A AUTODESK

Sketch-A-Shape

Zero-Shot Sketch-to-3D Shape Generation

Arianna Rampini
BIRS Workshop
July $12^{\text {th }} 2023$

2023 Autodesk. All rights reserved

A AUTODESK

Aditya Sanghi

Pradeep Kumar
Jayaraman

Joseph Lambourne

Hooman Shayani

Saeid Asgari
Taghanaki

Evan Atherton

Sketch to 3D

Outline

- Previous methods
- Our idea
- Results
- Analysis
- Future work

Previous approaches

SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth Sampling

Chenjian Gao ${ }^{1}$, Qian $\mathrm{Yu}^{1 \star}$, Lu Sheng ${ }^{1}$, Yi-Zhe Song ${ }^{2}$, and Dong Xu ${ }^{3}$
${ }^{1}$ School of Software, Beihang University
\{gaochenjian, qianyu, lsheng\}@buaa.edu.cn
SketchX, CVSSP, University of Surrey
y.song@surrey.ac.uk
${ }^{3}$ Department of Computer Science, The University of Hong Kong dongxudongxu@gmail.com

Sketch2Model: View-Aware 3D Modeling from Single Free-Hand Sketches

Song-Hai Zhang* Yuan-Chen Guo Qing-Wen Gu
BNRist, Department of Computer Science and Technology, Tsinghua University, Beijing shz@tsinghua.edu.cn, guoyc19@mails.tsinghua.edu.cn, gqw17@mails.tsinghua.edu.cn

Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches

Sketch-A-Shape

- No paired data 3D-sketches
- Pre-trained large models
- Preserve stylistic details
- Several possible 3D representation

Overview

Discrete Autoencoder

CAN BE ANYTHING

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. (2017)
Xu, Xiang, et al. SkexGen: Autoregressive generation of CAD construction sequences with disentangled codebooks. (2022)

Results

11
1

N

Results: implicit

Results: CAD

Datasets

- Training datasets: ShapeNet, DeepCAD
- Evaluation sketch datasets

Quantitative evaluation

- Human perceptual evaluation
- Comparison with supervised methods
- SketchSampler
- Sketch2Model

ShapeNet-Sketch 3D ground truth

TU-Berlin

ImageNet-Sketch

QuickDraw

Human evaluation

Dataset	\% correctly identified
All	71.1%
TU-Berlin	74.9%
ShapeNet-Sketch	73.1%
ImageNet-Sketch	68.1%
QuickDraw	67.9%

Which of the 3 D models on the right hand side best matches the sketch on the left hand side?

Comparisons

Method	Type	IOU \uparrow
Sketch2Mesh [7]	Supervised	0.195
Sketch2Model [15]	Supervised	0.205
Sketch2Point [13]	Supervised	0.163
SketchSampler [6]	Supervised	0.244
ours	Zero-shot	0.292

Method	QD-Acc \uparrow	TU-Acc \uparrow	SS-Acc \uparrow	IS-Acc \uparrow
Point \cdot E	12.6	40.1	43.2	18.9
S2M	27.4	19.8	26.0	12.0
Ours	$\mathbf{5 8 . 8}$	$\mathbf{8 1 . 5}$	$\mathbf{7 9 . 7}$	$\mathbf{7 4 . 2}$

Why does this work?

- Pre-trained model semantic understanding
- Local grid features
- Size
- Training dataset

Resolution	CFG	Network	Dataset	QD-Acc \uparrow	TU-Acc \uparrow	SS-Acc \uparrow	IS-Acc \uparrow
1×512	\times	B-32 [57]	OpenAI [57]	36.65	61.14	62.86	55.96
50×768	\times	B-32 [57]	OpenAI [57]	37.85	63.25	63.78	52.79
50×768	\checkmark	B-32 [57]	OpenAI [57]	38.86	65.86	67.36	49.19
197×768	\checkmark	B-16 [57]	OpenAI [57]	38.47	71.66	70.72	61.10
257×1024	\checkmark	L-14 [57]	OpenAI [57]	$\mathbf{5 5 . 4 5}$	77.15	$\mathbf{7 4 . 5 3}$	$\mathbf{6 9 . 0 6}$
144×3072	\checkmark	RN50x16[57]	OpenAI [57]	34.61	70.81	58.82	59.00
196×4096	\checkmark	RN50x64 [57]	OpenAI [57]	46.93	73.79	59.41	64.19
257×1024	\checkmark	Open-L-14 [27]	LAION-2B [64]	54.63	$\mathbf{7 7 . 6 0}$	69.03	68.35
256×1024	\checkmark	DINO-L-14 [53]	DINOv2 [53]	39.73	71.12	72.10	55.94
197×1024	\checkmark	MAE-L [22]	ImageNet [11]	19.31	30.52	38.79	26.65
257×1280	\checkmark	MAE-H [22]	ImageNet [11]	18.70	31.63	37.47	31.42

Why does this work?

- Pre-trained model semantic understanding
- Local grid features
- Size
- Training dataset
- Rendering from several points of view
- Data augmentation

Conclusion $\boldsymbol{\xi}$ Future work

- 3D generative model conditioned on local features can do sketch to 3D
- Different abstraction
- Multiple 3D representation
- More data to be able to generate almost everything

