

Sketch-A-Shape

Zero-Shot Sketch-to-3D Shape Generation

Arianna Rampini BIRS Workshop July 12th 2023

AUTODESK

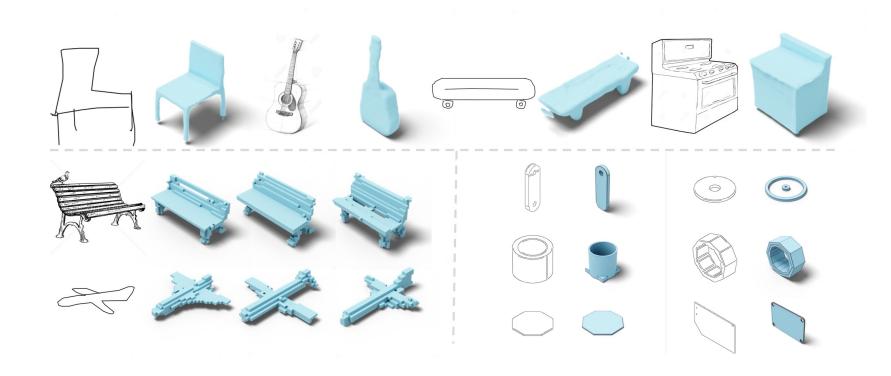
Aditya Sanghi

Pradeep Kumar Jayaraman

Joseph Lambourne

Hooman Shayani

Saeid Asgari Taghanaki

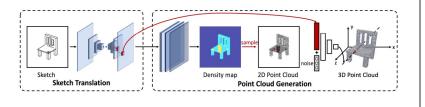

Evan Atherton

How do humans sketch objects? – Mathias Eitz, James Hays and Marc Alexa, SIGGRAPH 2012

Sketch to 3D

Outline

- Previous methods
- Our idea
- Results
- Analysis
- Future work


Previous approaches

SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth Sampling

Chenjian Gao¹, Qian Yu^{1*}, Lu Sheng¹, Yi-Zhe Song², and Dong Xu³

¹ School of Software, Beihang University {gaochenjian, qianyu, 1sheng}@buaa.edu.cn ² SketchX, CVSSP, University of Surrey y.song@surrey.ac.uk

³ Department of Computer Science, The University of Hong Kong dongxudongxu@gmail.com

Sketch2Model: View-Aware 3D Modeling from Single Free-Hand Sketches

Song-Hai Zhang* Yuan-Chen Guo Qing-Wen Gu BNRist, Department of Computer Science and Technology, Tsinghua University, Beijing

shz@tsinghua.edu.cn, quoyc19@mails.tsinghua.edu.cn, ggw17@mails.tsinghua.edu.cn

Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches

Benoit Guillard, Edoardo Remelli, Pierre Yvernay, Pascal Fua

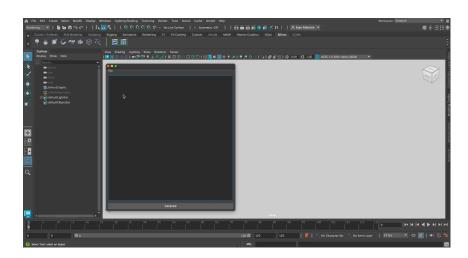
CVLab, EPFL

name.surname@epfl.ch

input

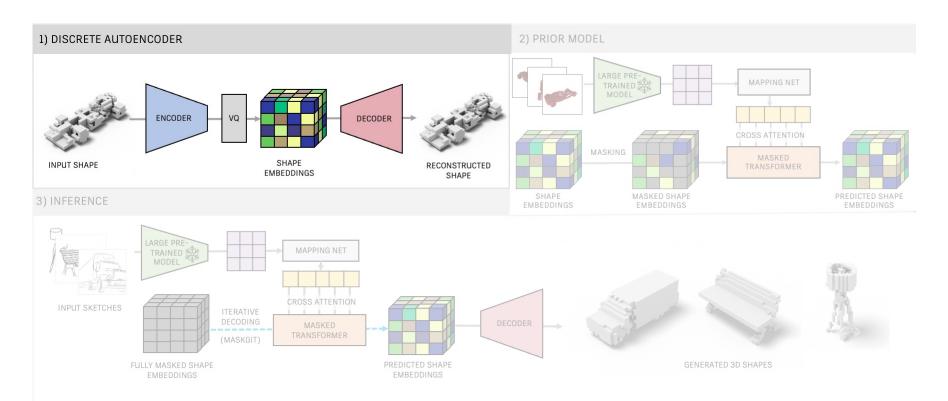
reconstruction

iter = 0


iter = 250

refined

ground truth


Sketch-A-Shape

- No paired data 3D-sketches
- Pre-trained large models
- Preserve stylistic details
- Several possible 3D representation

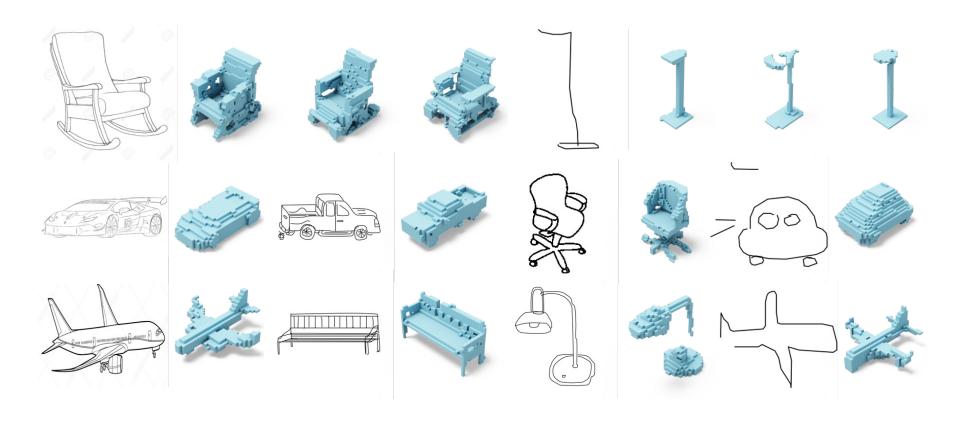
Example usage on Maya

Overview

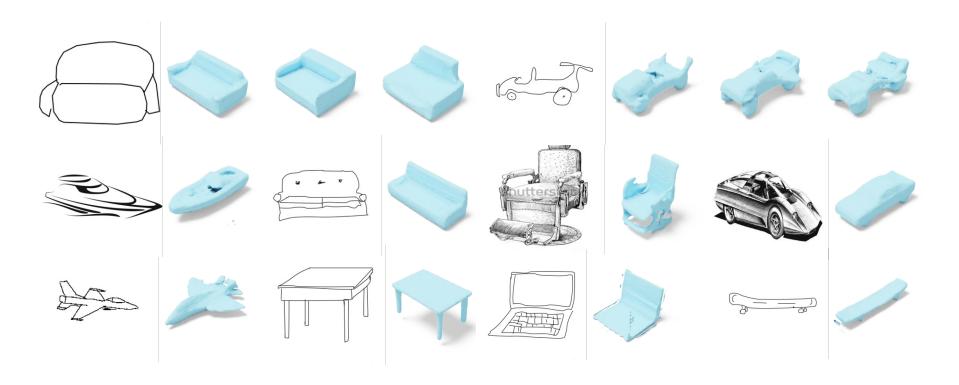
Discrete Autoencoder

IMPLICIT
OCCUPANCY NET

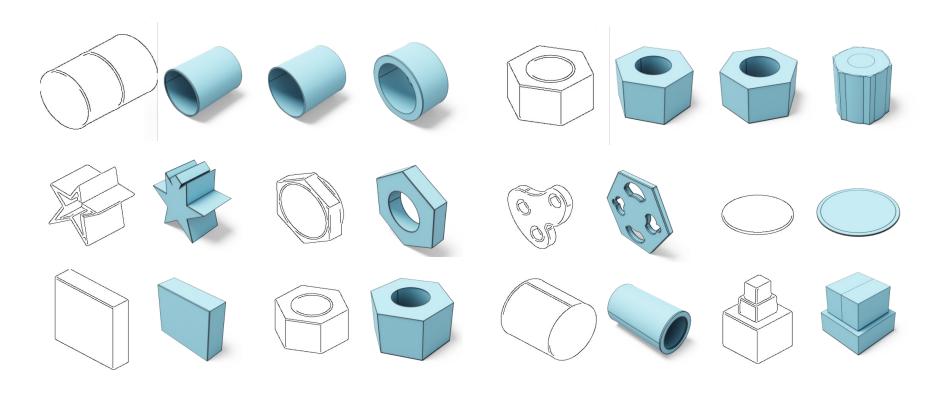
CAD SKEXGEN



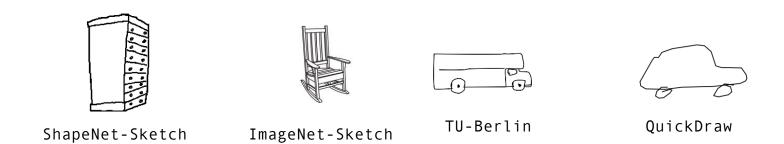
CAN BE ANYTHING


•••

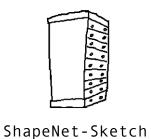
Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. (2017) Xu, Xiang, et al. SkexGen: Autoregressive generation of CAD construction sequences with disentangled codebooks. (2022)

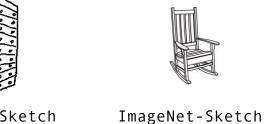

Results

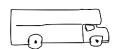
Results: implicit



Results: CAD


Datasets


- Training datasets: ShapeNet, DeepCAD
- Evaluation sketch datasets

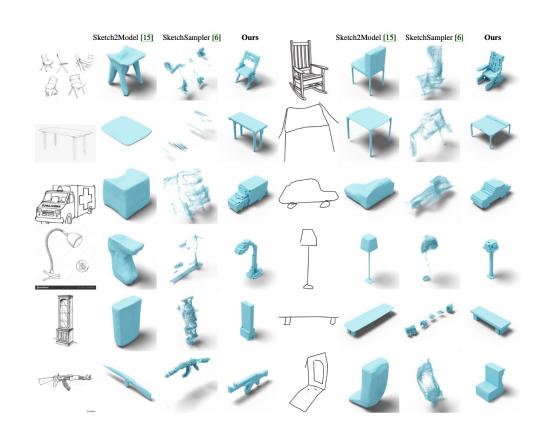

Quantitative evaluation

- Human perceptual evaluation
- Comparison with supervised methods
 - SketchSampler
 - Sketch2Model
- Metrics
 - Accuracy
 - IoU

3D ground truth

QuickDraw

Human evaluation


Which of the 3D models on the right hand side best matches the sketch on the left hand side?

Dataset	% correctly identified			
All	71.1%			
TU-Berlin	74.9%			
ShapeNet-Sketch	73.1%			
ImageNet-Sketch	68.1%			
QuickDraw	67.9%			

Comparisons

Method	Type	IOU ↑
Sketch2Mesh [7]	Supervised	0.195
Sketch2Model [15] Sketch2Point [13]	Supervised Supervised	0.205 0.163
SketchSampler [6]	Supervised	0.244
ours	Zero-shot	0.292

Method	QD-Acc↑	TU-Acc ↑	SS-Acc↑	IS-Acc ↑
Point·E	12.6	40.1	43.2	18.9
S2M	27.4	19.8	26.0	12.0
Ours	58.8	81.5	79.7	74.2

Why does this work?

- Pre-trained model semantic understanding
 - Local grid features
 - Size
 - Training dataset

Resolution	CFG	Network	Dataset	QD-Acc ↑	TU-Acc↑	SS-Acc↑	IS-Acc↑
1 x 512	×	B-32 [57]	OpenAI [57]	36.65	61.14	62.86	55.96
50 x 768	×	B-32 [57]	OpenAI [57]	37.85	63.25	63.78	52.79
50 x 768	✓	B-32 [57]	OpenAI [57]	38.86	65.86	67.36	49.19
197 x 768	✓	B-16 [57]	OpenAI [57]	38.47	71.66	70.72	61.10
257 x 1024	✓	L-14 [57]	OpenAI [57]	55.45	77.15	74.53	69.06
144 x 3072	✓	RN50x16 [57]	OpenAI [57]	34.61	70.81	58.82	59.00
196 x 4096	✓	RN50x64 [57]	OpenAI [57]	46.93	73.79	59.41	64.19
257 x 1024	✓	Open-L-14 [27]	LAION-2B [64]	54.63	77.60	69.03	68.35
256 x 1024	✓	DINO-L-14 [53]	DINOv2 [53]	39.73	71.12	72.10	55.94
197 x 1024	✓	MAE-L [22]	ImageNet [11]	19.31	30.52	38.79	26.65
257 x 1280	✓	MAE-H [22]	ImageNet [11]	18.70	31.63	37.47	31.42

Why does this work?

- Pre-trained model semantic understanding
 - Local grid features
 - Size
 - Training dataset
- Rendering from several points of view
- Data augmentation

Conclusion & Future work

- 3D generative model conditioned on local features can do sketch to 3D
- Different abstraction
- Multiple 3D representation
- More data to be able to generate almost everything

