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Abstract

Motivated by the theory of self-duality which provides a variational formulation and resolution for non
self-adjoint partial differential equations [6, 7], we propose new templates for solving large non-symmetric
linear systems. The method consists of combining a new scheme that simultaneously preconditions and
symmetrizes the problem, with various well known iterative methods for solving linear and symmetric
problems. The approach seems to be efficient when dealing with certain ill-conditioned, and highly
non-symmetric systems.

1 Introduction and main results

Many problems in scientific computing lead to systems of linear equations of the form,

Ax = b where A ∈ R
n×n is a nonsingular but sparse matrix, and b is a given vector in R

n, (1)

and various iterative methods have been developed for a fast and efficient resolution of such systems. The
Conjugate Gradient Method (CG) which is the oldest and best known of the nonstationary iterative meth-
ods, is highly effective in solving symmetric positive definite systems. For indefinite matrices, the mini-
mization feature of CG is no longer an option, but the Minimum Residual (MINRES) and the Symmetric
LQ (SYMMLQ) methods are often computational alternatives for CG, since they are applicable to systems
whose coefficient matrices are symmetric but possibly indefinite.

The case of non-symmetric linear systems is more challenging, and again methods such as CGNE, CGNR,
GMRES, BiCG, QMR, CGS, and Bi-CGSTAB have been developed to deal with these situations (see the
survey books [9] and [11]). One approach to deal with the non-symmetric case, consists of reducing the
problem to a symmetric one to which one can apply the above mentioned schemes. The one that is normally
used consists of simply applying CG to the normal equations

AT Ax = AT b or AAT y = b, x = AT y. (2)

It is easy to understand and code this approach, and the CGNE and CGNR methods are based on this idea.
However, the convergence analysis of these methods depends closely on the condition number of the matrix
under study. For a general matrix A, the condition number is defined as

κ(A) = ‖A‖ · ‖A−1‖, (3)
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†Partially supported by a UBC Graduate Fellowship.
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and in the case where A is positive definite and symmetric, the condition number is then equal to

κ̃(A) =
λmax(A)

λmin(A)
, (4)

where λmin(A) (resp., λmax(A)) is the smallest (resp., largest) eigenvalue of A). The two expressions can
be very different for non-symmetric matrices, and these are precisely the systems that seem to be the most
pathological from the numerical point of view. Going back to the crudely symmetrized system (2), we echo
Greenbaum’s statement [9] that numerical analysts cringe at the thought of solving these normal equations
because the condition number (see below) of the new matrix AT A is the square of the condition number of
the original matrix A.

In this paper, we shall follow a similar approach that consists of symmetrizing the problem so as to be
able to apply CG, MINRES, or SYMMLQ. However, we argue that for a large class of non-symmetric,
ill-conditionned matrices, it is sometimes beneficial to replace problem (1) by one of the form

AT MAx = AT Mb, (5)

where M is a symmetric and positive definite matrix that can be chosen properly so as to obtain good
convergence behavior for CG when it is applied to the resulting symmetric AT MA. This reformulation
should not only be seen as a symmetrization, but also as preconditioning procedure. While it is difficult to
obtain general conditions on M that ensure higher efficiency by minimizing the condition number k(AT MA),
we shall show theoretically and numerically that by choosing M to be either the inverse of the symmetric
part of A, or its resolvent, one can get surprisingly good numerical schemes to solve (1).

The basis of our approach originates from the selfdual variational principle developed in [6, 7] to provide a
variational formulation and resolution for non self-adjoint partial differential equations that do not normally
fit in the standard Euler-Lagrangian theory. Applied to the linear system (1), the new principle yields the
following procedure. Split the matrix A into its symmetric Aa (resp., anti-symmetric part Aa)

A = As + Aa, (6)

where

As :=
1

2
(A + AT ) and Aa :=

1

2
(A − AT ). (7)

Proposition 1.1 (Selfdual symmetrization) Assume the matrix A is positive definite, i.e., for some δ > 0,

〈Ax, x〉 ≥ δ|x|2 for all x ∈ R
n. (8)

The convex continuous functional

I(x) =
1

2
〈Ax, x〉 +

1

2
〈A−1

s (b − Aax), b − Aax〉 − 〈b, x〉 (9)

then attains its minimum at some x̄ in R
n, in such a way that

I(x̄) = inf
x∈Rn

I(x) = 0 (10)

Ax̄ = b. (11)

Symmetrization and preconditioning via selfduality: Note that the functional I can be written as

I(x) =
1

2
〈Ãx, x〉 + 〈AaA−1

s b − b, x〉 +
1

2
〈A−1

s b, b〉, (12)

where
Ã := As − AaA−1

s Aa = AT A−1
s A. (13)

By writing that DI(x̄) = 0, one gets the following equivalent way of solving (1).
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If both A ∈ R
n×n and its symmetric part As are nonsingular, then x is a solution of the equation (1) if and

only if it is a solution of the linear symmetric equation

AT A−1
s Ax = (As − AaA−1

s Aa)x = b − AaA−1
s b = AT A−1

s b. (14)

One can therefore apply to (14) all known iterative methods for symmetric systems to solve the non-
symmetric linear system (1). As mentioned before, the new equation (14) can be seen as a new symmetriza-
tion of problem (1) which also preserves positivity, i.e., AT A−1

s A is positive definite if A is. This will then
allow for the use of the Conjugate Gradient Method (CG) for the functional I. More important and less
obvious than the symmetrization effect of Ã, is our observation that for a large class of matrices, the con-
vergence analysis on the system (14) is often more favorable than the original one. The Conjugate Gradient
method –which can now be applied to the symmetrized matrix Ã– has the potential of providing an efficient
algorithm for resolving non-symmetric linear systems. We shall call this scheme the Self-Dual Conjugate
Gradient for Non-symmetric matrices and we will refer to it as SD-CGN.

As mentioned above, the convergence analysis of this method depends closely on the condition number k(Ã)
of Ã = AT A−1

s A which in this case is equal to k̃(Ã). We observe in section 2.3 that even though k(Ã) could be
as large as the square of k(As), it is still much smaller that the condition number of the original matrix κ(A).
In other words, the inverse C of AT A−1

s can be an efficient preconditioning matrix, in spite of the additional
cost involved in finding the inverse of As. Moreover, the efficiency of C seems to surprisingly improve in
many cases as the norm of the anti-symmetric part gets larger (Proposition 2.2). A typical example is when
the anti-symmetric matrix Aa is a multiple of the symplectic matrix J (i.e. JJ∗ = −J2 = I). Consider then
a matrix Aε = As + 1

ε
J which has an arbitrarily large anti-symmetric part. One can show that

κ(Ãε) ≤ κ(As) + ε2λmax(As)
2, (15)

which means that the larger the anti-symmetric part, the more efficient is our proposed selfdual precondi-
tioning. Needless to say that this method is of practical interest only when the equation Asx = d can be
solved with less computational effort than the original system, which is not always the case.

Now the relevance of this approach stems from the fact that conjugate gradient methods for nonsymmetric
systems are costly since they require the storage of previously calculated vectors. It is however worth noting
that Concus and Golub [3] and Widlund [15] have also proposed another way to combine CG with a pre-
conditioning using the symmetric part As, which does not need this extended storage. Their method has
essentially the same cost per iteration as the preconditioning with the inverse of AT A−1

s that we propose for
SD-CGN and both schemes converge to the solution in at most N iterations.

Iterated preconditioning: Another way to see the relevance of As as a preconditioner, is by noting that
the convergence of “simple iteration”

Asxk = −Aaxk−1 + b (16)

applied to the decomposition of A into its symmetric and anti-symmetric parts, requires that the spectral
radius ρ(I − A−1

s A) = ρ(A−1
s Aa) < 1. By multiplying (16) by A−1

s , we see that this is equivalent to the
process of applying simple iteration to the original system (1) conditioned by A−1

s , i.e., to the system

A−1
s Ax = A−1

s b. (17)

On the other hand, “simple iteration” applied to the decomposition of Ã into As and AaA−1
s Aa is given by

Asxk = AaA−1
s Aaxk−1 + b − AaA−1

s b. (18)

Its convergence is controlled by ρ(I − A−1
s Ã) = ρ((A−1

s Aa)2) = ρ(A−1
s Aa)2 which is strictly less than

ρ(A−1
s Aa), i.e., an improvement when the latter is strictly less than one, which the mode in which we have

convergence. In other words, the linear system (14) can still be preconditioned one more time as follows:

If both A ∈ R
n×n and its symmetric part As are nonsingular, then x is a solution of the equation (1) if and

only if it is a solution of the linear symmetric equation

Āx := A−1
s AT A−1

s Ax = [I − (A−1
s Aa)2]x = (I − A−1

s Aa)A−1
s b = A−1

s AT A−1
s b. (19)
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Note however that with this last formulation, one has to deal with the potential loss of positivity for the
matrix Ã.

Anti-symmetry in transport problems: Numerical experiments on standard linear ODEs (Example 3.1)
and PDEs (Example 3.2), show the efficiency of SD-CGN for non-selfadjoint equations. Roughly speeking,
discretization of differential equations normally leads to a symmetric component coming from the Laplace
operator, while the discretization of the non-self-adjoint part leads to the anti-symmetric part of the coeffi-
cient matrix. As such, the symmetric part of the matrix is of order O( 1

h2 ), while the anti-symmetric part is
of order O( 1

h
), where h is the step size. The coefficient matrix A in the original system (1) is therefore an

O(h) perturbation of its symmetric part. However, for the new system (14) we have roughly

Ã = As − AaA−1
s Aa = O(

1

h2
) − O(

1

h
)O(h2)O(

1

h
) = O(

1

h2
) − O(1), (20)

making the matrix Ã an O(1) perturbation of As, and therefore a matrix of the form As + αI becomes a
natural candidate to precondition the new system (14).

Resolvents of As as preconditioners: One may therefore consider preconditioned equations of the form
AT MAx = AT Mb, where M is of the form

Mα =
(

αAs + (1 − α)I
)−1

or Nβ = βA−1
s + (1 − β)I, (21)

for some 0 ≤ α, β ∈ R, and where I is the unit matrix.

Note that we obviously recover (2) when α = 0, and (14) when α = 1. As α → 0 the matrix αAs + (1− α)I
becomes easier to invert, but the matrix

A1,α = AT (αAs + (1 − α)I)−1A (22)

may become more ill conditioned, eventually leading (for α = 0) to AT Ax = AT b. There is therefore a
trade-off between the efficiency of CG for the system (5) and the condition number of the inner matrix
αAs + (1 − α)I, and so by an appropriate choice of the parameter α we may minimize the cost of finding a
solution for the system (1). In the case where As is positive definite, one can choose –and it is sometimes
preferable as shown in example (3.4)– α > 1, as long as α < 1

1−λs

min

, where λs
min is the smallest eigenvalue

of As. Moreover, in the case where the matrix A is not positive definite or if its symmetric part is not
invertible, one may take α small enough, so that the matrix Mα (and hence A1,α) becomes positive definite,
and therefore making CG applicable (See example 3.4). Similarly, the matrix Nβ = βA−1

s +(1−β)I provides

another choice for the matrix M in (5), for β <
λs

max

λs
max

−1 where λs
max is the largest eigenvalue of As. Again

we may choose α close to zero to make the matrix Nβ positive definite. As we will see in the last section,
appropriate choices of β, can lead to better convergence of CG for equation (5).

One can also combine both effects by considering matrices of the form

Lα,β =
(

αAs + (1 − α)I
)−1

+ βI, (23)

as is done in example (3.4).

We also note that the matrices M ′
α := (αA′

s + (1 − α)I)−1 and N ′
β := β(A′

s)
−1 + (1 − β)I can be other

options for the matrix M , where A′
s is a suitable approximation of As, chosen is such a way that M ′

αq and
N ′

βq can be relatively easier to compute for any given vector q.

Finally, we observe that the above reasoning applies to any decomposition A = B + C of the non-singular
matrix A ∈ R

n×n, where B and (B−C) are both invertible. In this case, B(B−C)−1 can be a preconditioner
for the equation (1). Indeed, since B − CB−1C = (B − C)B−1A, x is a solution of (1) if and only of it is a
solution of the system

(B − C)B−1Ax = (B − CB−1C)x = b − CB−1b. (24)

In the next section, we shall describe a general framework based on the ideas explained above for the use
of iterative methods for solving non-symmetric linear systems. In section 3 we present various numerical
experiments to test the effectiveness of the proposed methods.
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2 Selfdual methods for non-symmetric systems

By selfdual methods we mean the ones that consist of first associating to problem (1) the equivalent system
(5) with appropriate choices of M , then exploiting the symmetry of the new system by using the various
existing iterative methods for symmetric systems such as CG, MINRES, and SYMMLQ, leading eventually
to the solution of the original problem (1). In the case where the matrix M is positive definite, one can then
use CG on the equivalent system (5). This scheme (SD-CGN) is illustrated in Table (1) below, in the case
where the matrix M is chosen to be the inverse of the symmetric part of A. If M is not positive definite, then
one can use MINRES (or SYMMLQ) to solve the system (14). We will then refer to them as SD-MINRESN
(i.e., Self-Dual MINRES for Nonsymmetric linear equations).

2.1 Exact methods

In each iteration of CG, MINRES, or SYMMLQ, one needs to compute Mq for certain vectors q. Since
selfdual methods call for a conditioning matrix M that involves inverting another one, the computation of
Mq can therefore be costly, and therefore not necessarily efficient for all linear equations. But as we will
see in section 3, M can sometimes be chosen so that computing Mq is much easier than solving the original
equation itself. This is the case for example when the symmetric part is either diagonal or tri-diagonal,
or when we are dealing with several linear systems all having the same symmetric part, but with different
anti-symmetric components. Moreover, one need not find the whole matrix M , in order to compute Mq.
The following scheme illustrates the exact SD-CGN method applied in the case where the coefficient matrix
A in (1) is positive definite, and when AT (As)

−1Aq can be computed exactly for any given vector q.

Given an initial guess x0,
Solve Asy = b

Compute b = b − Aay.
Solve Asy0 = Aax0

Compute r0 = b − Asx0 + Aay0 and set p0 = r0.
For k=1,2, . . . ,
Solve Asz = Aapk−1

Compute w = Aspk−1 − Aaz .

Set xk = xk−1 + αk−1pk−1, where αk−1 = <rk−1,rk−1>

<pk−1,w>
.

Cpmpute rk = rk−1 − αk−1w.
Set pk = rk + bk−1pk−1, where bk−1 = <rk,rk>

<rk−1,rk−1>
.

Check convergence; continue if necessary.

Table 1: GCGN

In the case where A is not positive definite, or when it is preferable to choose a non-positive definite
conditioning matrix M , then one can apply MINRES or SYMMLQ to the equivalent system (5). These
schemes will be then called SD-MINRESN and SD-SYMMLQN respectively.

2.2 Inexact Methods

The SD-CGN, SD-MINRESN and SD-SYMMLQN are of practical interest when for example, the equation

Asx = q (25)

can be solved with less computational effort than the original equation (1). Actually, one can use CG,
MINRES, or SYMMLQ to solve (25) in every iteration of SD-CGN, SD-MINRESN, or SD-SYMMLQN.
But since each sub-iteration may lead to an error in the computation of (25), one needs to control such
errors, in order for the method to lead to a solution of the system (1) with the desired tolerance. This

5



leads to the Inexact SD-CGN, SD-MINRESN and SD-SYMMLQN methods (denoted below by ISD-CGN,
ISD-MINRESN and ISD-SYMMLQN respectively).

The following proposition –which is a direct consequence of Theorem 4.4.3 in [9]– shows that if we solve
the inner equations (25) “accurately enough” then ISD-CGN and ISD-MINRESN can be used to solve (1)
with a pre-determined accuracy. Indeed, given ε > 0, we assume that in each iteration of ISD-CGN or
ISD-MINRESN, we can solve the inner equation –corresponding to As– accurately enough in such a way
that

‖(As − AaA−1
s Aa)p − (Asp − Aay)‖ = ‖AaA−1

s Aap − Aay‖ < ε, (26)

where y is the (inexact) solution of the equation

Asy = Aap. (27)

In other words, we assume CG and MINRES are implemented on (27) in a finite precision arithmetic with
machine precision ε. Set

ε0 := 2(n + 4)ε, ε1 := 2(7 + n
‖ |As − AaA−1

s Aa| ‖|
‖As − AaA−1

s Aa‖
)ε, (28)

where |D| denotes the matrix whose terms are the absolute values of the corresponding terms in the matrix D.
Let λ1 ≤ ... ≤ λn be the eigenvalues of (As −AaA−1

s Aa) and let Tk+1,k be the (k + 1)× k tridiagonal matrix
generated by a finite precision Lanczos computation. Suppose that there exists a symmetric tridiagonal
matrix T , with Tk+1,k as its upper left (k + 1) × k block, whose eigenvalues all lie in the intervals

S = ∪n
i=1[λi − δ, λi + δ], (29)

where none of the intervals contain the origin. let d denote the distance from the origin to the set S, and let
pk denote a polynomial of degree k.

Proposition 2.1 The ISD-MINRESN residual rIM
k then satisfies

||rIM
k ||

||r0||
≤

√

(1 + 2ε0)(k + 1) min
pk

max
z=S

|pk(z)| + 2
√

k(
λn

d
)ε1. (30)

If A is positive definite, then the ISD-CGN residual rIC satisfies

||rIC
k ||

||r0||
≤

√

(1 + 2ε0)(λn + δ)/d min
pk

max
z=S

|pk(z)| +
√

k(
λn

d
)ε1. (31)

It is shown by Greenbaum [6] that Tk+1,k can be extended to a larger symmetric tridiagonal matrix T whose
eigenvalues all lie in tiny intervals about the eigenvalues of (As − AaA−1

s Aa). Hence the above proposition
guarantees that if we solve the inner equations accurate enough, then ISD-CGN and ISD-MINRESN con-
verges to the solution of the system 1 with the desired relative residual (see the last section for numerical
experiments).

2.3 Preconditioning

As mentioned in the introduction, the convergence of iterative methods depends heavily on the spectral
properties of the coefficient matrix. Preconditioning techniques attempt to transform the linear system (1)
into an equivalent one of the form C−1Ax = C−1b, in such a way that it has the same solution, but hopefully
with more favorable spectral properties. As such the reformulation of (1) as

AT A−1
s Ax = AT A−1

s b, (32)

can be seen as a preconditioning procedure with C being the inverse of AT A−1
s . The spectral radius, and

more importantly the condition number of the coefficient matrix in linear systems, are crucial parameters for
the convergence of iterative methods. The following simple proposition gives upper bounds on the condition
number of Ã = AT A−1

s A.
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Proposition 2.2 Assume A is an invertible positive definite matrix, then

κ(Ã) ≤ min{κ1, κ2}, (33)

where
κ1 := κ(As) + ‖Aa‖

2

λmin(As)2 and κ2 := κ(As)κ(−A2
a) + λmax(As)2

λmin(−A2
a
) . (34)

Proof: We have

λmin(Ã) = λmin(As − AaA−1
s Aa) ≥ λmin(As).

We also have

λmax(Ã) = sup
x6=0

xtÃx

|x|2 = sup
x6=0

xt(As − AaA−1
s Aa)x

|x|2

≤ λmax(As) +
||Aa||2

λmin(As)
.

Since κ(Ã) = λmax(Ã)

λmin(Ã)
, it follows that κ(Ã) ≤ κ1.

To obtain the second estimate, observe that

λmin(Ã) = λmin(As − AaA−1
s Aa) > λmin(−AaA−1

s Aa)

= inf
x6=0

−xT AaA−1
s Aax

xT x

= inf
x6=0

{ (Aax)T A−1
s (Aax)

(Aax)T (Aax)
× (Aax)T (Aax)

xT x
}

≥ inf
x6=0

(Aax)T A−1
s (Aax)

(Aax)T (Aax)
× inf

x6=0

xT (Aa)T (Aa)x

xT x

=
1

λmax(As)
× λmin((Aa)T Aa)

=
1

λmax(As)
× λmin(−A2

a)

With the same estimate for λmax(Ã) we get κ(Ã) ≤ κ2.

Remark 2.1 Inequality (33) shows that SD-CGN and SD-MINRES can be very efficient schemes for a large
class of ill conditioned non-symmetric matrices, even those that are almost singular and with arbitrary large
condition numbers. It suffices that either κ1 or κ2 be small. Indeed,

• The inequality κ(Ã) ≤ κ1 shows that the condition number κ(Ã) is reasonable as long as the anti-
symmetric part Aa is not too large. On the other hand, even if ‖Aa‖ is of the order of λmax(As), and
κ(Ã) is then as large as κ(As)

2, it may still be an improved situation, since this can happen for cases
when κ(A) is exceedingly large. This can be seen in example 2.2 below.

• The inequality κ(Ã) ≤ κ2 is even more interesting especially in situations when λmin(−A2
a) is arbitrarily

large while remaining of the same order as ||Aa||2. This means that κ(Ã) can remain of the same order
as κ(As) regardless how large is Aa.

A typical example is when the anti-symmetric matrix Aa is a multiple of the symplectic matrix J (i.e.
JJ∗ = −J2 = I). Consider then a matrix Aε = As + 1

ε
J which has an arbitrarily large anti-symmetric

part. By using that κ(Ã) ≤ κ2, one gets

κ(Ãε) ≤ κ(As) + ε2λmax(As)
2. (35)

Here are other examples where the larger the condition number of A is, the more efficient is the proposed
selfdual preconditioning.
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Example 2.2 Consider the matrix

Aε =

[

1 −1
1 −1 + ε

]

(36)

which is a typical example of an ill-conditioned non-symmetric matrix. One can actually show that κ(Aε) =
O( 1

ε
) → ∞ as ε → 0 with respect to any norm. However, the condition number of the associated selfdual

coefficient matrix

Ãε = As − Aa(As)
−1Aa =

[

ε
ε−1 0

0 ε

]

is κ(Ãε) = 1
1−ε

, and therefore goes to 1 as ε → 0. Note also that the condition number of the symmetric
part of Aε goes to one as ε → 0. In other words, the more ill-conditioned problem (1) is, the more efficient
the selfdual conditioned system (14) is.

We also observe that κ(A−1
s A) goes to ∞ as ε goes to zero, which means that besides making the problem

symmetric, our proposed conditioned matrix AT A−1
s A has a much smaller condition number than the matrix

A−1
s A, which uses As as a preconditioner.

Similarly, consider the non-symmetric linear system with coefficient matrix

Aε =

[

1 −1 + ε
1 −1

]

. (37)

As ε → 0, the matrix becomes again more and more ill-conditioned, while the condition number of its
symmetric part converges to one. Observe now that the condition number of Ãε also converges to 1 as ε
goes to zero. This example shows that self-doual preconditioning can also be very efficient for non-positive
definite problems.

3 Numerical Experiments

In this section we present some numerical examples to illustrate the proposed schemes and to compare them
to other known iterative methods for non-symmetric linear systems. Our experiments have been carried out
on Matlab (7.0.1.24704 (R14) Service Pack 1). In all cases the iteration was started with x0 = 0.

Example 3.1 Consider the ordinary differential equation

−εy′′ + y′ = f(x), on [0, 1], y(0) = y(1) = 0. (38)

By discretizing this equation with stepsize 1/65 and by using backward difference for the first order term,
one obtains a nonsymmetric system of linear equations with 64 unknowns. We present in Table 2 below, the
number of iterations needed for various decreasing values of the residual ε. We use ESD-CGN and ISD-CGN
(with relative residual 10−7 for the solutions of the inner equations). We then compare them to the known
methods CGNE, BiCG, QMR, CGS, and BiCGSTAB for solving non-symmetric linear systems. We also
test preconditioned version of these methods by using the symmetric part of the corresponding matrix as a
preconditioner.
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Table 2: Number of iterations to find a solution with relative residual 10−6 for equation (38). f(x) is chosen
so that y = x sin(πx) is a solution.

N=64 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−10 ε = 10−16

ESD-CGN 22 8 5 4 3 2
ISD-CGN(10−7) 24 9 6 4 3 2

GCNE 88 64 64 64 64 64
QMR 114 > 1000 > 1000 > 1000 > 1000 > 1000

PQMR 34 51 50 52 52 52
BiCGSTAB 63.5 78.5 92.5 98.5 100.5 103.5

PBiCGSTAB 26.5 46.5 50.5 50 51.5 51.5
BiCG 125 > 1000 > 1000 > 1000 > 1000 > 1000

PBiCG 31 44 50 50 52 52
CGS > 1000 > 1000 > 1000 > 1000 > 1000 > 1000

PCGS 27 51 46 46 46 48

Table 3: Number of iterations to find a solution with relative residual 10−6 for equation (38). f(x) is chosen

so that y = x(1−x)
cos(x) is a solution, while the stepsize used is 1/129.

N=128 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−10 ε = 10−16

ESD-CGN 37 11 6 4 3 2
ISD-CGN(10−7) 38 12 7 4 3 2

GCNE 266 140 128 128 128 128
QMR > 1000 > 1000 > 1000 > 1000 > 1000 > 1000

PQMR 40 77 87 92 90 85
BiCGSTAB 136.5 167.5 241 226.5 233.5 237.5

PBiCGSTAB 35.5 87.5 106.5 109 110.5 110.5
BiCG > 1000 > 1000 > 1000 > 1000 > 1000 > 1000

PBiCG 37 76 84 89 85 91
CGS > 1000 > 1000 > 1000 > 1000 > 1000 > 1000

PCGS 34 80 96 91 94 90

As we see in Tables 2 and and 3, a phenomenon similar to Example 2.2 is occuring. As the problem gets
harder (ε smaller), SD-CGN becomes more efficient. These results can be compared with the number of
iterations that the HSS iteration method needs to solve equation (38) (Tables 3,4, and 5 in [2]).

Example 3.2 Consider the partial differential equation

−∆u + a(x, y)
∂u

∂x
= f(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (39)

with Dirichlet boundary condition.

The number of iterations that ESD-CGN and ISD-CGN needed to find a solution with relative residual 10−6,
are presented in Table 4 below for different coefficients a(x, y).
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Table 4: Number of iterations (I) for the backward scheme method to find a solution with relative residual
10−6 for equation (39) (Example 3.2)

a(x,y) N I (ESD-CGN) I (ISD-CGN) Solution
100 49 18 18 random
100 225 40 37 random
100 961 44 46 random
100 961 52 51 sin πx sinπy. exp((x/2 + y)3)
1000 49 10 10 random
1000 225 31 31 random
1000 961 36 37 random
1000 961 31 39 sin πx sinπy. exp((x/2 + y)3)
106 49 4 4 random
106 225 6 6 random
106 961 6 6 random
106 961 6 6 sin πx sinπy. exp((x/2 + y)3)
1016 961 2 2 sin πx sinπy. exp((x/2 + y)3)

Table 5: Number of iterations (I) for the centered difference scheme method for equation (39) (Example 3.2)

a(x,y) N I (ESD-CGN) Solution Relative Residoual
1 49 21 random 6.71 × 10−6

1 225 73 random 9.95 × 10−6

1 961 91 random 8.09 × 10−6

1 961 72 sin πx sin πy. exp((x/2 + y)3) 9.70 × 10−6

10 49 18 random 9.97 × 10−6

10 225 65 random 5.90 × 10−6

10 961 78 random 8.95 × 10−6

10 961 65 sin πx sin πy. exp((x/2 + y)3) 7.78 × 10−6

100 49 31 random 6.07 × 10−6

100 225 42 random 5.20 × 10−6

100 961 43 random 5.03 × 10−6

100 961 38 sin πx sin πy. exp((x/2 + y)3) 4.69 × 10−6

1000 49 65 random 4.54 × 10−6

1000 225 130 random 8.66 × 10−6

1000 961 140 random 2.12 × 10−6

100 961 150 sin πx sin πy. exp((x/2 + y)3) 5.98 × 10−6

Table 4 and 5 can be compared with Table 1 in [15], where Widlund had tested his Lanczos method for
non-symmetric linear systems. Comparing Table 5 with Table 1 in [15] we see that for small a(x, y) (1 and
10) Widlund’s method is more efficient than SD-CGN, but for large values of a, SD-CGN turns out to be
more efficient than Widlund’s Lanczos method.

Remark 3.3 As we see in Tables 2,3, and 4, the number of iterations for ESD-CGN and ISD-CGN (with
relative residual 10−7 for the solutions of the inner equations) are almost the same One might choose dynamic
relative residuals for the solutions of inner equations to decrease the average cost per iterations of ISD-CGN.
It is interesting to figure out whether there is a procedure to determine the accuracy of solutions for the inner
equations to minimize the total cost of finding a solution.
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Example 3.4 Consider the partial differential equation

−∆u + 10
∂(exp(3.5(x2 + y2)u)

∂x
+ 10 exp(3.5(x2 + y2))

∂u

∂x
= f(x), on [0, 1] × [0, 1], (40)

with Dirichlet boundary condition, and choose f so that sin(πx) sin(πy) exp((x/2+ y)3) is the solution of the
equation. We take the stepsize h = 1/31 which leads to a linear system Ax = b with 900 unknowns. Table 5
includes the number of iterations which CG needs to converge to a solution with relative residual 10−6 when
applied to the preconditioned matrix

AT (αA−1
s + (1 − α)I)A. (41)

Table 5 can be compared with Table 1 in [15], where Widlund has presented the number of iterations needed
to solve equation (40).

Table 6: Number of iterations for a solution with relative residual 10−6 for example 3.3 when SD-CGN is
used with the preconditioner (41) for different values of α.

λs
max( 1−α

α
) I λs

max( 1−α
α

) I
∞(α = 0) > 5000 0.1 232
0(α = 1) 229 0.2 237

-0.1 221 0.4 249
-0.25 216 0.8 263
-0.5 201 1 272
-0.7 191 5 384
-0.8 186 10 474
-0.9 180 20 642
-0.95 179 50 890
-0.99 177 100 1170
-0.999 180 1000 2790
-0.9999 234 10000 4807

Remark 3.5 As we see in Table 5, for λs
max( 1−α

α
) = −.99 we have the minimum number of iterations.

Actually, this is the case in some other experiments, but for many other system the minimum number of
iterations accrues for some other α with −1 < λs

max( 1−α
α

) ≤ 0. Our experiments show that for a well chosen
α > 1, one may considerably decrease the number of iterations. Obtaining theoretical results on how to choose
parameter α in 41 seems to be an interesting problem.

Note that the coefficient matrix of the linear system corresponding to (40) is positive definite. Hence we
may also apply CG with the preconditioned symmetric system of equations

AT (As − αλs
minI)−1A = AT (As − αλs

minI)−1b, (42)

where λs
min is the smallest eigenvalue of As and α < 1. The number of iterations function of α, that CG

needs to converges to a solution with relative residual 10−6 are presented in Table 7.
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Table 7: Number of iterations to find a solution with relative residual 10−6 for equation (40) when SD-CGN
is used with the preconditioner (42) for different values of α.

α I
0 229

0.5 204
0.9 177
0.99 166
0.999 168
0.9999 181
0.99999 194
0.999999 222
0.9999999 248
0.99999999 257

Remark 3.6 As we see in the above table, for α = 0.99 in (42) we have the minimum number of iterations.
Obtaining theoretical results on how to choose the parameter α seems to be an interesting problem to study.

We also repeat the experiment by applying CG to the system of equations

AT

(

As − 0.99λs
minI)−1 − 0.99

λs
max

I

)

A = AT

(

(As − o.99λs
minI)−1 − 0.99

λs
max

I

)

b. (43)

Then CG needs 131 iterations to converge to a solution with relative residual 10−6.

As another experiment we apply CG to the preconditioned linear system

A−1
s AT A−1

s A = A−1
s AT A−1

s b,

to solve the non-symmetric linear system obtained from discritization of the Equation (40). The CG converges
in 31 iterations to a solution with relative residual less than 10−6. Since, we need to solve two equations with
the coefficient matrix As, the cost of each iteration in this case is towice as much as SD-CGN. So, by the
above preconditioning we decrease cost of finding a solution to less that 62/131 of that of SD-CGN (System
(43)).

Example 3.7 Consider now the following equation

−∆u + 10
∂(exp(3.5(x2 + y2)u)

∂x
+ 10 exp(3.5(x2 + y2))

∂u

∂x
− 200u = f(x), on [0, 1] × [0, 1], (44)

If we discretize this equation with stepsize 1/31 and use backward differences for the first order term, we
get a linear system of equations Ax = b with A being a non-symmetric and non-positive definite coefficient
matrix. We then apply CG to the following preconditioned, symmetrized and positive definite matrix

AT ((As − αλs
minI)−1 + βI)A = AT ((As − αλs

minI)−1 + βI)b, (45)

with α < 1. For different values of α the number of iterations which CG needs to converge to a solution with
the relative residual 10−6 are presented in Table 8.
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Table 8: Number of iterations to find a solution with relative residual 10−6 for equation (44) when SD-CGN
is used with the preconditioner (45) for different values of α and β.

α β = 0 β = −.99/λs
max

10 543 424
5 446 352

2.5 369 288
1.5 342 264
1.1 331 258
1.01 327 259
1.001 333 271
1.0001 368 289
1.00001 401 317

We repeat our experiment with stepsize 1/61 and get a system with 3600 unknowns. With α = −1.00000001
and β = 0, CG converges in one single iteration to a solution with relative residual less than 10−6. We also
apply QMR, BiCGSTAB, BiCG, and CGS (also preconditioned with the symmetric part as well) to solve the
corresponding system of linear equations with stepsize 1/31. The number of iterations needed to converge
to a solution with relative residual 10−6 are presented in Table 9.

Table 9: Number of iterations to find a solution with relative residual 10−6 for equation (44) using various
algorithms.

N=900 I
CGNE > 5000
QMR 3544

PQMR 490
BiCGSTAB > 5000

PBiCGSTAB Breaks down
BiCG 4527

PBiCG > 1000
CGS 1915

PCGS 649
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