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In the preceding article, the man who
defeated the world’s best chess champions
and IBM’s formidable “Deep Blue” com-
puter has done π in the Sky an invaluable
favour: by using mathematics to examine
the world around him, past and present,
he is greatly contributing to our mission
of raising mathematical awareness, stimu-
lating analytical thinking, and encourag-
ing critical questioning of widely-held be-
liefs. Mathematics (Greek for “learning”)
should be cultivated as a tool for sys-
tematic questioning, our primary defense
against mumbo-jumbo and demagoguery.

Kasparov’s message is simple: “Do not accept authority
unquestioned—look for yourself.” The first authority he questions
is that of Edward Gibbon, whose Decline and Fall of the Roman
Empire is a monument not only to history but also to English
prose. But wherever numbers are involved, you can jump in and
at least check the arithmetic. Adding up the cohorts of infantry
and cavalry is probably not done by most readers of Gibbon, but
it is easy (9 times 555 equals 5 times 999, etc.) and fun. In the end
you come up with 6826 (Gibbon has five more, perhaps officers)
and have to multiply that by 30. No calculators are allowed: your
number lies just short of half-way between 6667 and 7000, hence
the total will come to about 205 000. To get from there to his
“standing force of 375 000,” Gibbon has to add 170 000 “atten-
dant auxiliaries,” almost one per soldier. Why so many? Did the
Romans never have government cutbacks? With one auxiliary for
every five soldiers (is that reasonable?) the total force would be
less than 250 000, the number given for Napoleon.

To play around with these numbers some more, you can try to
visualize how big a square one-quarter million men would occupy if
each man occupies one square meter. Or you can distribute them
on the 4000 miles of paved highway the Romans had (according
to Gibbon). How far apart would they stand? If the Empire
had 50 million inhabitants, that size of army would comprise one
percent of the male population. If their life expectancy was 50
years, how long would their military service have to be to arrive
at that number? As you can see, historical writings can provide
an almost endless source of such exercises. Why should arithmetic
and history always be taught separately?

Thomas R. Malthus

After wondering about the feasibility of
some of the Roman marvels reported by
Gibbon (for instance, the steel required
to equip each legionnaire with a “pilum”),
Kasparov’s curiosity turns to the work
of another famous Englishman, whom he
however does not name. In political circles,
that name invariably unleashes heated and
bitter debates, because its owner wrote in
1798 that “population increases in a ge-
ometric ratio, while the means of subsis-
tence increases in an arithmetic ratio.” We
are, of course, talking about Thomas R.
Malthus. What does he mean? Population

grows by perpetual multiplication (exponentially), while food
production grows only by repeated addition (linearly); in other
words, humanity is doomed!

Malthus does not leave it at these vague pronouncements, but
says in his Essay on the Principles of Population (Chapter 2) that
“population, when unchecked, goes on doubling itself every twenty-
five years,” after citing “the United States of America, where the
means of subsistence have been more ample, the manners of the
people more pure. . . ” The phrase “when unchecked” throws a big
spanner into the works: we are now at 200 years (eight doubling
periods after Malthus), but have not doubled the world population
of his time (about one billion) eight times; otherwise we’d now
be at 256 billion instead of “only” six. Going backward in time,
where Malthus would reduce the population by 50 percent every
25 years, similar nonsense would result. In working with doubling
or halving, it is convenient to remember that the 10th power of 2
is 1024. Going back in time 250 years (10 Malthusian doubling
times), he would go from one billion to one million—two more
such large steps (750 years in total), and he would arrive at Adam.
That’s why these calculations need the condition “unchecked.”

There are situations where this condition is almost satisfied. If
you take a culture of bacteria in plenty of nutrient solution—they
have no wars and do not practise birth control—you can observe
(almost) pure exponential growth. And in radio-active decay—
because atoms don’t make choices—you can see it in reverse: every
so many years (always the same number, called the “half-life”), the
remaining “population” of radio-active atoms is halved. For radio-
active carbon, the half-life is about 5700 years. When a plant or
animal ceases to take part in the great cycle of life, its carbon
content remains static, and the radio-active part of it decays with
that fixed half-life. So if you find a piece of wood with only one-
quarter the “typical” amount of radioactive carbon, you would
presume that it has been dead for about 11 000 years.

But let us get back to human populations, where growth is ap-
parently not “unchecked.” It does not help, in the long run, to as-
sume a greater doubling time: whatever length of step you choose,
after 30 such steps back in time, you’ll knock off nine zeroes, going
from the present six billion to a mere six individuals—the Gar-
den of Eden. In the medium run, you might observe something
resembling exponential growth—but don’t count on it. Look at
the recent past: in 1800 we were one billion, in 1935 we were two
billion, in 1975 we were four billion. The sad truth is that our
doubling time seems to be shrinking. Pretty soon, it will be at
the 25-year level assumed by Malthus—it looks as though the Old
Man was not pessimistic enough.

Kasparov’s inquisitiveness is not random but has a theme: ex-
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actly how long ago was it that the Romans had their Empire? At
first glance, this question is surprising (don’t we all know about
those 2000 years?), but on second thought it is entirely legitimate.
Anyone with a scientific bent of mind will put more trust in directly
accessible data (e.g., the movement of stars) than in stories told
by knights and monks—especially if these are vague and contra-
dictory. According to people who study old manuscripts, medieval
European record-keeping was a mess, and so it seems that some
scrupulous revision is in order. The same scientific spirit that al-
lows the question, however, compels us to question any answer—in
this case, the one proposed by Fomenko’s Moscow team. Since ev-
eryone seems to agree that time-keeping was fairly good from Cae-
sar until about 400 AD and then again since Galileo (at least!), we
have only about 1 200 possibly “sloppy” years to straighten out. If
Islamic history, which is “modern” compared to most others, turns
out to be as reliable as it looks, these uncertain years might shrink
to a mere 200. For instance, the idea suggested in the article by
Krawcewicz on page 12 of this issue, that “pagan” Egyptian fres-
coes could have been painted 600 years ago, would itself become
rather questionable, if it were shown that Egypt was solidly Is-
lamic at the time. That does not invalidate the author’s study—it
only shows that history is less certain than we sometimes think.
Until the dust has settled, it is advisable not to pass judgment.

If the Roman Empire is really so far removed from us in time,
why is it that Roman numerals were still in commercial use until
the 14th century? Before we throw our own guess into the de-
bate, let us look at the nature of these much maligned numerals.
How could anyone calculate with them? Well, how can anyone
compute “three hundred and seventy-six times two hundred and
thirty-seven.” You type these data into your pocket calculator
and press the “×” button, that’s how. You certainly would not
fill page after page with number words. Neither did the Romans.
They would load CCCLXXVI and CCXXXVII onto their counting
board or abacus and manipulate the pebbles and beads until they
had the result. We shall do such a multiplication, but first we’ll
look at addition and subtraction.

Figure 1

The counting board shown in Figure 1 is
divided into two vertical strips; the left one
is for subtraction and the right one is for
addition. Let’s do addition first. The num-
ber shown in the top-right field is MDCC-
CCLXV; the number immediately below is
MCCCCXXV. To add them, we just pile
everything together into the mess shown in
the third field on the right. To make it
readable, we have to reduce it—any five
“beads” on a line are converted to one
“button” in the space to the left of that
line, and any two buttons in a space are
converted to a single bead on the line im-
mediately to the left. The answer is MMM-
CCCLXXXX, as shown in the bottom right
field.

Note: we use the term “beads” to remind
you of an abacus; our “buttons” would
be found in the separate top compartment
(called “heaven” by the Chinese) of the
abacus. We are ignoring the medieval con-
vention of writing IV, XL, CD instead of
the longer but clearer IIII, XXXX, CCCC
notation used by the ancients.

In the subtraction on the left strip, the first number MCCC-
CXXV must be expanded in order to have enough beads on each
line and buttons in each space to allow the second number DCLIII,
depicted in the third field, to be subtracted. The expansion, which
is reduction in reverse, is shown in the second field from the top.
It need not be done all at once, but can be performed as needed
for subtraction. Answer: DCCLXXII.

The power and flexibility of the Roman numeral system is best
demonstrated in how it handles multiplication: because of the
numbers V, L, D, etc., you need not memorize any multiplication
table beyond five. But five itself is just 10 halves, and halving
is an easy operation. Doubling is another easy operation, and
quadrupling is just doubling twice—so the hardest multiplier is
three. If you do happen to know the 10-by-10 table, you can read
every line together with its preceding space as a single decimal
digit, and thus increase your speed.

Figure 2

The multiplication shown in Figure 2 is
CLXXXXVIIII times DCLIII. There are
four partial products (in the blue and yel-
low fields) corresponding to the four digits
of the multiplier: three, five (shifted), one
(shifted twice), and five (shifted twice). As
you pile all that into the first of the fields
marked green, something special happens
on the M-line: three sets of four. Since
there is no space for that many, you
turn them into a 12 (cf. blue beads)
and carry on. After reducing this, you
get CXXVMMMMDCCCCXXXXVII, as
shown in the bottom field. If you find
this too long, compare it to “one hun-
dred twenty-nine thousand nine hundred
and forty-seven.”

A Roman wine merchant would have
done this in his head: CLXXXXVIIII is
one less than CC, so double DCLIII to
MCCCVI, shift to CXXXDC, and sub-
tract DCLIII, and that’ll be LIII short of
CXXX—factus est.

After all of this, you must be dying to see a division, and here it
is: MMMMDCXXVIIII divided by XIII (the divisor is not entered
in). It goes just as you expect. Since XIII takes up two lines, you
look at the first two lines (plus spaces) of the number to be divided,
and you see XXXXVI, which can accommodate three times XIII.

Figure 3

So you write a III on the line where
your XXXXVI had its I. Then you
subtract III times XIII and are
left with VII, which is really DCC
in disguise. Then you repeat the
game, this time taking aim at what
looks like LXXII—and so on, al-
ways wandering toward the smaller
values on the right (see Figure 3).

To appreciate the ease and freedom of this simple gadget, you
owe it to yourself to try one. For starters, why not take a chess-
board and a supply of pennies? You can start your calculations
on the right or on the left, change direction when you spot an op-
portunity for an easy move—as long as you keep track of where
you are in the calculation, it cannot go wrong. You can add or
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subtract tokens to undo a lousy move—you never need an eraser.

The Indo-Arabic numeral system was supposedly introduced to
Europe in the early 13th century with a book called Liber Abaci
(book of the abacus) written by the widely travelled Leonardo da
Pisa (alias Fibonacci), himself no mean mathematician. Present-
day scholars say that it was known in the West much earlier—
though still regarded as a Levantine curiosity—but that the 13th
century introduction of paper from China, as a cheap medium for
writing, made it the system of choice for all auditors and tax-
collectors who wanted to see the details of every calculation.

The pen-on-paper computation with Indo-Arabic numerals—
including the famous zero (originally a punctuation mark)—made
it possible to check calculations for errors, but also penalized false
starts and other trivial mistakes with ugly and confusing erasures.
To avoid these, you had to follow certain very tight algorithms,
which to this day make elementary arithmetic an incomprehensi-
ble and unpleasant discipline to many people. As Scott Carlson
points out in the article preceding Kasparov’s, the paper method
makes little sense when a calculator is at hand—although mental
arithmetic is something he evidently likes. To build the bridge
between the two, how about re-introducing the counting board?

This ancient and user-friendly tool was still being used in Europe
long after people had begun writing numbers in the more compact
Indo-Arabic style. As late as 1550, a German textbook was pub-
lished by one Adam Ries, in which the multiplication shown above
would be written as 199 times 653 equals 129 947, but the interme-
diate steps would be left as unnamed patterns on the board. Even
the Chinese and Japanese use this style to write input and output
of their abacus work, and this would probably be the right way to
bridge the gap between mental arithmetic and the calculator.

In conclusion: the counting board survived (at least) until the
16th century, and for a while (we guess) just carried the Roman
numerals along with it. The fact that they are harder to falsify
may also have helped.

The last major question raised by Kasparov concerns Diophan-
tus of Alexandria. This Greek working in Roman times, considered
the “father” of number theory, is indeed an enigma for anyone in-
terested in chronology—the guesses about his dates range from
150 BC to 350 AD. If he lived that long ago, at a time when
equations were allowed only one unknown (called the “arithm”),
how could he have solved equations like “y cubed minus x cubed
equals y minus x”? Here is what the Master himself says in Book
IV, Problem 11 of his Arithmetica, according to the French trans-
lation by Paul Ver Eeke (1959), here rendered in English:

“To find two cubes having a difference equal to the difference of

their sides. Suppose the sides to be 2 arithms and 3 arithms. Then

the difference of the cubes with these sides is 19 cube arithms, and

the difference of their sides is 1 arithm. Consequently, 1 arithm

equals 19 cube arithms, and the arithm cannot be rational, because

the ratio between these quantities is not like that of one square to

another. We are thus led to look for cubes such that their differ-

ence is to the difference of their sides as one square number is to

another.”

If his first arithm was x, he then boldly grabs another arithm—
let’s call it z—and imagines cubes with sides (z + 1)x and zx,
respectively. A bit of standard algebra shows (3zz+3z+1)xx = 1,
and therefore 3zz+3z+1 should be a square number. Diophantus
assumes it to be the square of (2z−1)—how does he get away with

that?—and then finds z = 7. He now repeats his initial argument
with 7 arithms and 8 arithms, and finds the arithm to be 1/13. In
our language: x = 7/13 and y = 8/13.

Is this a solution? Yes. Is it the general solution? No. But it
points to a technique: had he taken (z + 2)x and zx, he would,
in the same way, have obtained 6zz + 12z + 8 and concluded that
it should be twice a square number. Setting it equal to twice the
square of (3z − 2) would have yielded z = 3 and the arithm 1/7.
In modern language: x = 3/7 and y = 5/7. There is method in
this madness. Can you discover it?

We’ve discussed enough for today, but this is not the end of
Kasparov’s intellectual challenges to scholars and his questioning
of widely accepted theories. They certainly have taken us on an
interesting journey—and left us much to ponder.

If you are interested in learning more about issues relating to
chronology, we invite you to visit the discussion forum at the web
site

http://www.revisedhistory.org/forum.

Garry Kasparov, the author of the article “Mathematics of the
Past” on page 5, will check this site periodically and try to re-
spond to your questions. Submissions will be moderated before
publication in the Forum.

Q: What does the math PhD with a job say to the math PhD
without a job?

A: “Paper or plastic?”
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