Begearth

Learning Dynamic 3D Objects in the Wild

Elliott / Shangzhe Wu Postdoc at Stanford SVL

Source: BBC Earth, https://www.youtube.com/watch?v=JWI1eCbksdE

= Stable Diffusion 2.1 Demo

Stable Diffusion 2.1 is the latest text-to-image model from StabilityAI. Access Stable Diffusion 1 Space here

For faster generation and API access you can try DreamStudio Beta.

horse

Enter a negative promp

Generate image

What is an object?

Perceiving Physical Objects beyond 2D Pixels

A "View" of an Object

Motion

3D Object Priors

Geometric Annotations by Humans

Annotation beyond 2D is hard!

Physically-grounded 3D Representations

- 3D surfaces, normals?
- Materials (BRDFs)?
- Environment lighting?
- Physics: force, torque, mass, friction, velocity, acceleration...?

Special Capturing Devices

Hard to scale up to all kinds of objects

Can we simply learn from "the wild"?

Luckily, we know how the world works (at least kind of...)

- It's a physical 3D world
- Lots of symmetries / regularities
- We can simulate the image formation process

Photo-Geometric Autoencoding

Minimize Reconstruction Error

Physically-grounded 3D Representations

Photo-Geometric Autoencoding

Minimize Reconstruction Error

Learning Physical 3D Objects in the Wild

Physics offers a path for learning compact, generalizable object representations.

Unsupervised 3D Learning in the Wild

- 3D annotations are expensive and often infeasible at scale.
- Towards first principles in vision:
 - > What are the minimal assumptions for 3D perception?
- Learning through inverse rendering gives rise to:
 - Physical interpretability and verifiability
 - Better generalization
 - Controllable generation

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

CVPR 2020

Shangzhe Wu Christian Rupprecht Andrea Vedaldi

Learning-based Single-view 3D Reconstruction

Unsupervised Single-view 3D Reconstruction

Unsupervised Learning of Symmetric 3D Objects

Training Data

Output

single-view images of a category NO other supervision!

single image 3D reconstruction

Photo-Geometric Autoencoding

Photo-Geometric Autoencoding

Photo-Geometric Autoencoding with Symmetry

reconstruction

reconstruction 22

input

decompose & relight

input

decompose & relight 23

MagicPony: Learning Articulated 3D Animals in the Wild

Shangzhe Wu* Ruining Li* Tomas Jakab* Christian Rupprecht Andrea Vedaldi

Visual Geometry Group, University of Oxford

(* Equal Contribution)

CVPR 2023

Training

Single-view Images

Training Data

Off-the-shelf PointRend [1]

Single-view Images

No keypoint or viewpoint supervision, nor template shapes

Instance Masks

Self-supervised Image Features

Correspondences from Self-supervised DINO Features

Self-supervised Image Features

Correspondences from Self-supervised DINO Features

Learned Category-wise Prior

learned canonical DINO feature

Implicit-Explicit 3D Representation

Implicit-Explicit 3D Representation

Implicit-Explicit 3D Representation

Deep Marching Tetrahedra (DMTet)

Triangular meshes from Signed Distance Function (SDF) $s(\cdot)$

SDFMeshDMTet✓Flexible topology +✓Easy to render +✓✓✓Smooth gradients✓Easy to articulate✓Differentiable✓Smooth gradients✓Easy to articulate✓Regular (no self-intersection)

Hierarchical Shape Prediction

Hierarchical Shape Prediction

End-to-End Training with Image Rendering Losses

[1] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis. Shen et. al. NeurIPS 2021.

[2] Emerging Properties in Self-supervised Vision Transformers. Caron et. al. ICCV 2021.

Frame-by-Frame Inference on Videos

3D Printed Horse Reconstruction

Training Images

Training Videos

Trained with 2D reconstruction losses only without any pose annotations!

Trained with 2D reconstruction losses only without any pose annotations!

Learning Articulated 3D Motion Prior **Generated 3D Motion Sequences** TA TA TA **Motion VAE** AF TK AT TK **Random Samples**

It's a 3D World, After All Physical

Physics is the key to interpretability and generality!

Learning Dynamic 3D Objects in the Wild

Shangzhe Wu

PostDoc at Stanford SVL

Amazing Advisors & Collaborators

Andrea Vedaldi Christian Rupprecht Noah Snavely

Ruining Li

Jiajun Wu

Zirui Wang

Felix Wimbauer

Keqiang Sun

Hongsheng Li

Yunzhi Zhang

Ameesh Makadia

Angjoo Kanazawa