
Learning Dynamic 3D Objects in the Wild
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Source: BBC Earth, https://www.youtube.com/watch?v=JWI1eCbksdE
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What is an object?
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A “View” of an Object

3D Object Priors

MaterialShape

Motion

…

Perceiving Physical Objects beyond 2D Pixels
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Geometric Annotations by Humans
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• 3D surfaces, normals?

• Materials (BRDFs)?

• Environment lighting?

• Physics: force, torque, 
mass, friction, velocity, 
acceleration…?

A “View” of an Object

Physically-grounded 3D Representations

MaterialShape

Motion

…

Annotation beyond 2D is hard!



Special Capturing Devices
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Hard to scale up to all kinds of objects
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Can we simply learn from “the wild”?
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Luckily, we know how the world works
(at least kind of…)

• It’s a physical 3D world

• Lots of symmetries / regularities

• We can simulate the image formation process

• …



11

Minimize Reconstruction Error

Photo-Geometric Autoencoding

Reconstruction

Re-render

Input

De-render

Physically-grounded 3D Representations

Shape Material Motion

Light Camera 

? ? ?

? ?
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Minimize Reconstruction Error

Photo-Geometric Autoencoding

De-render

Physically-grounded 3D Representations

Input

Shape Material Motion

Light Camera 

Reconstruction

Re-render

? ? ?

? ?
Shape Material Motion

Light Camera Inductive Biases
exploit symmetries / regularities
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Learning Physical 3D Objects in the Wild

“In-the-Wild” Data

Training

Physics offers a path for learning compact, generalizable object representations.

Inference – Single Image De-rendering

De-render

Physically-grounded 3D Representations

Input

Shape Material Motion

Light Camera 
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• 3D annotations are expensive and often infeasible at scale.

• Towards first principles in vision:

Ø What are the minimal assumptions for 3D perception?

• Learning through inverse rendering gives rise to:

Ø Physical interpretability and verifiability
Ø Better generalization
Ø Controllable generation

Unsupervised 3D Learning in the Wild



Unsupervised Learning of Probably Symmetric 
Deformable 3D Objects from Images in the Wild

Shangzhe Wu Christian Rupprecht Andrea Vedaldi

CVPR 2020



Learning-based
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ML
Model

3D priors learned
during training

Single-view 3D Reconstruction 

3D ground truth & 
shape models

keypointssilhouettes

multi-views

camera viewpoint

depth maps

Supervision

3D annotations are expensive!
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ML
Model

3D priors learned
during training

Unsupervised Single-view 3D Reconstruction 

3D ground truth & 
shape models

keypointssilhouettes

multi-views

camera viewpoint

depth maps

Supervision

NO external
supervision!



Unsupervised Learning of Symmetric 3D Objects

single image 3D reconstructionsingle-view images of a category
NO other supervision!

Training Data Output

Unsup3D
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Photo-Geometric Autoencoding
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Reconstruction 
Loss

Differentiable 
Renderer

reconstruction

CNNs

albedo

viewpoint

light

depth

input



Photo-Geometric Autoencoding
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Reconstruction 
Loss

Differentiable 
Renderer

reconstruction

CNNs

albedo

viewpoint

light

depth

input



Reconstruction 
Loss

Photo-Geometric Autoencoding with Symmetry
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Differentiable 
Renderer

reconstruction

CNNs

albedo

viewpoint

light

depth

input

confidence



22input reconstruction input reconstruction



23input decompose & relight input decompose & relight



MagicPony: Learning Articulated 3D Animals in the Wild

Test Image

Training

Single-view Images

Single-Image Inference

Articulated 3D Shape Animation

Shangzhe Wu* Ruining Li* Tomas Jakab* Christian Rupprecht Andrea Vedaldi

Visual Geometry Group, University of Oxford
(* Equal Contribution)

CVPR 2023



Training Data

[1] PointRend: Image Segmentation as Rendering. Kirillov et. al. CVPR 2020.

No keypoint or viewpoint supervision, 
nor template shapes

Instance Masks

Off-the-shelf

PointRend [1]

Self-supervised Image Features

Off-the-shelfDINO-ViT [2]

[2] Emerging Properties in Self-supervised Vision Transformers. Caron et. al. ICCV 2021.

Single-view Images

Self-supervised Image Features



Correspondences from Self-supervised DINO Features

Self-supervised Image Features



Learned Category-wise Prior

learned canonical DINO feature

Correspondences from Self-supervised DINO Features



Implicit-Explicit 3D Representation

Learned Category-wise Prior

DINO feature

[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurIPS 2021.

tetrahedral grid

Neural SDF +
Marching Tet

Feature
Field

prior mesh



Implicit-Explicit 3D Representation

Learned Category-wise Prior

tetrahedral grid

prior meshDINO feature

Neural SDF +
Marching Tet

Feature
Field

[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurIPS 2021.



Implicit-Explicit 3D Representation

[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurIPS 2021.

Learned Category-wise Prior

tetrahedral grid

prior meshDINO feature

Neural SDF +
Marching Tet

Feature
Field

Deep Marching Tetrahedra (DMTet)
Triangular meshes from Signed Distance Function (SDF) 𝑠(⋅)

SDF
ü Flexible topology
ü Smooth gradients

Mesh
ü Easy to render
ü Easy to articulate

DMTet
ü Differentiable
ü Regular (no self-intersection)



[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurIPS 2021.

Learned Category-wise Prior

tetrahedral grid

prior meshDINO feature

Neural SDF +
Marching Tet

Feature
Field

Hierarchical Shape Prediction

Instance-specific Predictions

input image

Encoder
feature

deformed

Deformation
Field

articulation

…
{𝜉!}

articulated

light

shadingalbedo

Albedo
Field



[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurIPS 2021.

Learned Category-wise Prior

tetrahedral grid

prior meshDINO feature

Neural SDF +
Marching Tet

Feature
Field

Hierarchical Shape Prediction

Instance-specific Predictions

input image

Encoder
feature

deformed

Deformation
Field

articulation

…
{𝜉!}

articulated

Multi-Hypothesis Viewpoint

light

shadingalbedo

Albedo
Field
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viewpoint hypothesis loss



Learned Category-wise Prior

tetrahedral grid

prior meshDINO feature

Neural SDF +
Marching Tet

Feature
Field

End-to-End Training with Image Rendering Losses

[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurIPS 2021.
[2] Emerging Properties in Self-supervised Vision Transformers. Caron et. al. ICCV 2021.

Instance-specific Predictions

input image

Encoder
feature

deformed

Deformation
Field

articulation

…
{𝜉"}

articulated

Multi-Hypothesis Viewpoint

light

shadingalbedo

Albedo
Field
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viewpoint hypothesis loss

Reconstruction Losses
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Frame-by-Frame Inference on Videos



3D Printed Horse Reconstruction



Learning Articulated 3D Motion Prior

ImagesTraining



Training Videos

Learning Articulated 3D Motion Prior



Training Videos Input Sequence 𝐼#:%

Motion VAE

KL Divergence ℒ'(

⇒

Enc Dec𝑧

pose sequence "𝜉&:(

Learning Articulated 3D Motion Prior



pose
sequence

canonical
model

Training Videos )𝜉-:/Motion VAE

KL Divergence ℒ&'

⇒

Enc Dec𝑧

Input Sequence 𝐼#:%

feature field 3D shapetexture

Single Image 3D Reconstruction

Rendered 1𝐼#:%

Renderer

Reconstruction Losses

≈
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≈
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≈
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Trained with 2D reconstruction losses only without any pose annotations!

Learning Articulated 3D Motion Prior



Trained with 2D reconstruction losses only without any pose annotations!

pose
sequence

canonical
model

Training Videos )𝜉-:/

KL Divergence ℒ&'

⇒

Enc Dec

Input Sequence 𝐼#:%

feature field 3D shapetexture

Single Image 3D Reconstruction

Rendered 1𝐼#:%

Renderer

Reconstruction Losses
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Motion VAE

𝑧

Learning Articulated 3D Motion Prior



Motion VAE

Eating Walking Jumping

Generated 3D Motion Sequences

Random Samples

Learning Articulated 3D Motion Prior



Input Image Reconstruction Generated 3D Motion Sequences

Eating Walking Jumping
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Physical

Physics is the key to interpretability and generality!
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