists f such that (Q, σ, f) is a quadratic pair.
- $Q(E) \cong \mathbb{F}$ and so $Q(E) = Sym_{\mathcal{Q}, \sigma}(E)$.
- Then $\ell + \sigma(\ell) = 2\ell = 0$ for all $\ell \in \mathcal{Q}(E)$.

Solution 1

Lemma [GNR]

If (A, σ, f) is an Azumaya algebra with quadratic pair, then $1_A \in \mathit{Symd}_{A,\sigma}(S)$.

Given a locally quadratic (\mathcal{A},σ) (i.e., with $1\in \mathcal{S}\!\mathit{ymd}_{\mathcal{A},\sigma}(S)$),

$$\begin{array}{ccc} \mathcal{A} & \xrightarrow{\quad \mathsf{Id} + \sigma \quad} \mathcal{S}\!\mathit{ymd}_{\mathcal{A}, \sigma} \\ \downarrow & & \parallel \\ \mathcal{A}/\mathcal{A}\ell t_{\mathcal{A}, \sigma} & \xrightarrow{\quad \xi \quad} \mathcal{S}\!\mathit{ymd}_{\mathcal{A}, \sigma} \end{array}$$

Theorem [GNR]

There is a bijection of sets

$$\left\{\begin{array}{c} f \text{ such that } (\mathcal{A},\sigma,f) \\ \text{is a quadratic pair on } \mathcal{A} \end{array}\right\} \leftrightarrow \xi(S)^{-1}(1_{\mathcal{A}}) \subset (\mathcal{A}/\mathcal{A}\ell t_{\mathcal{A},\sigma})(S).$$

Solution 1

Lemma [GNR]

Given (A, σ, f) , if S is affine there exists $\ell \in A(S)$ such that $f = \operatorname{Trd}_A(\ell \cdot \underline{\hspace{1cm}})$.

Fix
$$(A, \sigma)$$
. Take affine cover $\{U_i \to S\}_{i \in I}$. Given f , $\to \ell_i \in \mathcal{A}(U_i)$ $\to [\ell_i] \in (\mathcal{A}/\mathcal{A}\ell t_{\mathcal{A},\sigma})(U_i)$, these glue $\Rightarrow [\ell] \in (\mathcal{A}/\mathcal{A}\ell t_{\mathcal{A},\sigma})(S)$

Given
$$[\ell] \in (\mathcal{A}/\mathcal{A}\ell t_{\mathcal{A},\sigma})(S)$$
 with $\pi([\ell]) = 1$, $\to \text{ get } \ell_i \in \mathcal{A}(U_i)$ with $\ell_i + \sigma(\ell_i) = 1$, $\to f_i = \text{Trd}_{\mathcal{A}|_{U_i}}(\ell_i \cdot \underline{\hspace{0.5cm}}) \colon \mathcal{S}\!\textit{ym}_{\mathcal{A},\sigma}|_{U_i} \to \mathcal{O}|_{U_i}$, these glue $\Rightarrow f \colon \mathcal{S}\!\textit{ym}_{\mathcal{A},\sigma} \to \mathcal{O}$.

 $\Rightarrow \pi([\ell]) = 1$ since $\ell_i + \sigma(\ell_i) = 1$.

Problem 2

Given (A, σ, f) , there may not exist $a \in A(S)$ with $Trd_A(a) = 1$.

Example [GNR]

Take $\mathcal Q$ as above. $\mathcal Q(E)=\mathcal O(E)\cong \mathbb F$. Whenever $\mathcal Q(T)\cong \mathsf M_2(\mathcal O(T))$,

$$\mathcal{Q}(E) o \mathsf{M}_2(\mathcal{O}(T))$$
 $c \mapsto egin{bmatrix} c|_T & 0 \ 0 & c|_T \end{bmatrix}$

So $Trd_{\mathcal{A}}(c) = 0$.

Solution 2

 $\operatorname{Trd}_{\mathcal{A}} \colon \mathcal{A} \twoheadrightarrow \mathcal{O}$ is a surjective map of sheaves. $\ker(\operatorname{Trd}_{\mathcal{A}}) = \mathfrak{sl}_{\mathcal{A}}$.

Lemma

If $deg(A) \ge 6$ there is a commutative diagram

The Canonical Pair deg ≥ 8

$$\rho \colon \mathcal{O} \to \mathcal{C}\ell(\mathcal{A}, \sigma, f)/\mathcal{A}\ell t_{\mathcal{C}\ell, \sigma}$$

Definition

Let (A, σ, f) be such that $(\mathcal{C}\ell(A, \sigma, f), \underline{\sigma})$ is orthogonal, $\deg(A) \geq 8$. Call the semi-trace \underline{f} corresponding to $\rho(1)$ the canonical semi-trace.

Theorem

We have a commutative diagram

$$\mathsf{PGO}(\mathcal{A},\sigma,f) \xrightarrow{} \mathsf{Aut}(\mathcal{C}\ell(\mathcal{A},\sigma,f),\underline{\sigma})$$

$$\mathsf{PGO}(\mathcal{C}\ell(\mathcal{A},\sigma,f),\underline{\sigma},\underline{f})$$

If $S = \text{Spec}(\mathbb{F})$ this recovers [DQ21].

Twisting

Let $\mathcal{V} = \mathsf{Span}_{\mathcal{O}}(\{v_1, \dots, v_n\})$, $\mathbb{H}(\mathcal{V}) = \mathsf{Span}_{\mathcal{O}}(\{v_1, \dots, v_n, v_n^*, \dots, v_1^*\})$ with hyperbolic quadratic form

$$q_{2n}(a_1v_1+\ldots a_nv_n+a_n^*v_n^*+\ldots+a_1^*v_1^*)=\sum_{i=1}^n a_ia_i^*$$

$$egin{aligned} & o (\mathcal{E}\!\mathit{nd}_{\mathcal{O}}(\mathbb{H}(\mathcal{V})), \sigma_{2n}, \mathit{f}_{2n}) \ & o \mathcal{C}_0 = (\mathcal{C}\!\ell(\mathcal{E}\!\mathit{nd}_{\mathcal{O}}(\mathbb{H}(\mathcal{V})), \sigma_{2n}, \mathit{f}_{2n}), \underline{\sigma_{2n}}, \underline{\mathit{f}_{2n}}). \end{aligned}$$

For
$$(A, \sigma, f)$$
 of degree $2n$, let $\mathcal{P} = \mathcal{I}\!som((\mathcal{E}\!nd_{\mathcal{O}}(\mathbb{H}(\mathcal{V})), \sigma_{2n}, f_{2n}), (A, \sigma, f))$
$$(\mathcal{C}\!\ell(A, \sigma, f), \sigma, f) \cong \mathcal{P} \wedge^{\mathbf{PGO}_{2n}} \mathcal{C}_0$$

No Canonical Pair when deg = 4

Only excluded case when $\underline{\sigma}$ is orthogonal is $\deg(\mathcal{A})=4$ and $2=0\in\mathcal{O}(S)$.

Theorem

Let (A, σ, f) be degree 4 and $2 = 0 \in \mathcal{O}(S)$. Then there is no canonical semi-trace on $(\mathcal{C}\ell(A, \sigma, f), \underline{\sigma})$. In particular, for all $f' : \mathcal{S}\!\mathit{ym}_{\mathcal{C}\!\ell,\underline{\sigma}} \to \mathcal{O}$,

$$\mathsf{PGO}(\mathcal{A},\sigma,f) \xrightarrow{\qquad} \mathsf{Aut}(\mathcal{C}\ell(\mathcal{A},\sigma,f),\underline{\sigma})$$

$$\mathsf{PGO}(\mathcal{C}\ell(\mathcal{A},\sigma,f),\underline{\sigma},f')$$

Problem: $\mathcal{A}\ell t_{\mathcal{C}(\mathcal{E}nd_{\mathcal{O}}(\mathbb{H}(\mathcal{V})),\sigma_4}$ is too small.

Problem 3

Assume S affine. For $(\mathcal{C}\ell(\mathcal{E}nd_{\mathcal{O}}(\mathbb{H}(\mathcal{V})), \sigma_4, f_4), \underline{\sigma_4}, f')$, $f' = \operatorname{Trd}_{\mathcal{C}}(\ell \cdot \underline{\hspace{0.5cm}})$. $\varphi \in \operatorname{\textbf{PGO}}(\mathcal{E}nd_{\mathcal{O}}(\mathbb{H}(\mathcal{V})), \sigma_4, f_4)$ respects f' if and only if $\ell - \varphi(\ell) \in \mathcal{A}\ell t_{\mathcal{C}\ell, \underline{\sigma_4}}$.

$$\Rightarrow \ell = 1 + e_1 e_1^* + e_2 e_2^*$$

but this is only fixed if $t^2 = t$ for all $t \in \mathcal{O}(S)$.

Example

For a boolean ring R and $(M_2(R), \sigma_4, f_4)$, there exists $\ell \in \mathrm{Cl}(M_2(R), \sigma_4, f_4)$ such that

$$f' = \operatorname{Trd}_{\mathcal{C}\ell}(\ell \cdot \underline{\hspace{1cm}})$$

is a semi-trace for $\underline{\sigma_4}$ fixed by all $\varphi \in \mathbf{PGO_4}(R)$.

Thank You