Mather Measures and Ergodic Properties of Kantorovich
Operators

Malcolm Bowles* and  Nassif Ghoussoubf

Department of Mathematics, The University of British Columbia
Vancouver BC Canada V6T 1Z2

May 07, 2019, revised on June 20, 2019, 2¢ revision on October 24, 2019

Abstract

We introduce and study the class of linear transfers between probability distributions
and the dual class of Kantorovich operators between function spaces. Linear transfers
can be seen as an extension of convex lower semi-continuous energies on Wasserstein
space, of cost minimizing mass transports, as well as many other couplings between
probability measures to which Monge-Kantorovich theory does not readily apply. Basic
examples include balayage of measures, martingale transports, optimal Skorokhod em-
beddings, and the weak mass transports of Talagrand, Marton, Gozlan and others. The
class also includes various stochastic mass transports such as the Schrodinger bridge
associated to a reversible Markov process, and the Arnold-Brenier variational principle
for the incompressible Euler equations.

We associate to most linear transfers, a critical constant, a corresponding effective
linear transfer and additive eigenfunctions to their dual Kantorovich operators, that
extend Mané’s critical value, Aubry-Mather invariant tori, and Fathi’s weak KAM solu-
tions for Hamiltonian systems. This amounts to studying the asymptotic properties of
Kantorovich operators, which appear as non-linear counterparts of the Markov opera-
tors in classical ergodic theory. This allows for the extension of Mather theory to other
settings such as its stochastic counterpart and the framework of ergodic optimization
in the holonomic case.

We also introduce the class of convex transfers, which includes p-powers (p > 1) of
linear transfers, the logarithmic entropy, the Donsker-Varadhan information, optimal
mean field plans, and certain free energies as functions of two probability measures,
i.e., where the reference measure is also a variable. Duality formulae for general trans-
fer inequalities follow in a very natural way. This paper is an expanded version of a
previously posted but not published work by the authors [13].

*This is part of the PhD dissertation of this author at the University of British Columbia.
fBoth authors have been partially supported by a grant from the Natural Sciences and Engineering
Research Council of Canada.
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1 Introduction

Our main objective is to study the ergodic properties of Kantorovich operators, which are
at the heart of the theory of mass transport summarized in the books of Villani [64] and
Santambrogio [55], as well as the so-called weak KAM theory developed by Mather [49],
Fathi [25], Aubry [1], Mané [45] and many others. Consider two compact spaces X and Y,
and the corresponding spaces C(Y') (resp., USC(X)) of continuous functions on Y (resp.,
bounded above upper semi-continuous functions on X). A backward Kantorovich operator
is a map (mostly non-linear) 7~ : C(Y) — USC(X) verifying the following 3 properties:

a) T~ is monotone, i.e., fi < fo in C(Y), then T~ f1 < T fo.

b) T~ is a convex operator, that is for any A € [0, 1], fi1, fo in C(Y'), we have
T A+ @ =Nf) KM fi+ (1 =T fa.

c) T~ is affine on the constants, i.e., for any ¢ € R and f € C(Y), there holds

T (f+c¢)=T f+ec.

Forward Kantorovich operators Tt : C(X) — LSC(Y') are those that verify (a), (c), and
the concave counterpart of (b), that is

THYOfL+ Q=N fo) 2 AT f1+ (1= NTT fo,

where LSC(Y) is the space of bounded below lower semi-continuous functions on Y.
We shall say that T~ (resp., T") is non-trivial if there is at least one function f € C(Y)
(resp., C(X)) such that T~ f # —oo (resp., Tt f # +00).

Kantorovich operators are important extensions of Markov operators and are ubiqui-
tous in mathematical analysis and differential equations. Even affine operators of the form



T~ f(x) =Tf(z) — A(z), where T is a Markov operator and A is a given function (observ-
able) allows the asymptotic theory of Kantorovich operators to incorporate ergodic opti-
mization for expanding dynamical systems. Non-linear Kantorovich operators also appear
for example as the maps that associate to an initial state of a Hamilton-Jacobi equation the
solution at a given time t, as general value functions in dynamic programming principles
([26] Section II1.3), and also in the mathematical theory of image processing [3].

The rich structure of Kantorovich operators stems from their duality -via Legendre
transform- with certain lower semi-continuous and convex functionals 7 on M(X) x M(Y),
where M(K) is the space of signed measures on a compact space K equipped with the
weak*-topology in duality with C(K). Indeed, to any map 7~ : C(Y) — USC(X)
(resp., Tt : C(X) — LSC(Y)), one can associate a corresponding convex and lower
semi-continuous functional 77— (resp., Tr+) on M(X) x M(Y') via the following —possibly
infinite— expressions: If (u,v) € P(X) x P(Y), where P(K) denotes the space of probability
measures on K, then set

TT—(W/)=Sup{/ygdv—/XT_gdu;gGC(Y)}, (1)

(resp.,
7'T+<u7v>=sup{/yT+fdu—/deu; fecx), (2)

If (p,v) ¢ P(X) x P(Y), then set Tr—(pu,v) = +oo (resp., Tr+(p,v) = +00).
Dually, we introduce the following notions.

Definition 1.1. Let 7 : M(X) x M(Y) — RU{+40o0} be a bounded below functional with
a non-empty effective domain D(T).

1. We say that T is a backward (resp., forward) linear coupling, if
D(T) Cc P(X) x P(Y), (3)

and

T =Tr- (resp., T =Tr+), (4)
for some T~ : C(Y) = USC(X) (resp., TT : C(X) = LSC(Y)).

2. We say that T is a backward (resp., forward) linear transfer, if it is a linear coupling
with T~ (resp., T") being backward (resp., forward) Kantorovich operators.

It is easy to see that in either case, 7 is then a proper, bounded below, lower semi-
continuous and convex functional on M(X) x M(Y). Moreover, if we consider for each
p € M(X) (resp., v € M(Y)) the partial maps 7, on P(Y) (resp., 7, on P(X)) given
by v — T(u,v) (vesp., 4 — T (u,v)), their Legendre transforms are then the following
functionals on C(Y) (resp., C(X)) defined by,

T(g) = sup /X gdv — To(v); p € P(X)} = sup} /X gdv — T(u,v): p € P(X)},
and

T (f) = supf /X F—To () j € P(X)} = supf /X fdp—T(uv): p € P(X)),
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respectively, since 7, and 7, are equal to 400 whenever ;1 and v are not probability mea-
sures. Note also that

Ti(9) < [x T g(x)du(z) for any g € C(Y), (5)

(resp.,
T,(9) < = [y TT(=f)(z)dv(z) for any f € C(X). (6)
We shall later prove that we have equality if and only if T is a linear transfer.

Note that if 7" is a backward linear coupling with an operator T~ then T (u, v) := T (v, j1)
is a forward linear coupling with the operator TF f = =T~ (—f). We shall therefore focus on
the properties of backward linear couplings and transfers since their “forward counterparts”
could be derived from that relation. There are however special characteristics to those that
are simultaneously forward and backward linear transfers (see Sections 3 and 6). We shall
say that a coupling T is symmetric if T = T, in which case TTf = =T~ (—f).

The “partial domain” of 7 will be denoted by

D(T) ={pn e P(X); I e P(Y),(n,v) € D(T)}.

The following characterization of linear transfers is the starting point of our analysis.

Theorem 1.2. Let T : M(X) x M(Y) be a functional such that D(T) C P(X) x P(Y)
and {6y;x € X} C D1(T). Then, the following are equivalent:

1. T is a backward linear transfer.

2. There is a map T : C(Y) — USC(X) such that for each p € Di(T), T, is convex

lower semi-continuous on P(Y') and
T:(9) = [x Tg(x)du(x)  for any g € C(Y). (7)

3. There exists a proper bounded below lower semi-continuous function ¢: X x P(Y) —
R U {+oo} with 0 — ¢(z,0) convex such that for any (u,v) € M(X) x M(Y),

Tlur) = { inf{ [y c(z,m) dp(z);m € K(u,v)}  if p,v € P(X) X P(Y), -

400 otherwise,

where K(u,v) is the set of probability measures m on X x Y whose marginal on X
(resp. on'Y ) is pu (resp., v) (i.e., the transport plans), and (7y), is the disintegration
of ™ with respect to .

This characterization makes a link between linear transfers and mass transport theory, and
also explains the terminology we chose. Indeed, the class of linear transfers contains all cost
minimizing mass transports, that is functionals on P(X) x P(Y) of the form,

Te(p,v) = inf{ .. c(z,y))dmm e K(u, V)}, (9)

where c(z,y) is a continuous cost function on the product measure space X x Y. A con-
sequence of the Monge-Kantorovich theory is that cost minimizing transports 7. are both



forward and backward linear transfers with Kantorovich operators given for any f € C(X)
(resp., g € C(Y)) by

T f(y) = inf {c(w,y) + f(x)} and T g(z) = sup{g(y) — c(x,y)}. (10)
reX yeY

However, many couplings between probability measures cannot be formulated as optimal
mass transportation problems, since they do not arise as cost minimizing problems asso-
ciated to functionals c¢(x,y) that assign a price for moving one particle z to another y.
Moreover, they are often not symmetric, meaning that the problem imposes a specific di-
rection from one of the marginal distributions to the other. The notion of transfers between
probability measures is therefore much more encompassing than mass transportation, yet is
still amenable to —at least a one-sided version— of the duality theory of Monge-Kantorovich
[64].

The notion of linear transfer is general enough to encapsulate all bounded below con-
vex lower semi-continuous functions on Wasserstein space and Markov operators, but also
the Choquet-Mokobodzki balayage theory [19, 53], the deterministic version of optimal
mass transport (e.g., Villani [64], Ambrosio-Gigli-Savare [4]), their stochastic counterparts
(Mikami-Thieulin [52]), Barton-Ghoussoub [8] and others), optimal Skorokhod embeddings
(Ghoussoub-Kim-Pallmer [34, 35]), the Schrodinger bridge, and the Arnold-Brenier varia-
tional descriptions of the incompressible Euler equation. Linear transfers turned out to be
essentially equivalent to the notion of weak mass transports recently developed by Gozlan
et al. [38, 40]), and motivated by earlier work of Talagrand [62, 63], Marton [47, 48] and
others.

This paper has two objectives. First, it introduces the unifying concepts of linear and
convexr mass transfers and exhibits several examples that illustrate the potential scope of
this approach. The underlying idea has been implicit in many related works and should
be familiar to the experts. But, as we shall see, the systematic study of these structures
add clarity and understanding, allow for non-trivial extensions, and open up a whole new
set of interesting problems. In other words, there are by now enough examples that share
common structural features that the situation warrants the formalization of their unifying
concept. The ultimate purpose is to extend many of the remarkable properties enjoyed by
energy functionals on Wasserstein space and standard optimal mass transportations to a
larger class of couplings that is stable under addition, convex combinations, convolutions,
and tensorizations. We exhibit the basic permanence properties of the convex cones of
transfers, and extend several results known for mass transports including general duality
formulas for inequalities between various transfers that extend the work of Bobkov-Gotze
[8], Gozlan-Leonard [38], Maurey [50] and others.

The second objective is to show that the approach of Bernard-Buffoni [6, 7] to the Fathi-
Mather weak KAM theory ([25] [49]), which is based on optimal mass transport associated
to a cost given by a generating function of a Lagrangian, extend to transfers and therefore
applies to other couplings, including stochastic transportation. We do that by associating
to any linear transfer a corresponding effective linear transfer in the same way that weak
KAM theory associates an effective Lagrangian (and Hamiltonian) to many problems of the
calculus of variations [25, 21]. With such a perspective, Mather theory seems to rely on the
ergodic properties of the nonlinear Kantorovich operators as opposed to classical ergodic
theory, which deals with linear Markov operators.



We shall focus here on probability measures on compact spaces, even though the right
settings for most applications and examples are complete metric spaces, Riemannian mani-
folds, or at least R™. This will allow us to avoid the usual functional analytic complications,
and concentrate on the algebraic aspects of the theory. The simple compact case will at
least point to results that can be expected to hold and be proved —albeit with additional
analysis and suitable hypothesis — in more general situations. In the case of R™, which is
the setting for many examples stated below, the right duality is between the space Lip(R")
of all bounded and Lipschitz functions and the space of Radon measures with finite first
moment.

In Section 3, we study in detail the duality between Kantorovich operators and linear
transfers. We actually associate to essentially any map 7" : C(Y) — USC(X) (resp., any
convex functional 7 on P(X) x P(Y)) an “optimal” Kantorovich map T (resp., linear
transfer 7) that can be seen as “envelopes”.

Proposition 1.3. (The transfer envelope of a correlation functional) Let T : P(X)x
P(Y) = RU {400} be a bounded below lower semi-continuous functional that is convex in
each of the variables such that {6,;x € X} C D1(T). Then, there exists a functional T > T
on P(X) x P(Y) that is the smallest backward linear transfer above T .

Dually, we say that T~ is proper at © € X, if

inf  sup gdv —T g(x)} < 4o0. 11

veP(Y) geC(v) Uy (@)} )
This then implies that T'f(z) > —oo for every f € C(Y), and translates into the condition
that the associated coupling T is proper as a convex function in the following way:

8. € DI(T) :={peP(X); weP¥Y),T (uv) < -+oo}. (12)

Proposition 1.4. (The Kantorovich envelope of a non-linear map) Let T : C(Y) —
USC(X) be a proper map. Then, there exists T : C(Y) — USC(X) that is the largest
Kantorovich operator below T' on C(Y').

In anticipation to the study of the ergodic properties of a Kantorovich operators, where
we will need to consider iterates of T', we proceed to extend in Section 4 any Kantorovich
operator T' : C(Y) — USC(X) to a map from USC(Y) into USC(X) while retaining
properties (a), (b) and (c) that characterize Kantorovich operators.

In section 5, we exhibit a large number of (basic) examples of linear transfers which do not
fit in standard mass transport theory. The various optimal martingale mass transports and
weak mass transports of Marton, Gozlan and collaborators are examples of one-directional
linear transfers. However, what motivated us to develop the concept of transfers are the
stochastic mass transports, which do not minimize a given cost function between point
particles, since the cost of transporting a Dirac measure to another is often infinite.

In Section 6, we show that the class of linear transfers has remarkable permanence
properties under various operations. The most important one for our study is the stability
under inf-convolution: If 7; (resp., T2) are backward linear transfers on P(X;) x P(X2)
(resp., P(X2) x P(X3)), then their inf-convolution

T, v) :=Tix Tap,v) = nf{T1(p, 0) + Ta(0,v); 0 € P(X2)} (13)



is a backward linear transfer on P(X;) x P(X3). This leads to an even richer class of
transfers, such as the ballistic stochastic optimal transport, broken geodesics of transfers,
and projections onto certain subsets of Wasserstein space.

In anticipation to the extension of Mather theory, and motivated by the work of Bernard-
Buffoni [6], we study in Section 7 those linear transfers that are distance-like, that is satisfy
the triangular inequality,

T(uv) < T(u0) + T(ovv) for all w0 € PX), (14)
as well as the T-Lipschitz functionals on the set A = {u € P(X); T (u, ) = 0}.

Theorem 1.5. Let T is a backward linear transfer on P(X) x P(X) with T~ as a Kan-
torovich operator. Assume that T satisfies (14) and that for all p,v € P(X),

T(,v) = i {T(,0) + T(0,v); o € A}. (15)
The following then hold:

1. A functional ® on A is T-Lipschitz if and only if there exists a function f € C(X)
such that

O(p) = / fdu = / T~ fdu for all p € A. (16)
X X
2. If T is also a forward transfer with T™ as a Kantorovich operator, then

<I>(,u):/de,u:/XT_fdu:/XT+oT_fdu for all p € A. (17)

We note that the functions v = T~ f and 1 = T o T~ f are conjugate in the sense that
Yo =T ¢y and Y1 = T 4.

In Sections 8-10 we associate to any given linear transfer T, a distance-like transfer 7.,
by exploiting the ergodic properties of the corresponding Kantorovich operators. For each
n €N, welet 7, =T xT *x....x T be the transfer obtained from a backward linear transfer
T by iterating its convolution n-times. The Kantorovich operator associated to 7y, is given
by the n-th iterate (7)™ of the Kantorovich operator T~ associated to 7. We will be
interested in the limiting behavior of 7, and (7)™ as n goes to infinity. The following
identifies a critical constant associated to a given linear transfer.

Theorem 1.6. Suppose T is a backward linear transfer on P(X) x P(X) and let T := T~
be its backward Kantorovich operator. Assume

T (po, o) < +0o for some probability measure . (18)

1. Then, there exists a finite constant c(T) such that

1 VS
oT) =sup Wlerg(x) Tu(p,v) = inf — Melg(fx) T (s ). (19)

It will be called the “Mané constant” associated to T .



2. It is also characterized by

— inf 20
c(T) Melg(x)’f(u,u), (20)

and the probabilitiy distributions where the infimum is attained will be called “Mather
measures” for T.

3. Moreover, ¢(T) is the unique constant for which there may be u € C(X) such that
Tu+ c=u. (21)
Such a function u will be called a “backward weak KAM solution” for T'.

Similar definitions can be made for forward linear transfers. Actually, when 7T is continuous
on P(X) x P(X) for the Wasserstein metric, much more can be said since we should be able
to associate to T an idempotent transfer T, i.e., one that verify 7 T = T, in which case
its corresponding Kantorovich map T4, is idempotent for the composition operation (i.e.,
T2 = T,,), while its range correspond to all weak KAM solutions for 7. The most known
ones are the Monge optimal mass transport or more generally, the Rubinstein-Kantorovich
mass transports, where the cost c(z,y) is a distance on a metric space. In reality, many
more examples satisfy this property, such as transfers induced by convex energies with 0 as
an infimum, the balayage transfer, and certain optimal Skorokhod embeddings in Brownian
motion. The following shows that one can associate such an idempotent transfer under
equi-continuity conditions on 7.

Theorem 1.7. Let T be a backward linear transfer on P(X) x P(X) that is continuous
for the Wasserstein metric, and let T := T~ : C(X) — C(X) be the corresponding back-
ward Kantorovich operator. Then, there exist a Mané critical value ¢ = ¢(T) € R and
an idempotent backward linear transfer Too such that if T is its corresponding idempotent
Kantorovich operator, then the following hold:

1. For every f € C(X) and z € X, lim TL& — _¢(T):

n—+oo

2. T s the largest linear transfer below liminf, (7, — nc) and Too = (T — ¢) * Too;

3. ToTxwf+c=Txf foral f € C(X), that is u := T f is a backward weak KAM
solution.

4. The set A:={u € P(X); Too(p, 1) = 0} is non-empty and for every u,v € P(X), we
have

Too(luvy) = inf{TOO(,uva) +TOO(05 V),O‘ € -’4}7 (22)

and the infimum on A is attained.

5. The Mané constant c(T) = inf{T (u,p); p € P(X)} is attained by a probability fi in
A.

6. If T is also a forward transfer, then similar results hold for the forward operator T+.
Moreover, the associated effective transfer To, can then be expressed as

Toolpts ) = sup { /X v - /X fodps (f ) € T) (23)
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where

7= {(f_,f+); = (resp., f+) is a backward (resp., forward) weak KAM solution
and [y fodp= [y fTdu for all p € A}.

By analogy with the weak KAM theory of Mather-Aubry-Fathi —briefly described in the
next paragraph— we shall say that 7o, (resp., T°°) is the effective transfer or the generalized
Peierls barrier (resp., effective Kantorovich operator) associated to 7. The set A is the
analogue of the projected Aubry set, and

D:={(u,v) e P(X)x P(X) : T(u,v) + Too(v,p) = c(T)}

can be seen as a generalized Aubry set [25].

As mentioned above, the effective transfer 7 is obtained by an infinite inf-convolution
process, while T, is obtained by an infinite iteration procedure, which lead to fixed points
(additive eigenfunctions) for such a non-linear operator. The same procedure actually ap-
plies for any semi-group of backward linear transfers (for the convolution operation) and the
corresponding semi-group of Kantorovich maps (for the composition operation). This will
be established in Section 7 for an equicontinuous semi-group of backward linear transfers.

In Section 9, we deal with the case of a general linear transfer, where we do not as-
sume continuity of 7, but that the corresponding Kantorovich operator 7" maps C(X) to
USC(X). We then consider the following measure of the oscillation of the iterates of T

Kn):= inf Tp(u,p)— inf  Tp(u,v). 24
(n) ant (ks 1) LU (1, v) (24)
Note that Theorem 1.6 already asserts that KM ecreases to zero, but we shall need a

n
slightly stronger condition to prove in section 8 the existence of weak KAM solutions.

Theorem 1.8. Let T be a backward linear transfer on P(X) x P(X) such that its corre-
sponding Kantorovich operator maps C(X) to USC(X). Assume (18) and the following
two conditions:

sup inf T(z,0) < 400, 25
xe)g o€P(X) (#:2) (25)

and
lim inf K(n) < 4oc. (26)

1. Then, there exists a backward weak KAM solution for T at the level ¢ := c(T).

2. The Mané constant ¢ is unique in the following sense

¢(T) = sup{d € R;there exists u € USC(X) with Tu + d < u} (27)
= inf{d € R;there exists v € USC(X) with Tv +d > v}.

Note that (25) merely states that the function T'1 is bounded below, while (18) yields
that T'1 is not identically —oo. This will allow us to prove the following.

10



Theorem 1.9. Let T be a backward linear transfer that is also bounded above on P(X) X
P(X), then
Tulp,v) — ¢ uniformly on P(X) x P(X). (28)
n
Moreover, there exists an idempotent operator Too : C(X) — USC(X) such that for each
feC(X), Toof is a backward weak KAM solution for T.

In Section 10, we use a regularization procedure to show that many of the conclusions
in Theorem 1.7 can hold for transfers that are neither necessarily continuous nor bounded.
This holds for example when the following condition is satisfied.

inf  T(u,p)= inf T(uv), 29
ant (ks 1) LU (1, v) (29)

which holds in many situations. This will allow us to prove the following general result.

Theorem 1.10. Let T be a backward linear transfer on P(X)xP(X), where X is a bounded
domain in R™. Then, for every A € (0,1), there exists a convex function ¢, a constant c € R
and a function g € USC(X) such that

T g+c=Xg(Vo)+(1-X)g. (30)

Note that if ¢ is the quadratic function, then g is a weak KAM solution for T.
To make the connection with Mather-Aubry-Fathi theory, consider 7; to be the cost
minimizing transport

7;(/" l/) = inf{ N Ct(x7y) d’ﬂ('%y) ;T E IC(,U, V)}: (31)

where
t
ct(z,y) = inf{/o L(v(s),4(s))ds; v € CH([0,8]; M),7(0) = =,7(t) =y},  (32)

for some given (time-independent) Tonelli Lagrangian L possessing suitable regularity prop-
erties on a compact state space M. The backward Kantorovich operators associated to 7
are nothing but the Lax-Oleinik semi-group S; , t > 0, defined as

Sp u(z) = inf{u((0)) +/0 L(v(s),3(s)) ds; v € CH([0,8); M), y(t) =} (33)

Recall from [25] that a function w € C(M) is said to be a negative weak KAM solution if
for some ¢ € R, we have
S;u+ct=u forallt>0, (34)

these solutions are then given by any function in the range of the effective Kantorovich
map associated to (S; ):. Actually, these solutions were obtained this way by Bernard and
Buffoni [6, 7], who capitalized on the fact that in this case, the transfers (7;); are actually
given by optimal mass transports associated to the cost ¢;, and that the Lax-Oleinik semi-
groups are obtained via Monge-Kantorovich theory. This general asymptotic theory applies
to both the linear setting such as the heat semi-group and to non-linear contexts including
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the Schrodinger bridge. It also applies to settings where transfers are neither given by
optimal transport problems nor are they continuous on Wasserstein space.

In section 11, we apply the general theory to the following semi-group of stochastic op-
timal mass transports: Let (Q, F,P) be a complete probability space with normal filtration
{Fi}i=0, and define Ajy 4 to be the set of continuous semi-martingales X :  x [0,¢] — M
such that there exists a Borel measurable drift 3 : [0,t] x C([0,t]) — R? for which

1. w = B(s,w) is B(C(]0, s]))+-measurable for all s € [0,t], where B(C([0,s])) is the
Borel g-algbera of C|0, s|.

2. W(s) :==X(s)—X(0)— [y B(s')ds" is a 0(X(s); 0 < s < t) is an M-valued Brownian
motion.

For each /3, we shall denote the corresponding X by X# in such a way that
dXP(t) = B(t)dt + dW (¢). (35)

The stochastic transport from p € P(M) to v € P(M) on the interval [0,¢], t > 0, is then
defined as

Ti(p, v) == inf {E /0 L(XP(s), B(s)) ds; XP(0) ~ p, XP(t) ~ v, X" € A[O,ﬂ} . (36)

Note that these couplings do not fit in the Monge-Kantorovich framework as they are
not optimal mass transportations that correspond to a cost function between two states,
but they are backward linear transfers according to our definition thanks to the work of
Mikami-Tieullin [52]. In this case, they only have backward Kantorovich operators given
by the stochastic Lax-Oleinik operator,

st = sw {B](r000) - [ Lxe)pxs0)as) X0 =] . @

XE.A[o’t]

in such a way that

Ti(p, v) = sup { /M u(y) dv(y) — /M Syu(z) dp(z);u € C(M)}. (38)

In addition, for each end-time T' > 0, u(t,z) = Sy_su(x) is a viscosity solution to the
following backward Hamilton-Jacobi-Bellman equation

{?;;(t,a:) + 1Au(t,2) + H(z, Vu(t,z)) =0, on[0,T)x M )

w(T,z) =wu(x) on M.

The existing of corresponding stochastic weak KAM solutions (i.e., fixed points for u —
Syu—+ct) will then be viscosity solutions of second order stationary Hamilton-Jacobi-Bellman
equation

%Au(:c) + H(z,Vu(z)) =¢, x€ M. (40)

We shall consider the case of a torus, already studied by Gomez [36], and capitalize on his
work to show that just like in the deterministic case, the Mané constant ¢, for which there

12



exists a backward weak KAM solution is unique and is connected to a stochastic analogue
of Mather’s problem via

c=1inf{Ti(u,pn);u € P(M)} = inf{ . L(z,v)dm(z,v);m € No(TM)}, (41)

where No(T'M) is the set of probability measures m on phase space that verify for every
p € CH2([0,1] x M),

0
/[01] /TM {85;3 x,t) +v-Ve(z,t)+ Ago(x t)] dm(x,v)dt —/T [o(2,1)—(z,0)] dm(z, v).

M
(42)
The stochastic Mather measures are those that are minimizing Problem (41).
In section 12, we introduce a natural and richer family of transfers: the class of convex
transfers.

Definition 1.11. A proper convex and weak* lower semi-continuous functional 7 : M (X)) x
M(Y) = RU{+o0} is said to be a backward convex coupling (resp., forward convex coupling),
if there exists a family of maps T, : C(Y) — USC(X) (resp., T, : C(X) — LSC(Y)) such
that:

If (u,v) € P(X) x P(Y), then

T(u,v) = sup { /Y o(y) duly) - /X Trg(x)du(x); g € C(V)ie I}, (43)

(resp.,
T (p,v) —Sup{/T+f ) dv(y /f )du(z); f € C(X),iel}, (44)

If (u,v) ¢ P(X) x P(Y), then T (u,v) + oo.

In other words,
T(:u‘v V) = sup 7;(“7 V)? (45)
el
where each T; is a linear transfer on P(X) x P(Y) induced by each T; (resp., T;"). Note
that we do not assume in general that each T, (resp., TZJF) is a Kantorovich operator.
Typical examples are p-powers (for p > 1) of a linear transfer, which will then be a convex
couplings in the same direction. More generally, for any convex increasing real function
v on RT and any linear backward (resp., forward) transfer, the map (7)) is a backward
(resp., forward) convex coupling. Actually, in this case, each of the associated 7; can be
taken to be a linear transfer.
Note that a convex coupling 7 of the form (45) only implies that for g € C(Y) (resp.,

feC(X)),
U(g)grel;fxﬁg(x)du(z) and  T7(f) <inf [, =T (= f)(y) dv(y). (46)

el
We therefore introduce the following stronger notion.

Definition 1.12. Say that 7 is a backward convex transfer (resp., forward convex transfer)
if for g € C(Y) (resp., f € C(X)),

Ti(g) = inf [ T, g(w) du(z)  (vesp., T (f) = inf [, =T (=) () dv(y)).  (47)
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Again, the Ts are not necessarily Kantorovich maps, i.e., they don’t correspond to Legendre
transforms of linear transfers 7s, however, the map g — in§ Jx T g(x) du(z) does in this
1€

case possess the properties of a Legendre transform. We give an example in Section 12 of
a convex coupling that is not a convex transfer.

Typical examples of convex backward transfers include generalized entropies of the fol-
lowing form, but as a function of both measures, i.e., including the reference measure,

d
T(p,v) = / a(ﬁ) du, if v << p and 400 otherwise, (48)
X

whenever « is a strictly convex lower semi-continuous superlinear real-valued function on
RT.
The Donsker-Varadhan information is defined as

EVIVD, it p=fr,V/feDE)

. (49)
00, otherwise,

Z(p,v) = {

where £ is a Dirichlet form with domain D(E) on L?(v). It is another example of a backward
completely convex transfer, since it can also be written as

T(u,v) = supf /X fdv —log | P || s2(: £ € C(X)}, (50)

where Ptf is an associated (Feynman-Kac) semi-group of operators on L?().
The important example of the logarithmic entropy

d
H(p,v) = /Xlog(dll;) dv, if v << p and 400 otherwise, (51)

is of course one of them, but it is much more as we now focus on a remarkable subset of
the class of convex transfers: the class of entropic transfers, defined as follows:

Definition 1.13. Let « (resp., 5) be a convex increasing (resp., concave increasing) real
function on R, and let 7 : P(X) x P(Y) — R U {+o0} be a proper (jointly) convex and
weak® lower semi-continuous functional. We say that

e T is a B-entropic backward transfer, if there exists a map T~ : C(Y) — USC(X) such
that for each € Di(T), the Legendre transform of 7, on M(Y") satisfies:

T:(9) =B ([x T g(x)du(z)) for any g € C(Y). (52)

e 7 is an a-entropic forward transfer, if there exists a map T : C(X) — LSC(Y') such
that for each v € Dy(T), the Legendre transform of 7, on M(X) satisfies:

T(f) = —a(fy TH (=) dv(y) forany f € C(X). (53)

So, if T is an a-entropic forward transfer on X x Y, then for any probability measures
(1, v) € D(T), we have

T(u.v) = sup {o < [ i) dv<y>> - [ t@ @i feceol 6
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while if 7 is a S-entropic backward transfer, then

7o) =sun { [ o) dV(y)—B< [ ot dﬂ(ﬂ?)) gecw)).  (55)

Again, the associated maps T~ and T are not necessarily Kantorovich maps, however, the
map g — 3 ([y T g(x)du(z)) and f — o ([ T f(x) dv(z)) inherit special (convexity and
lower semi-continuity) properties from the fact that they are Legendre transforms.

We observe in Section 12 that entropic transfers are completely convex transfers. A
typical example is of course the logarithmic entropy, since it can be written as

H(p,v) = sup /X £ dv — log( /X ef dp); f € C(X)), (56)

making it a log-entropic backward transfer. More examples of a-entropic forward transfers
and S-entropic backward transfers can be obtained by convolving entropic transfers with
linear transfers of the same direction.

In section 13, we show how the concepts of linear and convex transfers lead naturally
to more transparent proofs and vast extensions of many well known duality formulae for
transport-entropy inequalities, such as Maurey-type inequalities of the following type [50]:
Given linear transfers 7,72, entropic transfers Hi, Ho and a convex transfer F, find a
reference pair (p,v) € P(X1) x P(Xz) such that

Flor,02) <K MTi*Hi(or, p) + XoTa * Ha(oz,v)  for all (o1,02) € P(X1) x P(X2). (57)

This is then equivalent to the non-negativity of an expression of the form & x (=T) * &,
which could be obtained from the following dual formula:

E x (=F)*x & (u,v) =inf inf EfoF fd
! ( ) 2(’u V) %Iellfegl(xzs){al( X3 L Zf u)+a2(

B () dw}, (58)

X2

where F is a convex backward transfer on Y; x Y3 with Kantorovich family (F; )icr, &1
(resp., &) is a forward «j-transfer on Y; x X (resp., a forward ao-transfer on Y5 x X5)
with Kantorovich operator E; (resp., E5).

2 First examples of linear mass transfers

The class of linear transfers is quite large and ubiquitous in analysis.

2.1 Convex energies on Wasserstein space are linear transfers
The class of linear transfers is a natural extension of the convex energies on Wasserstein

space.

Example 2.1: Convex energies
If I:P(Y)— Ris a bounded below convex weak*-lower semi-continuous functions on
P(Y). One can then associate a backward linear transfer

T(p,v)=1I(v) forall (u,v)e P(X)xPY), (59)
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in such a way that the corresponding Kantorovich map is 7~ : C(Y) - R C C(X) is
T~ f(x) =I*(f) for every x € X.

For example, if I is the linear functional I(v) = fy ), where V is a lower
semi-continuous potential on Y, then for every x E X,

T~ f(z) = sup(f(y) — V(v))-

yey

If I is the relative entropy with respect to Lebesgue measure, that is I(v) = fY log dV dy
when v is absolutely continuous with respect to Lebesgue measure and +o0o otherwise, then
it induces a linear transfer with backward Kantorovich map being for all x,

T f(z) = log/Y e dy.

The same holds for the variance functional I(v) := —var(v) :=| [,y dv|* — [, [y|* dv(y),
where the associated Kantorovich map is given by

T~ f(z) = sup{f + q(z) — |2[%; 2 € Y},

where ¢ is the quadratic function ¢(z) = $|z|? and § is the concave envelope of the function
g. See (5.1) below.

2.2 Mass transfers with positively homogenous Kantorovich operators

To any Markov operator, i.e., bounded linear positive operator T': C(Y) — C(X) such that
T1 =1, one can associate a backward linear transfer in the following way:

0 if T*(p) =v

Tr(p,v) = { +00 otherwise, o

where T% : M(X) — M(Y) is the adjoint operator. It is then easy to see that 7= = T is
the corresponding backward Kantorovich map. If now 7, = T%(d,), then one can easily see
that T~ f(z) = [, f(y)d7m,(y) and that

Tr(p,v) =0 if and only if  v(B) = [ m,(B) du(x) for any Borel B C Y.

Conversely, any probability measure m on X X Y induces a forward and backward linear
transfer in the following way:

~J O if u =m and v = ms.
e v) = { +o0 otherwise, (61)
where 71 (resp., m2) is the first (resp., second) marginal of 7. In this case,
= [ fants) and T ) = [y S ). (62)

where (7;), (resp., (my)y) is the disintegration of = with respect to m1 (resp., m2). Note
however, that we don’t necessarily have here that z — m, is weak*-continuous, that is T
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maps L!(Y, 7)) — LY(X,m) and not necessarily C(Y) to C(X).

Example 2.2: The prescribed push-forward transfer
If o is a continuous map from X to Y, then

0 if opp=v
400 otherwise,

,(u) = {
is a backward linear transfer with Kantorovich operator given by T~ f = foo.

The identity transfer corresponds to when X = Y and o(z) = x, in which case the
corresponding Kantorovich operators are the identity map, that is T7f =T~ f = f.

Example 2.3: The prescribed Balayage transfer

Given a convex cone of continuous functions A C C(X), where X is a compact space, one
can define an order relation between probability measures u, v on X, called the A-balayage,
in the following way.

p=<av ifandonlyif [y @du < [y @dv forall ¢ in A

Suppose now that 7' : C'(X) — C(X) is a Markov operator such that 6, <4 7 = T"(d)
for all z € X, we will then call it — as well as its associated transfer 7 — an A-dilation.
Similarly, a probability measure 7 on X x X is an A-dilation if §, <4 7, where (7), is
the disintegration of m with respect to its first marginal 71. To each A-dilation 7, one can
define a backward linear transfer as above.

Example 2.4: The prescribed Skorokhod transfer

Writing Z ~ p if Z is a random variable with distribution p, and letting (B;); denote
Brownian motion, and S the corresponding class of —possibly randomized— stopping times.
For a fixed 7 € S, one can associate a backward linear transfer in the following way:

Tr(p,v) =

{0 if Bg ~ p and B; ~ v. (64)

400 otherwise.

Its backward Kantorovich operator is then T~ f(x) = E*[f(B;)], where the expectation is
with respect to Brownian motion satisfying By = x.

2.3 Optimal linear transfers with zero cost

Let C be a class of positive bounded linear operators 7' from C(Y) — C(X) such that
T1 = 1. We can then consider the following correlation,

|0 if there exists T' € C with T*(p) = v
Telpv) = { +o0o  otherwise. (65)
In other words,
Te(p,v) = inf{Tr(p,v); T € C}. (66)

We now give a few interesting examples, where 7¢ is again a linear mass transfer.
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Example 2.5: The null transfer

This is simply the map N (u,v) = 0 for all probability measures 4 on X and v on Y.
It is easy to see that it is both a backward and forward linear transfer with Kantorovich
operators,

T-f =supyey f(y) and T =infrex (o). (67)
Note that

N(p,v) = mf{To(p,v);0 € C(X;Y)}
= inf{7;(p,v); 7 is a transfer plan on X x Y’}
= inf{Tr(p,v);T € C(Y.X), T positive and T'1 = 1},

where Z, and Z, are the push-forward transfers defined in Example 2.2. This is a particular
case, i.e., when the cost is trivial, of a relaxation result of Kantorovich (e.g., see Villani [64]).

Example 3.6: The Balayage transfer
Let A be a proper closed convex cone in C'(X), and define now the balayage transfer B

on P(X) x P(X) via

0 if p<4qv

+o00 otherwise. (68)

B ) = {

A generalized version of a Theorem of Strassen [60] yields the following relations:

Proposition 2.1. Assume the cone A separates the points of X and that it is stable un-
der finite suprema. Then, for any two probability measures u,v on X, the following are
equivalent:

1. p=<yqv.
2. There exists an A-dilation m on X x X such that p = m and v = ms.
From this follows that
B(p,v) = inf{B;(u,v);w is an A-dilation}. (69)

Moreover, a generalization of Choquet theory developed by Mokobodoski and others [53]
yields that for every p € P(X), we have

sup{/dea;u<A0}=/deu,

where

f(z) =inf{g(zx);g € —A, g > fon X} = sup{/X fdo; ex <4 0}

It follows that Bj,(f) = Jx f dp, which means that B is a backward linear transfer whose

Kantorovich operator is T~ f = f.
B is also a forward linear transfer with a forward Kantorovich operator is TV f = f,
where

f(a:) =sup{h(z);h e A, h < fon X} = inf{/ fdo; ez <4 0}
X

18



A typical example is when X is a convex compact space in a locally convex topological
vector space and A is the cone of continuous convex functions. In this case, T~ f = f
(resp., Ttf = f) is the concave (resp., convex) envelope of f, and which was the
context of the original Choquet theory.

e If X is a bounded subset of a normed space (E, | - ||), then A can be taken to be the
cone of all norm-Lipschitz convex functions.

e If X is an interval of the real line, then one can consider A to be the cone of increasing
functions.

e If X is a pseudo-convex domain of C", then one can take A to be the cone of Lipschitz
plurisubharmonic functions (see [30]). In this case, if ¢ is a Lipschitz function, then
the Lipschitz plurisubharmonic envelope of ¢, i.e., the largest Lipschitz PSH function
below ¢ is given by the formula

27
mf{/ ey — P C — X polynonial with P(0) = x}.

Note that ¢ = —), where 1) = —p.

Example 2.7: The Skorokhod transfer
Again, letting S be the class of —possibly randomized— Brownian stopping times, and

define
0 if By ~ u and B, ~ v for some 7 € S,

+o00 otherwise. (70)

s ={

The following is a classical result of Skorokhod. See, for example [32] for a proof in higher
dimension.

Proposition 2.2. Let A be the cone of Lipschitz subharmonic functions on a domain ) in
R™. Then, the following are equivalent for two probability measures p and v on Q.

1. p<av (i.e, g and v are in subharmonic order).
2. There exists a stopping time T € S such that By ~ u and B, ~ v.

This means that SK is a backward linear transfer with Kantorovich operator given by
T~ f = fes, which is the smallest Lipschitz superharmonic function above f. This can
also be written as T~ f = Jy, where Jy(x) is a viscosity solution for the heat variational
inequality,

max {f(z) — J(z),AJ(x)} = 0. (71)

Another representation for Jy is given by the following dynamic programming principle,

Ty(a) = sup? | £(B;)|. (72)

19



2.4 Mass transfers minimizing a transport cost between two points

The examples in this subsection correspond to cost minimizing transfers, where a cost ¢(x, y)
of moving state x to y is given.

Example 2.8: Monge-Kantorovich transfers

Any proper, bounded below, function ¢ on X X Y determines a backward and forward
linear transfer. This is Monge-Kantorovich theory of optimal transport. One associates
the map 7. on P(X) x P(Y) to be the optimal mass transport between two probability
measures 4 on X and v on Y, that is

Te(p, v) == inf { . c(z,y))dmm e K(p,v)}, (73)

where K(u, ) is the set of probability measures 7 on X x Y whose marginal on X (resp.
on Y) is u (resp., v) (i.e., the transport plans). Monge-Kantorovich theory readily yields
that 7. is a linear transfer. Indeed, if we define the operators

TS f(y) = inf{c(z,y) + f(2)} and T g(z) = 225{9(3/) —c(z,y)}, (74)

for any f € C(X) (resp., g € C(Y)), then Monge-Kantorovich duality yields that for any
probability measures ;1 on X and v on Y, we have

To(uy) = sup{/T+f ) duly /f ) du(z); f € C(X)}
= sw{ [ savty) - /X T, g(w) du(w); g € C(V)}.

This means that the Legendre transform (7} =[x T g )d,u,( ) and T . is the corre-
sponding backward Kantorovich operator. Slmllarly, (7. =— [, T y)dv(y) on

C(X) and T is the corresponding forward Kantorovich operator See for example Villani
[64].

Example 2.9: The trivial Kantorovich transfer
Any pair of functions ¢; € USC(X), ca € LSC(Y') defines trivially a linear transfer via

T(,u,y):/chl/—/ c1 dp.
Y X

The Kantorovich operators are then TV f = co + inf(f — ¢1) and T~ g = ¢1 + sup(g — c2).

Example 2.10: The Kantorovich-Rubinstein transport
If d: X x X — R is a lower semi-continuous metric on X, then

T (1, v) = [[v — pl|1;p := sup {/ ud(v — p); u measurable, |lul|rip < 1} (75)
X

% The corresponding forward Kan-

torovich operator is then the Lipschitz regularization T f(x) = inf{ f(y) + d(y,z);y € X},

is a linear transfer, where here ||ul|Lip := sup,,
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while T~ f(z) = sup{f(y) — d(z,y);y € X}. Note that TT o T~ f =T~ f.

Example 2.11: The Brenier-Wasserstein distance [15]

We mention this important example even though it is not in a compact setting. If
c(z,y) = (x,y) on R? x RY, and p, v are two probability measures of compact support on
R?, then

WQ(M?”):inf{ <x,y)d7r;7r€l€(,u,y)}.
R4 xRd
Here, the Kantorovich operators are

T f(2)=—f"(-2) and T g(y) = (-9)*(-v), (76)

where f* is the convex Legendre transform of f.

Example 2.12: Optimal transport for a cost given by a generating function
(Bernard-Buffoni [6])

This important example links the Kantorovich backward and forward operators with the
forward and backward Hopf-Lax operators that solve first order Hamilton-Jacobi equations.
Indeed, on a given compact manifold M, consider the cost:

g mf{/ (1A, 4(8) dtsy € C([0,1), M);4(0) = y,y(1) =2}, (77)

where [0,1] is a fixed time interval, and L : TM — RU {400} is a given Tonelli Lagrangian
that is convex in the second variable of the tangent bundle TM. If now u and v are two
probability measures on M, then

Ti(wv) =it { | cty.x)dmin € Knv))
X

is a linear transfer with forward Kantorovich operator given by T} f(z) = Vy(1,z), where
V¢(t, x) being the value functional

¢
Vi(t,@) = inf { £(+(0)) + /0 L(5,7(s),4(s) ds;y € CH[0,1), M)sy(t) =} (78)
Note that V} is —at least formally— a solution for the Hamilton-Jacobi equation

{ oV + H(t,z,V,V) = 0on[0,1] x M,

Similarly, the backward Kantorovich potential is given by T} g(y) = Wy(0,y), Wy(t, y) being
the value functional

1
Wy(t,y) = sup {g(+(1)) - / L(s,y(s),3(s) dsiy € C1([0,1), M):v(®) =}, (80)

(79)

which is a solution for the backward Hamilton-Jacobi equation

oW+ H(t,xz,V,W) = 0onl0,1] x M,
{ W(ly) = g(y). (B1)
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3 Envelopes and representation of Linear transfers

The following relates mass transfers with the optimal weak transports of Gozlan et al. [40].

3.1 Representation of linear transfers as weak transports

Theorem 3.1. Let T : M(X) x M(Y) — RU {400} be a functional such that {6,;x €
X} C Di(T). Then, the following are equivalent:

1. T is a backward linear transfer.

2. There is a map T : C(Y) — USC(X), such that for each pn € Di(T), Ty is convex
lower semi-continuous on P(Y) and

Ti(9) = [x Tg(x)du(x)  for any g € C(Y). (82)

3. There exists a bounded below lower semi-continuous function ¢ : X x P(Y) - RU
{+o0} with o — ¢(x,0) convex such that for any pair (u,v) € P(X) x P(Y),

T (p,v) = { if(f;){fx c(x,my) dp(x);me K(p,v)}, iégéfwfsz(X) x P(Y), (83)

where (T3)y is the disintegration of m with respect to p.

The proof of this theorem will be split in Propositions 3.2, 3.3 and 3.4, where we can
provide more details about the needed conditions. The first establishes the easy equivalence
between (1) and (2).

Proposition 3.2. 1) If T is a backward linear transfer with Kantorovich operator T, then
T:i(9) = [x Tg(x) du(z)  for any g € C(Y). (84)

2) Conversely, if T satisfies (2) in the above Theorem, then T is a backward linear transfer
and T is a Kantorovich operator.

Proof: 1) Since

[ osup{ [y 9dv— [T gdu; g€ C(Y)} if p,veP(X)xPY),
T(p,v) = { +00 v X otherwise. (85)

we have that 7, > I}, , where I';, is the convex lower semi-continuous function on (Y)

defined by T, (9) = [ Tg(x) du(x) since T is a Kantorovich operator. Moreover, T, = I'% .
on the probability measures on Y. If now v is a positive measure with A := v(Y") > 1, then

It (v) = sup{ /Y o(y) dv(y) — /X Tg(x) du(z); g € C(Y)}
> n\ —/ T(n)du

=nA—-1)— /XT(O) du,
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where we have used property (3) to say that T'(n) = n + T(0). Hence I'} (v) = +o0.
A similar reasoning applies to when A < 1, and it follows that 7, = F* and therefore
(Tw)* =17, =T, since the latter is convex and lower semi-continuous on C (Y).

2) Conversely, it is clear that since 7, is convex lower semi-continuous, we have for any

w € Di(T),
T (s v) =Tu(v) = (T,)" (v) :sup{/ygdv—/XT_gdu; geCY)}.

Moreover, T'g(z) = (7s,)*(g), which easily implies that 7" is a Kantorovich operator.

3.2 Linear transfers and Kantorovich operators as envelopes

We now associate to any convex lower semi-continuous functional on P(X) x P(Y) a back-
ward and a forward linear transfer. This is closely related to the work of Gozlan et al. [40],
who introduced the notion of weak transport. These are cost minimizing transport plans,
where cost functions between two points are replaced by generalized costs ¢ on X x P(Y),
where 0 — ¢(x,0) is convex and lower semi-continuous. We now show that this notion is
essentially equivalent to the notion of backward linear transfer, at least in the case where
Dirac measures belong to the first partial effective domain of the map 7T, that is when
{0z;2 € X} C D1(T). We shall prove the following.

Proposition 3.3. Letc: X xP(Y) — RU{+00} be a bounded below, lower semi-continuous
function such that o — c(x,0) is convex, and define for any pair (u,v) € M(X) x M(Y),
the functional

Tl v) = { infr{ [y c(z, 7)) du(z);m € K(p,v)}, if p,v € P(X) x P(Y), (6)

+00 otherwise.

where () 1S the disintegration of m with respect to p.
Then, T. is a backward linear transfer with Kantorovich operator

T g(x) = sup{ /Y o(y) do(y) — c(z,0);0 € P(Y)}. (87)

Proof: We first compute the Legendre transform of the functional (7¢),. Since 7. is 400
outside of the probability measures, we can write

(Tate) = supl | gdv=Te(uv)iv € PY))
= sup{/ /X z,my)dp(z);v e P(Y),me K(p,v)}
~ s [, / ou)dme(y) dla) = [ clom,) dua)sm € K(pv)
< sl | [ oo dua) = [ cla.0)duta)io € PV}

X

s A sup 4] 9(y)doly) = c(z, o) du}}
X o€eP(Y)

— [ T gwduo).
X
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On the other hand, use your favorite selection theorem to find a measurable selection x — 7,
from X to P(Y) such that T, g(x) = [, g(y)d7.(y) — c(x,7,) for every x € X. Tt follows
that

(7e)u(9)

smﬂ/gdw—%w»muePOﬁ}

= sup{/ gdy—/ c(x,mp)dp(z); ve P(Y),m e K(u,v)}.

Let 7(A) = [y Tz(A) du(x). Then, 7(A x B) = [, To(B) du belongs to K(u, 7), hence

/g@—/d%mMM)

_ / / Y)d7.(y) du(x) — | c(x, 7y)dp(z)

X

- / / Y)d7,(y) — clx, 7p) } du(x)
_ /XTcg(l’)du(@’%

hence (72);(9) = [x To g(x)dp(x).
We now show that 7, is convex. For that let v = Avq + (1 — A\)rp and find (7)), and
(72); in P(Y) such that

[x mhdp(z) =v;  and [y ez, 7h) du(z) < Te(p,vs) + € for i = 1,2.

It is clear that the plan defined by m(A x B) := [,(Ama(B) + (1 — \)72(B))du(x) belongs
to K(u, v) and therefore, using the convexity of ¢ in the second variable, we have

T < [ elwm) duta) < [ Nela,mdydu(o) + [ (1= Ne(w, ) dua)
X X X

< ATe(p,v1) + (1= AN)Te(p, v2) + €.
It follows that for every v € P(Y),

ﬁﬂ0=ﬁmf=wﬁ£j@ﬂv—éjtﬂmf€CWH-

S
= *
S
WV

Moreover, it is easy to see that T, satisfies properties a), b) and c¢) of a Kantorovich opera-
tor. We can therefore conclude that T is a backward linear transfer. This establishes that
3) implies 1) in Theorem 3.1. 0

That (1) implies 3) in Theorem 3.1 will follow from the following general result.

Proposition 3.4. Let T : P(X) x P(Y) — R U {400} be a bounded below lower semi-
continuous functional that is convez in each of the variables such that {d,;x € X} C D1(T),
and consider T to be the backward linear transfer associated to c(x,0) = T (0z,0) by the
previous proposition, and let

= / T (x,v)du(x). (88)
X
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1. T is the smallest backward linear transfer greater than T .
2. T is the largest backward linear transfer smaller than T.

Proof: Note that
T=g(a) = sup{ | aly) doty) = T(5e.0)io € PV, (59)
and therefore for each x € X, we have for each g € C(Y)
T g(z) = (Ts.)"(9) = (T5,)"(9)- (90)
To show that 7 < T, write for an arbitrary p € P(X),
T"(0) = [ T-o(w)duta)

- /X sup{ | gdo — T (z,0);0 € P(Y)}du(zx)

o Y
> sup( [ gdo— [ T(@.o)u(eyr e PV}
= sup{/ygda —T(p,0);0 € P(Y)}
= (T,)*(9),

hence T < T since bo‘Eh of them are convex in the second variable.
Note that T (05,v) = T (0z,v), hence if S < T and S is a backward linear transfer with S~
as a Kantorovich operator, then

S™g(x) = (85,)"(9) = (75,)"(9) = (T5,(9) = T g(x),

and therefore S < T. It follows that 7 is the greatest backward linear transfer smaller than
F

To show that 7 < 7, note that since 7 is jointly convex and lower semi-continuous,
then for each f € C(Y), the functional

p— (T)*(f) == sup{/y fdo —T(n,0);0 € P(Y)}
is upper semi-continuous and concave. It follows from Jensen’s inequality that
T (N> [ (T (Dinte) = [ T~ f@)auta),

hence

T(,v) = (T,)™ (v) < sup] /Y fv - /X T fdpi; f € C(V)} = T(,0).

If now S > T, then S > T, and if S is a linear transfer, then S = S > T, and therefore T
is the smallest backward linear transfer greater than 7. 0

25



Remark 3.5. A similar construction can be done to associate a forward linear transfer 7 4
to a given functional 7 on P(X) x P(Y') provided {0,;y € Y} C Da(T). Note that one can
then define T as a backward (resp., forward) linear transfer if 7 = T _ (resp., if T = T 4).

Remark 3.6. Any lower continuous convex functional 7 on P(X) x P(Y) that is finite
on the set of Dirac measures gives rise to a backward and forward optimal mass transport
Te(p, v) associated to the cost function c(z,y) = T (04, dy). It is then easy to see that

T5:(9) = sup{ [y gdv — T (6z,v); v € P(Y)} = sup{g(y) — c(@,y);y € Y} = T g(),
hence
Telpv) = T () = T, v). (91)
However, the inequality (91) is often strict. Moreover, transfers need not be defined on
Dirac measures, a prevalent situation in stochastic transport problems.

Dually, we give the following characterization of Kantorovich operators, which in partic-
ular, yields a uniqueness statement for the duality between them and linear transfers.

Theorem 3.7. Let T : C(Y) — USC(X) be a map such that for every x € X,

inf  sup gdv —Tg(z)} < 4o0. 92
veP(Y) geC(Y) { fY } (92)

Then, there exists a Kantorovich operator T such that

1. T is the largest Kantorovich operator smaller than T on C(Y).

2. T can be written as

Tfa) = swp ot ([ (7=g)do+To(w). (93)

ceP(Y) QEC(Y
PRrROOF. Consider the functional on M(X) x M(Y) given by

[ osup{ [y gdv— [ Tgdu; g€ C(Y)} if p,v e P(X)x P(Y),
T(p,v) = { +00 otherwise. (99)

Note that 7 is bounded below, convex, lower semi-continuous functional and condition
(92) means that {0,;x € X} C D1(T). Hence Proposition 3.3 applies to yield a backward
linear transfer 7 with a corresponding backward Kantorovich operator defined as T'f(z) =
sup{ [ fdo — T (0z,0)}. Note now that

(T5,)"f =Tf(x)
= sgp{/ fdo — T (65,0)}

:sgpirglf{/fda—/gda%—Tg(x)}

< ir;f sgp{/ fdo — /gda +Tg(x)}
= inf{sup(f — g) + Ty(2)}
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If now S is a Kantorovich map such that S < T', then
Tf(w) =supd [ fdo — T(6,.)
= supir;f{/ fdo — /gda +Tg(x)}
> supir;f{/ fdo — /gda + Sg(z)}

= irglfsgp{/ fdo — /gda + Sg(z)}
= ir;f{sup(f —g)+ Sg(x)}

= ir;f{S[sup(f —g) +gl(z)}

> Sf(x).

where the last three steps used the fact that S satisfies properties (a), (b) and (c) of a
Kantorovich operator.

3.3 Powers and recessions of linear transfers

Proposition 3.8. Let T be a convex coupling on P(X) x P(Y) of the form

T (p,v) := sup T;(p, ) (95)

el
where for each i € I, Ti(u,v) = sup {[y fdv — [ Tifdu} for some map T; : C(Y) —
fecy)

USC(X). Assume {60 € X} C D1(T) and consider the envelope T of T and the corre-
sponding Kantorvich operator T. Then,

1. T is given by the formula

Ti@ = s il | ] (=01 do +int Tig(a)). (96)

and therefore satsifies Tf < inf; T;f on C(Y).

2. If each T; is a Kantorovich operator, then Tf = inf; T;f if and only if f — inf T; f(x)

1S CONvex .

PRrROOF. Note first that

T (u,v) = sup Ti(p, v) = sup sup { fdv—/ T; fdu}
i i fec(y) JYy X

—sup( | fdv—int [ Tifdpsf € C¥))
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and (7,)*(f) < inf [ T;fdu. Moreover, f — (7,)*(f) is the convex envelope of f —
K3

inf f  Lifdp. If now T is the Kantorovich operator for the envelope 7, then

1

Tf(x)= sup inf {/ f—g d0+1nfo}
oeP(y) 9€C(Y)

and consequently, T'f(z) = (T5,)*(f) < inf; T; f(z).

If f — inf T} f(x) is convex and lower semi-continuous for any = € X, then the envelope

7

property of f — T f(x) yield that T'f(z) = inf; T; f (x). Note that if each T is a Kantorovich
operator, then f — inf; T;f satisfies properties (a) and (c) of a Kantorovich operator but
not necessarily the convexity assumption (b).

Corollary 3.9. Let T be a backward linear transfer with Kantorovich operator T'~.

1. If a: RT — R is a convex increasing function on R, then a(T) is a backward convex
transfer, whose envelope a(T) has a Kantorovich operator equal to

5y o), (97)

T = inf (<7
where a®(t) = sup{ts — a(s);s > 0}.

2. In particular, if We(p, v) := inf { Jxewy €@, y)) dm;m e K(p, v } is the Monge-Kantorovich
transport associated to a cost c, and p > 1, then

W) < W(,0) = int{ | WE(Bime) d(a)im € (1, 0)).
Proof: It suffices to note that «(t) = sup{ts — a®(s);s > 0}, hence
o(T(v) = sup{s/yfdy—s/Xdeﬂ—a@(s); seR*,feO(Y))
= Sup{/yhdl/ - s/XT‘(h)du a®(s); s e RY, he C(Y)}.

S

Therefore (7)) is a convex coupling and its envelope «(7) has a Kantorovich operator

5y a5, (98)

— e _
T3 f < inf{sT(
Note however that for each s > 0, T f := sT*(h) + a®(s) is a backward Kantorovich

operator. Moreover, the function (s, f) — sT'~ ( )+ a®(s) is jointly convex on RT x C(Y),
hence the infimum in s is convex in f and therefore we have equality in (97).

Corollary 3.10. Let T be a backward linear transfer with Kantorovich operator T—. Then,
the functional

[0 if T(p,v) < 400
Tln,v) = { +o0 otherwise, (99)
18 a backward linear transfer with Kantorovich operator equal to
- T (Af)(z)
T =1 —_— 1
r flz)= lim —— (100)
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Proof: Given any bounded below, lower semi-continuous and convex functional 7 : P(X) x
P(Y) — RU {400} such that {0,;2 € X} C D(T), we can consider the Kantorovich
operator that generates its backward linear transfer envelope 7T, that is

Tg(z) = sup{ /Y 9(y) do(y) — T(6an0);0 € P(Y)), (101)

and its corresponding recession function

oy~ i T A)(2)
T ) = i S

It is then clear that T, is a Kantorovich operator and
T f(z) = sup{ /Y fdoio € P(Y), T(80,0) < +o0}. (102)
The corresponding linear transfer
Ts.0) = sun{ [ o) dvty) = [ T gla) duta)s g € COV)}. (103)

Since T~ is positively homogenous, its associated transfer 7, can only take the values 0 and
+o00. It is also clear that 7, is the envelope of 7, and therefore 7; < ’7_} = 7,.. We now
show that if 7 is a linear transfer, then 7, < 7. Indeed, assume that T¢(u,v) = 0, then
T (1, v) < +00, hence for every f € C(X) we have

Jornduze [ fav-Tu)

hence by dividing by ¢ and letting ¢ — oo, we get from the monotone convergence theorem
that [ T0fdp > [y fdv and hence Ty (u,v) < 0= Ts(p,v).

Remark 3.11. Note that the above shows that for a general backward linear transfer 7
with Kantorovich operator 7~ and Recession operator 7,~, we have

T(u,v) < +oo ifandonly if [ T.fdu > [y fdv for every f e C(Y). (104)

The latter condition can be seen as a generalized order condition between p and v that
extends the notion of convex order. Indeed, if T is the balayage transfer, then T~ f =
- f = f, which is the concave envelope of f, and the condition does coincide with the
convex order between measures.

4 Extension of Kantorovich operators

In order to study the ergodic properties of a Kantorovich operator T': C(X) — USC(X),
one needs to iterate it and therefore it is necessary to extend it to an operator T :
USC(X) - USC(X) and eventually to T': USC,(X) — USCy(X) with the same proper-
ties (a), (b), (c) of a Kantorovich operator.
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In order to define such an extension, we assume that 7" is proper so that we can associate
a linear transfer 7 on P(X) x P(Y) in such a way that

TF(z) = sup{ /Y fdv—T(80,v); v € P(Y)} for every f € C(Y). (105)

We shall then extend 7" in such a way that (105) holds for every f € USC,(Y). Properties
(a), (b) and (c) will then follow.

4.1 Extension of Kantorovich operators from C(Y) to USC,(Y)

Theorem 4.1. Let T be a backward linear transfer such that {0,;x € X} C D1(T), and
let T:C(Y)—USCy(X) be the associated Kantorovich operator.

1. For f e USC(Y), define T f(x) := inf{Tg(z); g € C(Y), g > f}, then
TAf(x) = sup{fy fdv =T (0z,v); v e P(Y)}, (106)

and T maps USC(Y) to USCy(X).
Moreover, if T : C(Y) = USC(X), then T maps USC(Y) to USC(X).

2. For f e USC,(Y), define C/jf =sup{T g; g€ USC(Y),g < f}, then

Tf(e) = supl | fv=T(be0) v € PV, (107)

and T maps USCy(Y) to USCy(X).

PRrROOF. 1) It is clear that for any g € C(Y), g > f,
sup{/ fdo =T (0g,0); 0 € P(Y)} < Sup{/ gdo — T (0z,0); 0 € P(Y)} =Tg(x).
Y Y

Therefore sup{ [, fdo — T (6z,0); 0 € P(Y)} < inf{Tg(z); g€ C(Y), 9> f} =T f(x).
On the other hand, let g, \, f be a decreasing sequence of continuous functions. Then,

T f(z) < Tgn(x) = Sup{/y gndo — T (0z,0); 0 € P(Y)} = /an doy, — T (0, 00),

for some probability measure o,. Consider an increasing subsequence ny, so that o, — 7.
Then for any j < k, T f(x) < [y gn,; don, — T (02, 0n,) where we have used the fact that
Iy < gn, whenever j < k. For this fixed j, we have that g,, € C(Y) and so [ g, doy,, —
J gn; A7 as k — oco. Hence we obtain

T f(z) < lim gn; dop,, — Hminf T(6, 0p,) < / gn; A6 — T (0x,0).
Y

k—oo Jy k—o0

Finally we take a limit as j — oo to obtain TAfE:L‘) < sup{ [y fdo—=T(0g,0); 0 € P(Y)}. It
follows that T f satisfies (106) and therefore 7' f € USC,. Note that T f is bounded above
since T' f(x) < supyey f(y) — m7, where m7 is a lower bounded for 7.
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If now T': C(Y) — USC(X), then T is in USC(X) by its definition.
2) For f € USC,(Y), we use the first part to write for any g € USC(Y), g < f,

sup{/ fdo—T(6z,0); 0 € P(Y)} > Tg(x)

and so it is greater than T:f(x) On the other hand, for an increasing g,, ,/ f, g, € USC(Y),

Tf(@) > Tgala) > [ gndo = T(6:,0), for any o € P(Y).

By the monotone convergence of g, to f, we may take the limit as n — oo in the above
inequality, and conclude

T f(z) > /fda — T (6z,0) for any o € P(Y),

whereby taking the supremum in o yields T:f(a:) > sup{[ fdo—T(0z,0); o € P(Y)}, and
we are done showing that 7' maps USC,(Y) to USC,(X), while satisfying (107).

The following continuity properties of 7" along monotone sequences of USC(Y) and
USC,(Y) will be crucial for Sections 8 and 9.

Lemma 4.2. Let T be a backward linear transfer as above, and let T' denote its correspond-
ing Kantorovich operator, extended to USCy(Y).

1. If f, € USC(Y), f € USC,(Y) with fo \, f, then limpy o0 Tfy = Tf.
2. If fo € USCL(Y), f € USC,(Y) with fo A f, then limy oo Tfy = T}

PrOOF. 1) By monotonicity, Tf < liminf, T'f,. On the other hand let o, achieve the
supremum in the definition of T'f,(x), i.e.,

T fn(z) :/fn dop, — T (0g,00).

Extract an increasing subsequence ny, so that limsup,, T'f,, (z) = limy T f,,, (z) and o, — 7.
Then as before, we have T'fy, (z) < ffnj dop, — T (6z,0n,) for fixed j < k. As fp, €
USC(Y), it follows that limsup,, T fn(z) < [ fn, d6 — T (0z,7). Then we let j — oo and
use monotone convergence.

2) Again, by monotoncity, T'f > limsup, T f,(z). On the other hand, T'f,,(z) > [ f,, do—
T (65, 0) for all o. Hence by monotone convergence, liminf, T'f,(z) > [ fdo — T (5, 0) for
all o. Taking the supremum over o yields liminf,, T'f,(z) > T f(x).

Remark 4.3. We note that In general, the operator T cannot be extended to the class
Cso5(Y) = USCy5(Y), and the continuity property of T in item (1) of the above lemma
cannot be extended to sequence f, € USCy(Y).

Corollary 4.4. Let T : P(X) x P(Y) = RU {400} be a backward linear transfer such that
{032 € X} C Di(T). Then,
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1. For any (p,v) € P(X) x P(Y), we have
T(uw) =sun{ [ o) dv(s) = [ T g(@)duw); g € LSCY)}

T~ g(x) du(x); g € USC(Y)}

I
0
e
e}
e
—
=
S
QL
X
S
|
TS

T~ g(x) du(z); g € USCH(Y)}.
2. The Legendre transform formula (82) for T, which holds for continuous functions on

Y, also holds for g € USC,(Y'), that is

T (g9) ==sup{ [y gdo —T(p.0);0 € P(Y)} = [T gdu for all g € USCq( () |
108

PROOF. It is clear that T (p,v) is smaller than all the expressions on its right. It is also
clear that it suffices to show that

0z s { [ o)dty) = [ T gla)duta)s g € USC,(V)).
For that recall from Section 2 that for any g € USC,(Y) we have for every z € X,
— sup{ / T(z,0);0 € P(Y)}. (109)

Take now any ™ € K(u, v) and its disintegration (7, ), in such a way that v(A) = [, m.(A4) du(z),
then

T g(z) > /Y 9(y) dma(y) — T(z, ),

hence,
9(y) dv(y) — T g(z 9(y y) dme(y) dp(z) + [ T(x,m2) du(x)
Y Y X
T(x,my)
X
It follows from Theorem 3.1 that
[ vty = [ o) duta) < T, (110)

and (1) is done.

For (2) note first that (110) yields that [\ T~ g(z)du(z) = 7, (g). On the other hand,
assume g € USC(Y) and use (109) to find a measurable selection x — 7, from X to P(Y)
such that

Tg(z) = /Y o(y)d7a(y) — c(a,72) for every @ € X,
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and let 0(A) = [y T2(A) dp(z), then

[ s@ne) = [ [ stan)ants) - [ eton) duto)
< /Y 9(y) doly) — T(u,0),

hence [ T~ g(x)du(z) < T,;(g). Note now that (108) carries through increasing limits,
hence it also holds for g € USC,(Y).

4.2 Conjugate functions for bi-directional transfers

Suppose now that 7 is both a backward and forward transfer with Kantorovich operators
T~ and T. We have the following notion motivated by the theory of mass transport.

Definition 4.5. Say that a pair (f1, f2) € USC(Y') x LSC(X) are conjugate if:
T f1 = fQ and T+f2 = f1. (111)

The following proposition shows in particular that for any function g € C(Y'), the couple
(T~g,T* oT™g) form a conjugate pair.

Proposition 4.6. Suppose T : P(X) x P(Y) = RU{+o0} is both a forward and backward
linear transfer, and that {(65,0y); (z,y) € X x Y} C D(T). Assume that T~ : C(Y) —
USC(X) and that Tt : C(X) — LSC(Y), then for any g € C(Y) (resp.,f € C(X))

T oT g(y) = g(y) fory €Y, T~ oT* f(z) < f(x) forz e X, (112)

and
T-oTToT g=T"g and TToT oTTf=T"f. (113)

In particular,

T (u,v)

su{ [ T*oTgdvty) - [ Tgduige ) (a1
= sw{ [ TH@ ) - [ T oT fdute) FeC)). (119)

Proof: Note that USC(X) C LSCs(X), hence for v € P(Y),
/ TtoT gdv = —T)(-T g)
Y
— —supl~ [ Ti.(9)duta) ~ T(u )i € PX))
= int{ | T3, (0) dule) + T(u )i € PIX))

> mf{/ T5 (9) dp(z /gdu—/T5 ) dp; p € P(X)}

= / gdv.
Y

The last item follows from the above and the monotonicity property of the Kantorovich
operators.
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5 Linear transfers which are not mass transports

We now give examples of linear transfers, which do not fit in the framework of Monge-
Kantorovich theory.
5.1 Linear transfers associated to weak mass transports

Weak mass transportations also arise from the work of Marton, who extended the work of
Talagrand. The paper of Gozlan et al. [40] exhibit many examples of which we single out
the following.

Example 4.2: Marton transports are backward linear transfers (Marton [47, 48])
These are transports of the following type:

Tatw) =it { [ ([ awin)) dutein e e} 0

where v is a convex function on R and d : X xY — R is a lower semi-continuous functions.
Marton’s weak transfer correspond to (t) = t? and d(z, y) = | — y|, which in probabilistic
terms reduces to

To(p,v) = inf {EE[|X — Y| |Y]*; X ~ p,Y ~v}. (117)

This is a backward linear transfer with Kantorovich potential

1 1) =sw { [ s)do) <+ ([ dtenydo)) s o e P},
We now give applications to transfers that are mostly dependent on the barycenter of the
measures involved.

Proposition 5.1. Let T be a backward linear transfer on P(X) x P(Y'), where Y is convex
compact such that for some lower semi-continuous functional ¢ : X XY — R, we have

T(z,0) = c(:n,/ ydo(y)) forallz e X and o € P(Y),
1%

where [, ydo(y) denotes the barycenter of o. Then, for every f € C(Y),

T~ f(z) = sup{f(y) — c(z.y);y € Y},
where f is the concave envelope of f, i.e., the smallest concave usc function above f.

Proof: Note that z is the barycenter of a probability measure o if and only if §, <¢ o
where C is the cone of convex functions. Write now

T~ f() = sup{ /Y fdo — ez, /Y ydo(y));o € P(V))}

= supsup{ | fdo —c(z,y);0 € P(Y),0, <0}
z€Y

— sup{f(z) - clx,2)}.

zeY
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Example 4.3: A barycentric cost function (Gozlan et al. [40])
Consider the (weak) transport

T) =int { [ o= [ vamalauteym € K} (118)
Again, this is a backward linear transfer, with Kantorovich potential

T f(z) = sup{f(y) — lly — =[l;y € R"},

where f is the concave envelope of f.
Note that the same holds if one uses other cones for balayage, such as the cone of sub-
harmonic or plurisubharmonic functions.

Example 4.4: The variance functional
If the transfer is given by the variance functional

T(u,v) = 1) = —var(v) i= | [y avf = [ ol avty),
Y Y
then, by letting ¢ be the quadratic function ¢(y) = |y|?, we have
1 f(e) =sup( [ fdo | [ yaoP+ [ 1P dotwyio e PY))

=sup{L<f+q>da—|Lydo|2;aeP(Y)}
=S7(f +q) (=),

where S~ is the Kantorovich operator associated to the transfer S(u,v) = | [y dol?,
which only depends on the barycenter and therefore S~g = sup{g(z) — |2|%2 € Y}. It
follows that o
T~ f=sup{f +q(z) — |2/*;z € Y}
Cost minimizing mass transport with additional constraints give examples of one-directional

linear transfers. We single out the following:

Example 4.5: Martingale transports are backward linear transfers
Martingale transports are C-dilations where C is the cone of convex continuous functions
on R”. If ¢ : R? x RY — R is a continuous cost function, then define the weak cost as

z _ | Jracla,y)doly)  if 6. <o o,
e, o) = { +o0 if not. (119)

The corresponding martingale transport is then

Tar(p, v) = inf{ (x,my)d psm € K(p,v)}.
RIxR4

Equivalently, if u,v are two probability measures we then consider MT(u,v) to be the
subset of K(u, ) consisting of the martingale transport plans, that is the set of probabilities
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7 on R x R? with marginals 4 and v, such that for p-almost z € R?, the component 7,
of its disintegration (), with respect to p, i.e. dm(x,y) = dm,(y)du(x), has its barycenter
at z. As mentioned above,

MT(u,v) # 0 if and only if u <¢ v. (120)

One can also use the probabilistic notation, which amounts to minimize Ep ¢(X,Y") over all
martingales (X,Y) on a probability space (2, F, P) into R? x R? (i.e. E[Y|X] = X) with
laws X ~ pand Y ~ v (e, P(X € A) = pu(A) and P(Y € A) = v(A) for all Borel set
A in RY). Note that in this case, the disintegration of m can be written as the conditional
probability 7,(A) =PY € A|X = z.

The martingale transport can be written as

inf c(x,y)dn(z,y);m € MT(u,v if u<cv
Tar (s, v) = { +OifRdXRd )drte) ) if not. (121)

This s a backward linear transfer with a backward Kantorovich operator given by
Ty fx) = fc,x(x), where fc,x is the concave envelope of the function f., : y — f(y) — c(x,y).

See Henri-Labordere [42] and Ghoussoub-Kim-Lim [31] for higher dimensions.

Example 4.6: Schrodinger bridge (Gentil-Leonard-Ripani [29)])

Let M be a compact Riemannian manifold and fix some reference non-negative measure
R on path space Q@ = C([0,1],M). Let (X;); be a random process on M whose law is
R, and denote by Rp; the joint law of the initial position Xy and the final position X7,
that is Ro1 = (Xo, X1)xR. For example (see [29]), assume R is the reversible Kolmogorov
continuous Markov process associated with the generator %(A — VV - V) and the initial
measure m = e~V (*)dz for some function V.

For probability measures p and v on M, define

7-R(n (:ua V) = inf{/M H(”"fa ﬁw)dﬂ(x) ;T E K(ﬂa V)v dﬂ-(x’ y) = dﬂ(x)dﬁw(y)} (122)

where dRoi(z,y) = dm(z)dr{(y) is the disintegration of Rp; with respect to its initial
measure m. By Theorem ??, Tg,, is a backward linear transfer (corresponding to the weak
cost ¢(z,p) = H(r{,p)). Its Kantorovich operator is given by

T~ f(x) = log Epee/ ™) = log Sy (e7) (),

where (S) is the semi-group associated to R.

The transfer (122) is associated to the maximum entropy formulation of the Schrédinger
bridge problem in the following way: Define the entropic transportation cost between p and
v via the formula

dm

Sr(p,v) = inf{ log(

dmym e K(u,v)}. 123
[ el (1.} (123)

Then, under appropriate conditions on V' (e.g., if V' is uniformly convex), then

dm

Troy (1, v) = Sr(p, v) — /M log(d—’u) dp.
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Note that when V' = 0, the process is Brownian motion with Lebesgue measure as its initial

2
reversing measure, while when V(z) = %, R is the path measure associated with the

Ornstein-Uhlenbeck process with the Gaussian as its initial reversing measure.

5.2 One-sided transfers associated to stochastic mass transport

Let M be a manifold (compact manifold or R™) and consider a Lagrangian on phase space
L :TM — [0,00). Let (92, F,P) be a complete probability space with normal filtration
{Ft}t=0, and define Ajg, to be the set of continuous semi-martingales X : Q x [0,¢] — M
such that there exists a Borel measurable drift 3 : [0,t] x C([0,¢]) — R? for which

1. w+— B(s,w) is B(C(]0, s]))+-measurable for all s € [0,t], where B(C([0,s])) is the
Borel g-algbera of C|0, s].

2. W(s) := X(s) — X(0) — [; B(s")ds’ is a 0(X(s); 0 < s < t) M-valued Brownian
motion.

For each /3, we shall denote the corresponding X by X# in such a way that
dXP(t) = B(t)dt + dW (t). (124)

Example 4.7: Stochastic mass transport between two probability measures
Consider the following functional 7 : P(M) x P(M) — RU {+co} defined for any pair
of probability measures pg and @1 on M via the formula:

1
Tty 1) = inf{E [ L0656 s X(O) ~ o, X(1) ~ i, X eA[o,u}, (125)

This stochastic transport does not fit in the standard optimal mass transport theory since it
does not originate in the optimization according to a cost between two deterministic states.
However, it still enjoy a dual formulation (first proven in Mikami-Thieullin [52] for the space
RY) that permits it to be realised as a backward linear transfer. In fact, by introducing the
operator T} : C(M) — USC(M) via the formula

1) = sw {EFE@)X0) =a -5 [ L(X(s), B (s, X)) ds| X (0) = 1R

XE.A[OYt]
(126)
then the duality relation between 7 and T; can be readily detailed. Indeed, an adaptation
of the proofs of Mikami-Thieullin [52] yields the following.

Proposition 5.2. Under suitable conditions on L (for example if L(z,B8) = 3|8|?), the
following assertions hold:

1. T is a backward linear transfer on P(M) x P(M) with Kantorovich operator Ty. is
the unique viscosity solution of

%(t’ x) + %Amu(t, x) 4+ H(z,Vyu(t,x)) =0, (t,x) €[0,1)x M, (127)

with u(1,z) = f(x).
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2. In particular, for any pair of probability measures pog and py on M, we have

T(uoon) =sup [ u(ta)dpn(e) [ u(0,a)dpo(e)ult. ) solution of (127)).
M M
(128)
Example 4.8: Stochastic mass transport with fixed distribution at all time
Suppose now g € P(M) and p € P([0,1] x M). If the latter has Lebesgue measure

as a first marginal, then we can disintegrate it and write it as du = duy dt, where p; is a
probability measure on M. Consider the following functional on P(M) x P([0,1] x M),

T(po,v) = T(po, (1e)e>0)
= inf {IE/O L(XP(s),B(s))ds; X € Ajo,1), X () ~ pe Yt € [0, 1]} , (129)

if the first marginal of u is Lebesgue measure and +o0o otherwise.

Proposition 5.3. Under suitable conditions on L (for example if L(z,B8) = 3|8|?), the
following assertions hold:

1. T is a backward linear transfer on P(M) x P([0,1] x M) with corresponding Kan-
torovich operator T : C([0,1] x M) — C(M) defined for any f € C(]0,1] x M)
as ug(0,x), where uy is a bounded continuous viscosity solution of the following
Hamilton-Jacobi equation,

?;(t,x) + %Axu(t,x) + H(z,Vyu(t,z))+ f(t,z) =0, (t,z)€[0,1)x M, (130)

with uy(1,2) = 0.

2. In particular, for any probability measures pg € P(M) and v € P([0,1] x M), we have
1
T (po, 1) = sup{/ / f(t, x)d,ut(:c)dt—/ us(0,z)dpo; us solves (150)}.  (131)
0 JMm M

Example 4.9: The Arnold-Brenier variational principle for the incompressible
Euler equation

In [16, 17, 18], Brenier proposed several relaxed versions of the Arnold geodesic formula-
tion of the incompressible Euler equation. We describe the following model which, strictly
speaking is not stochastic, yet we include it in this section for comparison purposes.

For a smooth domain D in R consider the space

HYRY) = {¢ € L*([0,1],R?) such that & € L2([0, 1], R%)}

and denote by H} (D) the subset of H}(RY) consisting of those paths valued in D.
For any (s,t) € [0,1]?, we consider the projections ms; : C([0,1]; D) — D x D (resp.,
71 C(0,1]; D) — D) defined by myyf = (£(5), f(£) (resp., mof = £(1)).

For p € P(C([0,1]; D)), we denote by ps; := (mss)spt pre := (m)pp. Similarly, for
v € P(D x D), we denote by vy and vy its first (resp., second) marginal on D.

If X is the normalized Lebesgue measure on D, we consider the functional

inf{E, [} $1€1%dt; if pe =\, ¥t € [0,1] and pig = v

400 otherwise.

T(/‘?’/):{
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Proposition 5.4. The following assertions hold:

1. T is a backward linear transfer on P(C([0,1]; D)) x P(D x D) with corresponding
Kantorovich operator T : C([0,1] x D) — C(D x D) defined for any f € C([0,1] x D)

as
"1 1
Tf(e.y) =t { [ [GIER - f(6.60Mde¢ € HED), €0) =m0 =u). (132)
2. Ty(z,y) = uf(0,2,y), where us is a bounded continuous viscosity solution of the
Hamilton-Jacobi equation,

Ot )+ IVult, 2 y) P+ (1) =0, (ha,y) €0 x Dx D, (133)

with us(1,2,y) = 0.

5.3 Transfers associated to optimally stopped stochastic transports

In dimension d > 2, there are many different types of martingales. If one chooses those that
essentially follow a Brownian path, then we have the following linear transfers.

Example 4.10: Optimal subharmonic Martingale transfers (Ghoussoub-Kim-Palmer
24])

Confining the problem to a convex bounded domain O in RY, then if (u,v) are in sub-
harmonic order, i.e. u <gsyg v, where SH is the cone of subharmonic functions on O, we
set,

(,v) =  inf y)r(dz, dy), 134
Ppr) = ot [ claylae.dy) (134)

where each 7 € BM(u,v) is a probability measure on O x O with marginals p and v,
satisfying 0, <sg 7, for p—a.e. x, where 7, is the disintegration of 7 (dzx, dy) = 7, (dy)u(dx).
Otherwise, set P.(u,v) = +o0.

By a remarkable theorem of Skorokhod [59], such transport plans 7 can be seen as joint
distributions of (By, B;) ~ 7, where By ~ p, B; ~ v and 7 is a possibly randomized stop-
ping time for the Brownian filtration. See for example [32]. The above problem associated
to a cost ¢ can then be formulated as

Pe(pv) = int {E[c(Bo, Br)]; Bo~p & Br~v), (135)

where (By); is Brownian motion starting with distribution x4 and ending at a stopping time
7 such that B, realizes the distribution v.

In [24] it is shown that P, is a backward linear transfer with a backward Kantorovich map
given by T~ f(x) = J¢(x, x), where

Ji(@,y) = sup E[p(BY) — o(z, BY)], (136)

TTO
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and 7p is the first exit time of the set O. Under some regularity assumptions on f and c,
and for each fixed z € O, the function y — Jy(x,y) is the unique viscosity solution to the

obstacle problem for u € C(O):

u(y) = fy) — ez, y), fory € O,

u(y) = f(y) — c(x,y) for y € 90,

Au(y) <0 for y € O,

Au(y) = 0 whenever u(y) > f(y) — c(z,y),

as well as the unique minimizer of the variational problem
inf {/ ‘Vu‘Qdy; u>f—c(z,-),uec H(O0)}.
O

Example 4.11: Optimally stopped stochastic transport [33, 24|
Given a Lagrangian L : [0,1] x R? x R? — R, consider the optimal stopping problem

Ti(p,v) = inf {E [/OTL(t,X(t),BX(t,X(t))) dt] X(0) ~ T €S, X ~ 1, X() € A} :

(137)
where S is the set of possibly randomized stopping times, and A is the class of processes
defined in Section 4.3. In this case, Tr is a backward linear transfer with Kantorovich
potential given by T, f = V¢(0,-), where

T
¥y t.2) = sup sup {E [f(X(T)) - [ B X (9,855, X)) ds

X(t) = a:] } (138)

which is —at least formally— a solution Vf(t,a:) of the quasi-variational Hamilton-Jacobi-
Bellman inequality,

min{ Vy(t,z) — f(z), =0, Vy(t,z) — H(t,z,VVi(t,x)) — 3AV(t,2) } =0. (139)

In Section 9, we shall deal in detail with optimal stochastic transports as a semi-group
of backward linear transfers in conjunction with a stochastic Mather theory.

6 Operations on linear mass transfers

Denote by LT _(X xY) (resp., LT +(X x Y)) the class of backward (resp., forward) linear
transfers on X x Y.

Proposition 6.1. The class LT (X xY) (resp., LT +(X xY)) is a convex subcone in the
cone of conver weak® lower continuous functions on P(X) x P(Y).

1. (Scalar multiplication) If a € R™ \ {0} and T is a backward linear transfer with
Kantorovich operator T, then the transfer (aT) defined by (aT)(u,v) = aT (p,v) is
also a backward linear transfer with Kantorovich operator on C(Y') defined by,

o oS
T, (f) = aT™ (). (140)

a
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2. (Addition) If 71 and Ty are backward linear transfers on X x 'Y with Kantorovich
operator Ty, Ty, respectively, and such that X C D(T1)ND(Tz), then the sum defined
as

Ti & T5) (. v) = inf{ /X [Tie,m) + Tl me)} du(a)im € ()} (141)

is a backward linear transfer on X XY, with Kantorovich operator given on C(Y') by

T-f(z) = sup{ /Y fdo = Ti(2,0) — To(w,0);0 € P(Y)}

= f{Tyg(z) +T; (f — 9)(x);9 € C(Y)}.

6.1 Convolution and tensor products of transfers

Definition 6.2. Consider the following operations on transfers.

1. (Dual Sum) If T; and T are backward linear transfers on X x 'Y with Kantorovich
operator T, Ty respectively, and such that X C D(T1)ND(Tz), then T3 is defined
as the transfer whose Kantorovich operator is 11 + 15, that is

Ti00T3 (1, v) = sup{ /Y Fdv — /X (TLf + Tof)dp: f € C(V)} (142)

2. (Inf-convolution) Let X, X2, X3 be 3 spaces, and suppose Ti (resp., T2) are func-
tionals on P(X1) x P(X3) (resp., P(X2) X P(X3)). The convolution of Ty and Tz is
the functional on P(X7) x P(X3) given by

T(p,v):=Ti*Ta =inf{T1(u,0) + Ta(o,v); 0 € P(X2)}. (143)

3. (Tensor product) If Ty (resp., T2) are functionals on P(X1)x P (Y1) (resp., P(X2) X
P(Y2)) such that X1 C D(T1) and Xo C D(Tz), then the tensor product of Ti and Tz
is the functional on P(X1 x X2) x P(Y1 x Y3) defined by:

T Taur) =it { [ (T ) + T, ey ) s, € K |
X

1 X X2

Similar statements hold for LT (X xY).
The following easy proposition is important to what follows.

Proposition 6.3. The following stability properties hold for the class of backward linear
transfers.

1. If T1 (resp., T2) is a backward linear transfer on X1 x Xo (resp., on X9 x X3) with
Kantorovich operator Ty (resp., Ty ), then Ti * T3 is also a backward linear transfer
on X1 x X3 with Kantorovich operator equal to T} o T, .
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2. If Ty (resp., T2) is a backward linear transfer on X; x Y1 (resp., Xo x Ya) such
that X1 C D(T1) and Xo C D(Tz), then Ty @ Tz is a backward linear transfer on
(X1 x X2) x (Y1 x Ya), with Kantorovich operator given by

T_g(5617$2) = SUP{ f(ylayz)dff(ylym)*73($1,01)*B(I2,02); S ’C(Ul,o’z)}-
Y1 xY-
o (144)
Moreover,
Ti @ To(p, 1 @ v2) < Ti(pr,v1) + To(ps', vo) dpa (1), (145)
X3

where dp(x1, x2) = dpi(@1)dps’ (z2).

Note that a similar statement holds for forward linear transfers, modulo order reversals.
For example, if 77 and 73) are forward linear transfer, then 7; x 73 is a forward linear trans-
feron X; x X3 with Kantorovich operator equal to T2+ o Tf‘ .

Proof: For 1), we note first that if 77 (resp., 72) is jointly convex and weak*-lower semi-
continuous on P(X7) x P(Xz2) (resp., P(X2) x P(X3)), then both (71 * T2), : u — (T1 *
T2)(p,v) and (Ti *x T2)u = v — (T1 x T2)(p.v) are convex and weak*-lower semi-continuous.
We now calculate their Legendre transform. For g € C'(X3),

(TixTo)ole) = sup  sup {/ngdv—’ﬂ(u,cr)—ﬁ(cw)}

IJEP(X3) O'GP(XQ)

= sup {(T2)5(9) — Ti(u,0)}

ceP(X2)

- Ueggfz){/)(zTi(g)da—’ﬂ(u,a)}
= (LT (9))

= / T, oT, gdp.
X1
In other words, 71 * T2(u, v) = sup { sz g(z)dv(x) — le Ty oTy gdu; f € C(X3)}.

2) follows immediately from the last section since we are defining the tensor product as
a generalized cost minimizing transport, where the cost ion X7 X X9 X P(Y; x Y3) is simply,

T (x1,22), 7) = Ti(z1,71) + T2(21,72),

where 71, w9 are the marginals of 7w on Y7 and Y5 respectively. 71 ® 7T is clearly its corre-
sponding backward transfer with T~ being its Kantorovich operator.

More notationally cumbersome but straightforward is how to write the Kantorovich
operators of the tensor product T~ g(z1,x2) in terms of T} and T, , in order to establish
(145).

Remark 6.4. Note that if 7 is any backward linear transfer on X x Y, and 7, is the one
induced by a point transformation o : Z — X, then one can easily check that for u € P(Z)
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and v € P(Y), we have Ty x T (u1,v) = T(o4p,v), and its backward Kantorovich operator
is given by T'f(z) = (T~ f)(0(z)). Similarly, if 7: Z = Y, p € P(X) and v € P(Z), then
T x T (p,v) =T (u, T4v), hence

To*xT xTr(p,v) =T (o, T4v).

6.2 Hopf-Lax formulae and projections in Wasserstein space

By an obvious induction on the convolution property enjoyed by linear transfers, one can
immediately show the following.

Proposition 6.5. Let Xo, X1,....., X, be (n + 1) compact spaces, and suppose for each
i =1,...,n, we have functionals T; on P(X;—1) x P(X;). For any probability measures p on
Xo (resp., v on X, ), define

T (,v) = inf{Ti(u, 1) + T2(v1,12)... + To(Vn—1,v); v; € P(X;),i=1,...,n—1}. (146)

If each T; is a linear forward (resp., backward) transfer with a corresponding Kantorovich
operator T;t : C(X;) — C(X;41) (resp., T, : C(X;) — C(Xi—1)), then T is a linear forward

(resp., backward) transfer with a Kantorovich operator given by

Tt =T 0T jo..0Ty (resp., T =Ty oTy o...0T, )

n

In other words, the following duality formula holds:

T =sup{ [ T oT ol BF S dvty) ~ [ f@)dua)s £ € OO0} (147
respectively,
Ty =swn{ [ g)dv) = [ TroTyooTrgigeCX).  (148)

The convolution of two linear transfers associated to optimal mass transports with costs
c1 and ¢ respectively, is also a mass transport corresponding to a cost functional given by
the convolution ¢; xcs. However, the above calculus allows us to convolute a mass transport
with a general linear transfer, and to define a broken geodesic problems for stochastic
processes.

Proposition 6.6. (Lifting convolutions to Wasserstein space) Let Xg, X1, ...., X;, be com-
pact spaces, and suppose for each i = 1,...,n, we have a cost function c¢; : X;—1 X X;, its
corresponding optimal mass transport

Talu) =inf{ [ aloy)dmin e K(u)),
Xi—1xX;

and its forward and backward transfers TCJ; and T_ defined in Example 3.7. Consider the
following cost function on Xy x X, defined by

c(z,2') = inf {c1(z, 21) + ca(@1, 22).... + cn(Tp—1,2); 31 € X1,32 € Xo, ..., Tp1 € X1}
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Let v (resp., v be probability measures on Xg (resp., Xy,), then the following holds
Te(p,v) = inf{Te, (u,v1) + Tey (1, 12) ... + Te,, (Wn—1,v); v; € P(X;),i =1,....,n — 1}, (149)

and the infimum is attained at U1,V9, ..., Up_1.
T = swp{ [ 3T o T f@)avta) = [ f)dutw): £ € O J150)
0

= sup{ /X g(z) dv(x) —/ T, oT, ,..oT.g(x); g€ C(Xn)} (151)

Xo

Proof: It suffices to verify these formulas in the case of two cost functions. We do so using
duality by noting that both 7 «, and 7;, * 7., have the same backward Kantorovich map
equal to

To o T, f(x) = sup {T,, f(21) — c1(w, 1)}
r1€X1

= sup  {f(w2) — ca(x1,22) — c1(x, 71)}
r1€X1,22€ X2

= sup {f(z2) — c(z,32)} =T f(x).

r2€X2

This is illustrated by the following example.

Example 5.1: The ballistic transfer (Barton-Ghoussoub [8])
Let L be a Tonelli Lagrangian, then the deterministic ballistic mass transport is defined as

T .
B,;(u,v) := inf {IE [(V,X(O» +/0 L(t, X, X(t)dt|; V~pu XeA X(T)~ 1/} , (152)

where A is the space of random processes X; such that X € L2[0,T], M). This corresponds
to the following cost functional defined on phase space M™* x M by

1
b(v, ) := inf{(v,7(0)) +/D L(t,(t),5() dt;y € C1((0,T), M);7(1) =a}.  (153)
It is then clear that
b(t,v,z) = inf{(v,y) + c(t,y,z); y € M}, (154)

where the cost c is given by the generating function associated to L in Example 3.11, which
means that B, is the convolution of the Brenier cost with the cost induced by the Lagrangian
L. The corresponding forward Kantorovich operator is then

T, f(z) =T o Ty f(2) = Vi(1,2), (155)

where V#(T', ) is the final state of the solution of the Hamilton-Jacobi equation (81) starting
at Ty f(z) == f(x) = —f*(—x). So, if u (resp., v) is a given probability measure on M*
(resp., M), then we have

To(u,v) = inf{ M*XMb(v,x) dr; me K(p,v)} (156)

_ sup{ /M VATaydv@)~ [ ) duo): S conves on M*}. (157)
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A similar formula holds for the backward Kantorovich operator.
However, we can now convolute a mass transport with a general linear transfer as in the
following example.

Example 5.2: Stochastic ballistic transfer (Barton-Ghoussoub [8])
Consider the stochastic ballistic transportation problem defined as:

B(p, v) = inf {IE [<V,X(0)> + /OT L(t, XP. A(1)) dt] ’V ~ 1 X () € A, X(T) ~ 1/} . (158)

where we are using the notation of Example 4.4. Note that this a convolution of the Brenier-
Wasserstein transfer of Example 3.12 with the general stochastic transfer of Example 4.4.
Under suitable conditions on L, one gets that

B(p,v) = sup{/gdv— /Jgdu;g € Cb}, (159)

where £ is the concave legendre transform of —h and v, is the solution to the Hamilton-
Jacobi-Bellman equation

O b AU ) + H (2, V) =0, p(1,2) = g(a) (HIB)

In other words, B is a backward linear transform with Kantorovich operator T~ g = @,Z}; .

Example 5.3: Broken geodesics on Wasserstein space
Let L be a Lagrangian as above, then for any finite sequence of times t; < t1 < .... < ty,,
we consider the cost functions ¢;,7 = 1,...,n,

.9) =t =it { [ L0500 dtir(0) =2t =

The theory of broken geodesics consist of finding for any fixed x, y, the critical points of the
function (t1,%2,....tn) = ct,...1. (2, y) given by
¢y, tn(x,y) =1nf {c1(z, 21) + ca(x1, 22).... + Cn(Tn—1,9); 1,22, ...,n—1 € M}. (160)

Thanks to Proposition 6.5, one can consider a broken geodesic problem for stochastic pro-

cesses by considering for any finite sequence of times t; < t; < .... < t, the backward
transfer
tit1
o) =int {E | [ D00 (0 XD @] 1 X0 ~ X ~ X () € A},
t;
(161)

where again A is the class of processes defined in Section 4.3.

This stochastic transport does not fit in the standard optimal mass transport theory
since it does not originate in optimizing a cost between two deterministic states. However,
by a result of Mikami-Thieulin [52], 7y, +,,, is a backward linear transfer with Kantorovich
potential given by Ti1,f = Vy(t;,-), where

Vi(t.a) = sup [f(X(T)) - [ B X9, B, X)) ds

X(t) = x] : (162)
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which is —at least formally— a solution of the Hamilton-Jacobi equation

{ oV + H(t,i’,va) + %AV = Oon (ti,ti+1) x M,
Vitivy) = f(y).

One can then define the bacward linear transfer

(163)

7;17~~-,tn (,Ua V) = inf {7;1,152 (,Ua Ul) + 7;2,153(01702)"' + ﬁnfl’tn (anfb V); 01,...0p—1 € P(M)} )
(164)
in such a way that

Ter,...tn (@, ) = sup { /Mf(a:) dv(z) — /M Tigpy 0c0Thy v fy)duly); f € C(M)} (165)

The broken stochastic geodesics consist of finding for any pair (u,v), the critical points of
the function (t1,ta,...,tn) — Tiy...1, (11, ) on Wasserstein space. 0O

-----

Example 5.4: Projection on the set of balayées of a given measure
Let 7 be a linear transfer on X x Y and K a closed convex set of probability measures
on Y. We consider the following minimization problem

inf{7 (p,0);0 € K}, (166)

which amounts to finding “the projection” of y on K, when the “distance” is given by the
transfer 7. In some cases, the set K := C(v) is a convex compact subset of P(Y) that
depends on a probability measure v in such a way that the following map

_f0 if o0 € C(v)
S(ov) = { 400 otherwise.

is a backward transfer on Y x Y. It then follows that
inf{T (1, 0); 0 € C(v)} = f{T(11,0) + S(,v); 7 € P(X)} = T % S(p,v).

If now T~ (resp., S™) are the backward Kantorovich operators for 7 (resp., S), then by
Proposition 13.4, the Kantorovich operator for 7 xS is T~ o S™, that is

inf{7T (u,0);0 €C(v)} = sup{/ygdu - /XT oS gdu;g€ C(Y)}. (167)
Here is an example motivated by a recent result in [41].
Consider now the problem
P(u,v) = nf{Te(p, 0);0 <o v}, (168)

where 7, is the optimal mass transport associated to a cost ¢(z,y) on X x Y, and <¢ is
the convex order on a convex compact set Y. Then,

P(ny) :,TC*B(:U”/)
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where B is the Balayage transfer. It follows that P is a linear transfer with backward
Kantorovich operator given by the composition of those for 7, and B, that is

T~ f(x) = sup{f(y) — c(z,y);y € Y},

where f is the concave envelope of f on Y. We note that this is the same Kantorovich
operator as for the (weak) barycentric transport (See Proposition 5.1). In other words, we
can then deduce the following result of Gozlan-Juillet [41]. Write

T =t { [ o, [ yima(u) du(oyin € K }.

Corollary 6.7. Let ¢ be a lower semi-continuous cost functional on X XY, where Y 1is
convex compact. Then the following holds:

1. TexB="Tg5.
2. T. ® B = Ty;, where the latter is the martingale transport of Example 4.4.

Similar manipulations can be done when the balayage is given by the cones of subhar-
monic or plurisubharmonic functions.

7 Distance-like transfers

Suppose now that 7 is a functional on P(X) x P(Y) satisfying the triangular inequality,
that is
T(p,v) <T(p,0)+T(o,v) forall g, vand o in P(X), (169)
<

which translates into 7 < 7 x 7 and if T is a backward transfer to T~ o T~ < T~

Note that if in addition 7 (i, ) = 0 for every pu € P(X), then T =T 7. We shall call
such a transfer idempotent. It is easy to see that 7 is idempotent if and only if (77)2 = T~
on USC(X).

7.1 Characterization of T-Lipschitz functions on Wasserstein space

Proposition 7.1. Let T be a backward linear transfer on a compact space X and T~ be
its associated backward Kantorovich map. If T satisfies (169), then

T(u,v) > sup{/ T fdlv—np);feC(X)} foranypeP(X) andv € A. (170)
X
Moreover, if T is also a forward transfer, then for any u,v € A.
T(n,v) =sup{ [ 17 fdw—p)if € CLO) =supf [ T-oT" fdlv=p)if € C(X)). (171)
X X

Proof: The proof is straightforward since for every v € A, we have
/ ngy>/ gdv for every g € C(X). (172)
X X
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while if T satisfies (169), then [\ (T7)*gdu < [ T~ gdu for every p € P(X).
If now 7 is also a forward transfer, then [, T fdv = inf{ [, fdo + T (o,v);0 € P(X)},
hence for every u € A,

JxTrgdu < [y gdu < [ T gdp for every g € C(X).
Since by (112) of Proposition 4.6, we have
TtoT g(y) > g(y) fory €Y, T=oTtf(x) < f(z) for x € X, (173)
it follows that for every pu € A
Jx Tt oT gdu= [T~ gdu for every g € C(X).

and
Jx T~ oT* fdu= [ T fdu for every g € C(X).

Assertion (?7) follows by recalling from Proposition 4.6 that
T(uw) = swi [ THoT gly)dvy)~ [ T-gduta)ig e C0)}

sup | /Y T+ f(y) dv(y) - /X T~ o T f du(z); f € C(X)}.

The above proposition states that the maps y — [ T~ fdp and p — [ Tt o T~ gdpu are
1-Lipschitz for the metric-like 7 on the subset A of Wasserstein space. We now show the
converse, that is all Lipschitz maps on A are of this form.

Theorem 7.2. Suppose T : P(X) x P(X) — RU {400} is bounded below, weak*-lower
semi-continuous and convex metric-like functional such that A := {pu € P(X); T (1, ) = 0}
is non-empty. Assume in addition that for any p,v € P(X), we have

T(,v) = nf{T(1,0) + T(,v); 0 € A}, (174)
Then the following hold:
1. For any functional ® : A — R that is T -Lipschitz, there exists f € C(X) such that

D(u) = /X fdu for every u € A. (175)
2. If T is also a backward linear transfer, then
O(p) = /X fdu = /XT_fdu for every u € A. (176)
3. If in addition T is also a forward linear transfer, then
D(p) = /X fdu = /XT_fd,u = /XT+ oT™ fdu for every u € A. (177)

Note that the functions 1o == T~ f and 11 := TT o T~ f are conjugate in the sense
that 1o = T~ 11 and 1 = T )g.
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4. Moreover, if g is a function in C(X) such that [y gdp = ®(p) for all p € A, then

Yo <T7g and ¢ >T"g

Proof: Let ® be such that y — ®(u) is T-Lipschitz on A and define

D(1) = sup(®(0) ~ T(,0)} and  Pu(v) = inf (2(0) + T(0:1)).

(24S]

It is clear that
P (p) < () < Po(p) forall p € A

We now show that
Po(p) < P1(p) for all p € P(X).

For that note that (169) and the fact that p — ®(u) is T-Lipschitz on A yield

Do(p) — P1(p) = US}EPA{‘P(U) =T (p,s0) —®(1) = T(7, 1)}

< sup {2(0) ~ ®(r) = T(,0)} <0

This combined with (179) shows that
P1(p) = ®(p) = Po(p) forall pe A
We now show that for every p € P(X),
©o(p) = sup{®1(0) = T(p, 0);0 € P(X)}.

For every pu € P(X), we have

(178)

(179)

(180)

(181)

Do(p) = Sug{i‘(o) —T(p,0)} = Sug{‘I’l(o) ~T(u,0)} < sup {®1(0) = T(p,0)}.

o€ o€ cEP(X)

On the other hand, for any v, u € P(X), we have
@(v) —~ Do(p) = _inf ((0) +T(o,v) ~ &(r) + T, 7))
< inefA{T(U’ v)+T(r,0)+ T (p,7)}
< inf {T(0,0) + T(1,0)}
ocA

=T(u,v).

This shows (181). The other conjugate formula
Oy (v) = inf{Pg(0) + T (o,v);0 € P(X)}

can be proved in a similar fashion.

(182)

Note now that ® is a concave weak*-upper semi-continuous function on P(X), while ®;
is a convex weak*-lower semi-continuous. Since ®¢ < ®; on P(X), there exists f € C(X)

such that
Do(p) < / Fdu < Di(n) for all 4 € P(X),
X
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hence
Bo) = [ fdi= @10 = B(0) for al e A (184)

2) Suppose now 7 is also a backward linear transfer with 7~ as a Kantorovich operator,
then

/X T fdp= sup { [ fdo—T(uo)} < sup {®1(0) = T(u o)} = olp).

ceP(X) JX o€P(X)

On the other hand, if u € A,

/T‘fdu>sup{ de—T(MaU)}>/ fdu—T(u,M)z/ fdp.
X X X

ceA JX

3) Suppose in addition that 7 is a forward linear transfer with 7" as a Kantorovich operator,
then

T+T—d:'f/T—d )} < inf {® )} = @ ().
[T  sau= nt (| 7o+ T} <t (@0(0)+ T(o0} = B1(0)
On the other hand, Tt o T~ f > f in such a way that
[rrorsinz [ = e,
b's b's
In other words, T~ f and TT o T~ f are two conjugate functions verifying
/ Tt oT™ fdu = / T™ fdu = ®(pn) forall pe A.

X X
4) To prove (178), first note that

[ 77 < @) = sup{®(0) = T, 0)i0 € A)

b's

<sup{ [ gdor = T(u.0)i0 € PX)}

= / T gdu.
X
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On the other hand,
/X T+ o T fdy = inf{/X T tdo + T(o, p); o € P(X)}
_ inf{/X T~ fdo +T(0,\) + TOwp): A € A, o € P(X)}
= inf{/XT+ oT™ fdN+ T\ p); A € A}
_ inf{/X gdA + T ) A € A}
_ inf{/X gaA+ T\ )i\ € A)

> inf{/X gdA + T\ 1) A € P(X)}

= / T*gdp,
X

which completes the proof of the theorem. 0

7.2 Examples of idempotent transfers

In the next sections, we shall associate to any backward or forward linear transfer an
idempotent linear transfer. For now, we give a few examples of some transfers that are
readily idempotent.

1. If I is any bounded below convex lower semi-continuous functional on Wasserstein
space P(Y), and m = inf{I(0);0 € P(Y), then T (u,v) = I(v) — m is an idempotent
backward linear transfer with an idempotent Kantorovich map 7~ f = I'*(f) + m.

2. Any transfer induced by a bounded positive linear operator 7" with 72 = T and
T1 = 1, and in particular, any point transformation o such that 02 = o as per
Example 3. 2.

3. The balayage transfer B since its Kantorovich map is Tf = f , where for example in
the case of balayage with convex functions, f is the concave envelope of f.

4. Tf 7. is an optimal mass transport associated to a cost function ¢, then 7, is idempotent
if ¢(z,z) = 0 for every x € X and c satisfies the triangular inequality

c(z,z) < e(z,y) +cly,z) forall z,y,zin X, (185)

in which case

To(, v) = supf /X T.fd(v — p): f € C(X)}. (186)

A typical example is the Rubinstein-Kantorovich optimal mass transport associated
to any metric -such as in the original Monge problem- since the latter satisfies the
triangular inequality and is zero on the diagonal. If ¢p(z,y) = |z —y|P and 0 < p < 1,
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then the corresponding optimal mass transport is idempotent since ¢, again satisfies
the triangular inequality. ¢, x cp(z,y) = cp(x,y), so T>f(x) = Tf(x), i.e. T is
idempotent.

Example 6.7: An idempotent optimal Skorohod embedding
The following transfer was considered in Ghoussoub-Kim-Palmer [35].

7XMJO::inf@ELATL@,BQd4;T%ESOLV)}, (187)

where S(p, v) denotes the set of —possibly randomized— stopping times with finite expecta-
tion such that v is realized by the distribution of B; (i.e, B; ~ v in our notation), where
B, is Brownian motion starting with g as a source distribution, i.e., By ~ u. Note that
T (p,v) = 400 if S(u, v) = 0, which is the case if and only if y and v are not in subharmonic
order. In this case, It has been proved in [35] that under suitable conditions, the backward
linear transfer is given by T ¢ = Jy(0,-), where J, : Rt x R? — R is defined via the
dynamic programming principle

Tyt ) = wp{EmPM&J—AWM&Bgﬁng (188)

TERLE

where the expectation superscripted with ¢,z is with respect to the Brownian motions
satisfying B; = z, and the minimization is over all finite-expectation stopping times R*® on
this restricted probability space such that 7 > ¢. Jy(t, x) is actually a “variational solution”
for the quasi-variational Hamilton-Jacobi-Bellman equation:

. J(t,z) —y(z) | _
mn{—&ﬂu@—%Aﬂa@+L@w)}_0 (189)

Note that Jy(t, ) > 9(x), that is T~¢ > 1) for every .
Assume now ¢t — L(t,x) is decreasing, which yields that ¢ — J(t,z) is increasing (see
(35]). if (x) =T~ ¢ = J,(0,2) for some ¢, then for each € > 0, there is 7 such that

To(0.0) < B [u(B,) — [ Lo Bds] +

< EH* [Jso(t,BT) - / L(S,Bs)ds} +e
t
< Jy(0,2) + €.
where the last inequality uses the supermartingale property of the process t — J,(t, B;) —
[ L(s, By)ds. It follows that
T~ p(x) < (T7)?p(a) = Jy(0,2) < Jo(0,2) = T~ p(x),

and T~ is therefore idempotent.
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8 Ergodic properties of equicontinuous semigroups of trans-
fers

Let X be a compact space. Our main purpose is to associate to any backward linear transfer
T on P(X) x P(X), an idempotent backward linear transfer 7o, with the properties listed
in Theorem 8.1 below. For that, we shall associate to 7, the semi-group of transfers (7, )
defined for each n € N, as T, = T * T x....x T n-times and study its limit as n — co. This
section deals with the case where 7 is continuous, hence the sequence of transfers (7,)y is
equicontinuous for the Wasserstein metric. We shall prove the following.

Theorem 8.1 (Fixed point of weak* continuous backward linear transfers). Suppose T is a
backward linear transfer on P(X) x P(X) that is weak*-continuous on M(X), and let T~ be
the corresponding backward Kantorovich operator that maps C(X) into C(X). Then, there
exists a constant ¢ = ¢(T) € R, an idempotent backward linear transfer T on P(X)xP(X)
with Kantorovich operator T : C(X) — C(X) such that,

1. The constant ¢(T) = inf{T (u, p); o € P(X)};

2. For every f € C(X) and x € X, lim AT @) — .

n——+0o00 n
3. Too = (T_ C)*Too and T~ oT_f+c=T_f forall f e C(X),

4. The set A:={u € P(X); Too(p, 1) = 0} is non-empty and for every u,v € P(X), we
have

Too (i, v) = inf{Too(pt,0) + Too(0,v),0 € A}. (190)

This will follow from the following more general result. But first, we mention that there
is an analogous result for the case when 7T is a forward linear transfer with operator T'".
The same statements hold as above, the only difference being that

lim W =c¢ forevery fe C(X)and z € X, (191)

n——+o00

and
TtoTLf—c=TLf forall feC(X). (192)

If now T is simultaneously a backward and forward transfer, then we have the following,

Corollary 8.2. Suppose T is a backward and forward linear transfer on P(X) x P(X) that
is continuous for the Wasserstein metric, then the associated effective transfer To is also a
backward and forward linear transfer on P(X)xP(X), with T, (resp., TS ) as corresponding
backward (resp., forward) effective Kantorovich operator. Moreover, The associated effective
transfer T can be expressed as

Teliso) =sup{ [ 5*av— [ 1~ dus (£.5%) €T}, (193)
where

7= {(f_,f+); f~ (resp., 1) is a backward (resp., forward) solution and f~ = f* on A}.
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Proof: Since 75 and T are the Kantorovich opeartors for 75, we can use (174) of
Proposition 4.6 to write

Too(psv) = Sup{/ TotoTongV—/ Togdp; g € O(X)} (194)
X X
= sup{/ T;ofdy—/ T oTk fdu; feC(X)}. (195)
X X
Note now that f~ = T_g (resp., fT = T&f7) is a backward (resp., forward) weak KAM

solution for 7" and in view of Proposition 7.1, [ f~du = [ f*dp for every p € A. Tt
follows that

Toolpsv) < sup { /X f dy - /X Fdis (f 1) €T}, (196)

For the reverse inequality, note first that if =, f© € Z, then since f~ = T~ f~ and f+ =
T*f*, the functions p — [y f~dp and p — [ fTdp are To-Lipschitz on the set A.
Hence Theorem 7.2 applies and we get a function x such that T~y < T~ f~ = f~ and
TToT x> T*f* = f*. This readily implies the reverse inequality, hence that (193) hold.

8.1 Effective Kantorovich operator associated to a semi-group of linear
transfers

Let {T:}1>0 be a family of backward linear transfers on P(X) x P(X) with associated
Kantorovich operators {T;};>0, where Tg is the identity transfer,

0 if p=vePX)

+o00 otherwise.

76(”7 V) = {
We make the following assumptions:

(HO) The family {7;}+>0 is a semi-group under inf-convolution: 7;4s = Ty 7 for all s, ¢ > 0.

(H1) For every t > 0, the transfer 7; is weak*-continuous, and the Dirac measures are
contained in Dy (7).

(H2) For any € > 0, {7;}+>. has common modulus of continuity ¢ (possibly depending on
€).

The hypotheses (H1) and (H2) amount to an equi-continuity assumption for the family
{T};f}+>0 for each f, and is an artifact to ensure that we remain within the class of continuous
functions in the limit ¢ — +oo (thanks to Arzela-Ascoli). It is likely these hypotheses can
be weakened. Note in relation to (H2) that the semi-group property (HO) implies that a
modulus of continuity for 7; is also one for Ty¢, N € N. In the following, where we will be
concerned with taking limits as t — 400, it suffices to take € = 1.

Proposition 8.3. Under condition (HO), there exists a finite constant ¢ and a positive
constant C > 0 such that

|Te(p,v) —te| < C,  for everyt > 1 and all p,v € P(X).
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In particular,
ce lim inf{T;(u,v); p,v € P(X)}.
t——+o0 t
We shall call the constant ¢(7) in Proposition 8.3 the Mané critical value, while the
solutions u € C(X) of the functional equation Tyu + ¢t = w for all ¢ > 0, will be called
backward weak KAM solutions.

Proof: Define M; := max,, Ti(,v) and M := infi=1 {2t} > —co. The sequence {M;}¢>1
is subadditive, that is M5 < M; + M, hence it is well known (see e.g. [12]) that {%}@1
decreases to its infimum M as ¢t — oo. Indeed, fix t > 0 and write for any s, the decompo-
sition s = nt 4+ r, where 0 < r < t. The subadditivity of M; implies

% . MntJrr < Mnt Mr < % Mr
St ot

S _nt+r\ nt nt

It follows that limsupg_,.. % < %

Therefore, % converges to M as t — oo.
On the other hand, if m; := min,, T;(u,v), then the above applied to —m; yields that
limy 00 "t = m.

We now show that m = M. The uniform modulus of continuity ¢ implies the existence of
a constant C' > 0, such that My — m; < C for every t > 0. Then, we obtain the string of

inequalities

On the other hand, inf;>; % < liminf; oo %

tM—-—C <My —C<my <Ti(p,v) < My <my+C <tm+ C.
The left-most and right-most inequalities imply M < m upon sending ¢ — oo, hence

m = M. O

From Property 1) of Kantorovich operators and Proposition 8.3, we can deduce the
following.

Lemma 8.4. Under conditions (H0), (H1), and (H2), and with the notation of Proposition
8.3, the following properties hold.

1. For any f € C(X), we have |Tif(x) + ct —supx f| < C for allt > 1 and all x € X.
2. The semi-group of operators {T;}1>1 has the same modulus of continuity § as {T¢}i>1.

3. If k <c, then Ty f + kt - —oo, while if k > ¢, T} f + kt — 400, ast — oo, for any
fel(X).

Proof: 1) By Proposition 8.3 and since T} f(z) + ¢t = sup,{ [ fdo — (T;(6z,0) — ct)}, we
have supy f — C < Ty f(x) + ct <supy f + C.
For 2) we note that

T,f(@) = supf / fdo — Ti(6s.0))
< sup / £ do = Ti(3,,0)} +5up{Ti(6,.0) — Ti(6.0)}

=T f(y) + 0(d(z,y)).
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We now interchange « and y to obtain the reverse inequality.
3) follows from 1) since supy f — C + (k — )t < Ty f(x) + kt < supx f + C + (k — o)t.

Theorem 8.5. Given a semi-group of backward linear transfers (T;)i>o satisfying conditions
(HO), (H1), and (H2), there exist a backward linear transfer Tso, an associated Kantorovich
operator Too : C(X) — C(X) and a constant ¢ € R such that:

1. For every f € C(X), Toof is a backward weak KAM solution, and T, is idempotent.
In particular, backward weak KAM solutions are fized points of T.

2. The backward linear transfer To, satisfies,

Too = (Ti — ct) + Too for every t >0, and  Tog = Too * Toc. (197)

3. For every p,v € P(X), we have
sup {/Toofd(y —n); fe C'(X)} < Too(p,v) < ligglf(ﬁ(u, v) —ct). (198)

4. The set A= {0 € P(X); Too(0,0) = 0} is non-empty, and for every p,v € P(X), we
have

Too(p,v) = inf{Too(p, 0) + Too(0, 1), 0 € A}, (199)
and the infimum on A is attained.

5. We also have
¢ = inf{Ti(p, p); p € P(X)}, (200)

and the infimum is attained by a measure i € A such that
(1. 1) € D o= {(1,v) € P(X) x P(X) : Ti(ov) + Tlvoi) =} (201)
Moreover, every measure which attains the infimum in (200) belongs to A.

The backward linear transfer 74 is an analog of the Peierls barrier, and the set A is an
analog of the projected Aubry set.

Proof: 1) Given f € C(X), define T'f(z) := limsup,_, . (T;f(z) + ct). By (H2), Tf has
modulus of continuity d, and ||Tf||c < supy f + C.

Noting that supg.,{Tsf(x) + cs} is a sequence of continuous functions that decrease
monotonically to T'f(z) as t — 0o, we may apply Lemma 4.2 to deduce for any ¢ > 0,

TuTf(z) = Jim Ty |sup{T:f(z) + cs}

s>t

> lim sup{Tysf(x) + cs}
t—o0 s>t

= lim sup{Tt/+Sf(x) + C(t/ + 8)} —ct
t—o0 s>t

=Tf(x)—ct.
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Therefore, Ty T f(x) 4+ ct' > Tf(z). By monotonicity of the operators T}, this inequality
implies
T,Tf(x) +ct > TsTf(x) +cs

whenever t > s > 0, i.e. {TtT f 4+ ct}i=1 is a monotone increasing sequence of continuous
functions. In addition, we have from Corollary 8.4 the uniform in time bound

ITTf () + tlloe < [T flloo +C < oo +2C.
We may therefore define T, : C(X) — C(X) via the formula,
Too () i= Jim TTf(x) +
and from Lemma 4.2 deduce
TiToo f(z) + ct = Slgg)]} [T.T f(x) + cs] +ct
= lim {71, Tf(x) +c(t +5)}
= Too f(2).

This further implies that TooToo f () = Too f(2) s0 Tw is idempotent. It is straightforward
to see that in the construction of T, properties 1)-4) of Proposition ?? are preserved, and
hence Ty, is a Kantorovich operator.

Finally we note that if u satisfies Tiu + ¢t = u, then Toou = u from the defintion of Tr,.
2) T is a Kantorovich operator, thus we may define

Too(psv) := sup{/fdv— /Toofdu; fe C(X)}
and it is a backward linear transfer; from T; T f + ¢t = T f, it satisfies
Too(pt,v) = (Ty — ct) x Too(p,v), forall t > 0,
and from TooToou(x) = Toou(x), it satisfies
Too (b, V) = Too * Too (1, v), for all p,v.

3) Note from 1 that Tr f(x) = limsup,_, o (T¢ f(x) + ct), so

/ Toof dp > / limsup(7i f(x) + ct) dp
X

X t—oo

> lim sup /X(th(x) + ct) du.

t—o00

Hence
Tw(u,u)gsupliminf{/ fdz/—/ thdu—ct;feC(X)}
gliminfsup{/ fdy—/ thdu—ct;fEC’(X)}

= htrgg)lf(ﬁ(u, v) — ct).
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On the other hand, from T 0 To f = Tio f,

Tt =sw{ [ v [ Topans receo)

>sw{ [ Tefdw- i recen).

4) The proof of this result relies solely on the property Too = Too * Too, and the argument
is a minor adaption of the one given in [6].
Fix p,v € P(X). From To = Too * Too, there exists o1 € P(X) such that

Too (ks v) = Too(py 01) + Too (01, V).
Similarly, there exists a oy such that
Too(o1,v) = Too(01,02) + Too (02, V).
Combining the above two equalities, we obtain
Too (11, V) = Too(ph, 01) + Too(01,02) + Too (02, v).

Note also that
TM(N>UI)+TOO(UlaU2) :TOO(%UQ)- (202)

This follows from

Too (11, v) = Too (s 01) + Too (01702)+T (02,v)

)
(

> Too * Too(ty02) + Too (02, V)
Too (11, 02) + Too (02, )
> Too * Too(, v)
= Too(tts V).

Hence all the inequalities are equalities; in particular (202).

After k times we have
k

Too(pt;v) =Y Tool0i, 0i41)

i=0
where ¢ := p and 041 := v. This inductively generates a sequence {0} with the property

m

> Tool0i,0i11) = Too(00, 1)

=/
whenever 0 < £ < m < k. In particular, for any subsequence oy;, we have

m

TOO (lu’7 Ukl) + Z TOO(O-k]' ) ka+1) + TOO(Ukm+17 V) = TOO(I“” V)‘ (203)

J=1
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Extract a weak™ convergent subsequence {oy,} to some ¢ € P(X). By weak-+ Ls.c. of
Too, We have
lim inf 7o (0k;, 0k, ) = Too(T,0).
J

In particular, given € > 0, for all but finitely many j,
TOO(O'kj,kaH) > To(d,0) —e. (204)

Therefore, by refining to a further (non-relabeled) subsequence if necessary, we obtain a
subsequence {0y, } satisfying (204) for all j. By further refinement, we may also assume,

TOO(:uv Uk1) > TOO (,LL, 5) — €. (205)

Therefore, by refining to a further (non-relabeled) subsequence if necessary, we obtain a
subsequence {0y} with properties (203), (204), and (205).
Moreover, for all m large enough (depending on €), we have

Too(Okpir V) = Too(G,v) — € (206)
Applying the inequalities of (204), (205), and (206), to (203), we obtain
Too (11, V) 2 Too (b, ) + MT50(6,0) + Too(F,v) — (M + 2)€
for large enough m. From the fact that 7o, = Too * Too, the above inequality is only possible
if 2

Too(0,0) < € < 2e.
m

As € is arbitrary, we obtain 7o (7,5) < 0, and consequently To(d,5) = 0 (the reverse
inequality following from 7o, = Too * Too)-
Finally, we note that Teo(pt, V) = Too (11, 0k;) + Too(0k,, v) for all j, so at the liminf, we
find
Too(s V) 2 Too(p,0) + Too (T, V).

The reverse inequality is immediate from 7o, = Too * Too-

5) First, we observe that 77(u, ) > ¢ for all p. This follows from
¢ = lim min T, v) = lim minM < Ta(ps 1)
t—oo W,V t n—00 W,V n

To achieve the reverse inequality, we construct inductively a sequence {ux} C A such that
(pk, tk+1) € D. The set D is convex by convexity of both 71 and Ts. Therefore, the Cesaro

averages belong to D,
1 « 1 «
(; Z“k’ ” Zmﬁtl) €D.
k=1 k=1
Denoting vy, := 2 37| uk, we have
1 1
Ti(Vn,vn + E(Nn-&-l — 1)) + Too(Vn, vn + ﬁ(/in—&-l — ) =c (207)
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Extract a weak*-convergent subsequence v,,; with limit 7 € A. Then by weak-+ lower
semi-continuity of 71 (resp. Ts), (207) yields at the limit,

T, 1) = To(p, /1) + Too (1, /1) < -

Hence, ¢ = T1(f1, 1), and (g, r) € D.
Conversely, if p is a measure which realises ¢ = 71 (u, pt), then by Property 3 and 4, we
have
0 < Toolp, 1) < liminf (75 (p, p) — et) < liminf (7, (p, p) — en) <0,
t—o0 n— 00

so € A.

Similar results hold with appropriate changes for forward linear transfers.

8.2 Optimal transports corresponding to a semi-group of cost functionals

We now identify the effective transfer and Kantorovich map associated to a semi-group of
linear transfers given by mass transports.

Proposition 8.6. Suppose c¢i(z,y) is a semi-group of equicontinuous cost functions on a
compact space X x X, that is

cirs(z,y) = e xcs(x,y) := inf{ey(z, 2) + es(2,y); 2 € X}, (208)

and consider the associated optimal mass transports

Ti(p,v) = inf{ s ce(z,y)dm(z,y); me K(u,v)}. (209)

1. The family (T¢): then forms a semi-group of linear transfers for the convolution op-
eration i.e., Tyrs = T x T for any s,t > 0 that is equicontinuous on P(X) x P(X),
hence one can associate its effective transfer Too and the corresponding Kantorovich
operator Ty .

2. The following holds for the constant ¢ defined in the previous section Theorem 8.5:

¢ =inf{Ti(p, p); p € P(X)} = min{ ci(z,y)dmm e P(X x X),m =m} (210)
XxX

3. Letting coo(z,y) := liminf; oo (ct(z,y) — ct), then :

Too(1t,v) = Teoo (1, v) := inf{ x oo, y) dm(z,y); ™ € K(p,v)}, (211)

Toof(z) = sup{f(y) — coo(®,9); y € X} and T f(y) = inf{f(z) + coo(, ) ; ¥ € X}

4. The set A := {0 € P(X);Too(0,0) =0} consists of those o € P(X) supported on the
set A={z € X;co(x,x) =0}.

5. The minimizing measures in (210) are all supported on the set

D :={(z,y) € X x X; c1(2,y) + co(y, ) = c}.
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Proof: The Kantorovich operator for 7; is given by T; f(x) = sup{f(y) — ct(x,y); y € X}
and as shown in Proposition 6.6, we have Ty = Te,uc. = Tey*xTeo = TixTs, and Ty = Ti0T
for every s,t. It remains to show that the effective Kantorovich map 7'y, associated to (7})¢
is equal to T, f :=sup{f(y) — ceo(x,y); y € X}. For that, we first note that

limtsup(th(w) +oct) 2 St;p{f(y) — coo(@,y)} = Tep /(). (212)

On the other hand, let y, achieve the supremum for T, f(z) = sup{f(y) —cn(x,y); y € X},
and let (n;); be a subsequence such that lim; oo (T, f(x) + cnj) = limsup,, (T}, f(x) + cn).
By refining to a further subsequence, we may assume by compactness of X, that y,, — y
as j — oo. Then by equi-continuity of the ¢,’s, we deduce that

limsup(Ty, f(x) + cn) = lim (T, f(z) + cny) = f(y) — liminf(c,, (z,7) —eny).  (213)
n j—00 J

As liminf;(cp, (7,y) — cnj) > liminf, (cn(z,§) — en) = coo(z, ), we obtain
i sup(T, (2) + 1) < () = e (025) < S0p(F(0) — )} = Tew (@), (219

The inequality (214) is true for every sequence (nj)r going to oo, so we deduce that
limsup, (T f(x) + ct) < T f(z), and hence combining this with (212) gives equality:
lim sup, (T, f(x) + ct) = To ().

Finally, we note that Ts(limsup, (T f +ct))(x) +cs =TT, f(x) +cs = T f(x) thanks
to the fact that ¢ * cso = €oo. This implies from the definition of T, as the limit as s — oo
(see Thereom 8.5) that T f(x) = Te f().

Properties (1), (2) and (3) follow then immediately. Properties (4) and (5) now follow
from an adaptation of the results of Bernard-Buffoni [6].

8.3 Fathi-Mather weak KAM theory

Let L be a time-independent Tonelli Lagrangian on a compact Riemanian manifold M, and
consider 7; to be the cost minimizing transport

Ti(p,v) = inf{ MXMct(:E,y) dr(x,y); m € K(u,v)},

where
c(z,y) == inf{/o L(v(s),4(s)) ds; v € CH([0,8]; M);7(0) = z,v(t) = y}.

As mentioned in the introduction, the Lax-Oleinik semi-group S, , t > 0 is defined by the
formula

t
S; u(x) = inf{u(~(0)) +/0 L(y(s),4(s)) ds; v € CH([0, t]; M), 7(t) = z},

and a function u € C'(M) is said to be a negative weak KAM solution if S; uw — ¢t = u for
allt > 0.
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Another semigroup S;" is defined in terms of S;” via the formula S;"u = —S; (—u), where
S, is the Lax-Oleinik semi-group of the Lagrangian L(x,v) := L(z, —v). It turns out that

Sy u(@) = sup{u(y(t)) - /0 L((s),4(s)) ds; v € CH([0, t]; M),7(0) = z}.

Analogous to the negative weak KAM solutions, positive weak KAM solutions are those u
satisfying S;"u + ct = u for all t > 0. The semi-groups S; and S; are intimately connected
with Hamilton-Jacobi equations, and Aubry-Mather theory.

Theorem 8.7. Under the above conditions on L, there exists a unique constant ¢ € R such
that the following hold:

1. (Fathi [25]) There ezists a function u— : M — R (resp. uy ) such that Sy u_ —ct = u_
(resp. Sfu_ +ct=wu_) for each t > 0.

2. (Bernard-Buffoni [6]) Let coo(x,y) := liminf; o ct(x,y) denote the Peierls barrier
function. The following duality then holds:

inf{ Cool(,y)dm(z,y); me K(u,v)} = sup { | updv —/ u_du},
MxM Ut u— JM M

where the supremum ranges over all uy,u_ € C(M) such that uy (resp. u_) is a
positive (resp. negative) weak KAM solution, and such that uy = u_ on the set
A:={x € M; coo(z,2) = 0}. Moreover, coo(x,y) = min,c g{coo(, 2) + coo(z,y)}-

3. (Bernard-Buffoni [7]) The constant ¢ satisfies

c=min [ ailay)dr(oy),
T JMxM

where the minimum is taken over all m € P(M x M) with equal first and second

marginals. The minimizing measures are all supported on D := {(x,y) € M X

M; Cl(xay> +Coo(yax) = C}'

4. (Mather [49]) The constant ¢ = infy, [, L(x,v) dm(x,v) where the infimum is taken
over all measures m € P(TM) which are invariant under the Euler-Lagrange flow
(generated by L ).

5. (Fathi [25]) A continuous function u : M — R is a viscosity solution of H(z, Vu(zx)) =
c[0] if and only if it is Lipschitz and u is a negative weak KAM solution (i.e. T, u +
cl0]t = w). In particular, the statement is false if c[0] is replaced with any other
constant c.

In the language of transfers, the cost-minimizing transport is both a forward and back-
ward linear transfer, with forward (resp. backward) Kantorovich operators given by 7, f(x) =
Vi(t,x) and T, g(y) = W;(0,y), where

Vi(t',x) = inf{f(v(0)) +/0 L(v(s),4(s)) ds; v € CH([0, '), M), »(¢') = z}

62



and W{(t',y) the value functional

t
Wyt y) = sup{g(r(t)) - /t L(y(s),4(s)) ds; v € CH([0, '), M), ~(0) = z}.
Observe that Vy(t,z) = S~ f(z), while W/}(0,y) = STg(y). Hence (with unfortunate signs),
T,"f = S; f(z), while T, f(z) = S;” f(z). Note also the translation of terminology in this
setting: Our backward weak KAM solutions are Fathi’s positive weak KAM solutions, while
the analogous forward weak KAM solutions are Fathi’s negative weak KAM solutions.
One can proceed with the construction outlined above to construct the negative (resp.
positive) weak KAM solutions as the image of the Kantorovich operators T (resp. T.),
and they will be given by

Toof(x) =sup{f(y) — coo(@,y); y € M} and T [f(y) = inf{f(x)+ coolz,y); x € M}

where coo(z,y) := liminf; o ¢ (z,y).

The backward (resp. forward) generalised Peierls barrier associated to T, (resp. T.f)
are the same and is the cost-minimizing transport with cost c.,, which by duality we can
write as

inf{ CoolT,y)dm(z,y); me K(u,v)} = sup{/ TLf dl// T oTh fdu; f e C(M)}.
MxM M M

It can be checked this is exactly the statement 2 in the above theorem.

8.4 The Schrodinger semigroup

Recall the Schrodinger bridge of Example 4.5. Let M be a compact Riemannian manifold

and fix some reference non-negative measure R on path space Q@ = C([0,00], M). Let

(Xt): be a random process on M whose law is R, and denote by Ry the joint law of the

initial position Xy and the position X; at time ¢, that is Ry; = (Xo, X¢)xR. Assume

R is the reversible Kolmogorov continuous Markov process associated with the generator

1(A = VV - V) and the initial probability measure m = e~V dx for some function V.
For probability measures p and v on M, define

Tils) o= int{ | HOF m)du(o): 7€ Kl ), dnla,y) = dula)dra(w)) (215
M
where dRo(x,y) = dm(z)drf(y) is the disintegration of Ry with respect to its initial

measure m.

Proposition 8.8. The collection {T;}i>0 is a semigroup of backward linear transfers with
Kantorovich operators T, f(x) := log Sye/ (x) where (Sy); is the semi-group associated to R;
in particular,

Ti(p,v) = sup {/M fdv — /M log Syeldp; f € C’(M)} (216)

The corresponding idempotent backward linear transfer is Too(p,v) = H(m,v), and its ef-
fective Kantorovich map is Tno f(2) := log Sece’, where Seog := [ gdm.
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Proof: It is easy to see that for each ¢, T; is monotone, 1-Lipschitz and convex, and
also satisfies Ty(f + ¢) = Ty f 4 ¢ for any constant c. It follows that 7,%,(f) = [, Tvf dp
for each t by Proposition ??. The semigroup property then follows from the semigroup
(St)¢ and the property that T; = T is a backward linear transfer with Kantorovich operator
T, o T f(z) = log S;Ssef (v) = log Ssiief (z) = Ty sf(z) by Proposition 6.3.

Now we remark that it is a standard property of the semigroup (S;); on a compact
Riemannian manifold, that under suitable conditions on V, Sie/ — Syce/, uniformly on M,
ast — oo, for any f € C'(M). This immediately implies by definition of T}, that T} f — Too f
uniformly as t — oo for any f € C(M). We then deduce from the 1-Lipschitz property, that
TioTw f(z) = Too f(x). We conclude that T is a Kantorovich operator from Theorem 8.5.
Finally we see that Too(p, v) is

Telw) i=sup{ [ fav— [ Tofaus f e can)
:sup{/fdl/log/efdm; feCM)}
= H(m,v),

(see Section 9, for the last equality).

9 Weak KAM solutions for non-continuous transfers

We now deal with cases where T is not necessarily weak*-continuous on M (X).

9.1 The case of non-continuous transfers with bounded oscillation

We now consider situations where 7 is not equicontinuous, but there is some control on the
oscillation of the transfers 7".

Lemma 9.1. Let X be a compact space and let T be a backward linear transfer such that
D1(T) contains the Dirac measures. Assume that

T (10, po) < oo for some po € P(X). (217)

Then, the following properties hold:

1. o(T) = sup,, W20 ml €L Cinf (T (1, 1) 5 € P(X)} < +o0.

2. For each f € C(X) and x € X, we have

lim sup i @) < o). (218)
3. For each f € C(X) and p € P(X), we have
liminfl/ T™fdp > —T (w, ). (219)
n n Jx
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4. For each n € N, we have

sup /(T"f(:c) +ne)du > inf f(y). (220)
peP(X) yeX
5. If for some K > 0, we have
liminf{ inf 7"(u,p)— inf T™(uv)} <K, 221
im in {Melg(X) (ks 1) LU (ks v)} (221)
then,
sup liminf 7" f(x) + nc < sup f(y) + K. (222)
zeXx T yeX

In the next section, we shall prove that actually,

o(T) = inf{T (u, ) ; p € P(X)}.

Proof: 1) Let T be a backward linear transfer and consider for eachn € N, 7, = T*T*...xT
the backward linear transfer obtained by iterating its convolution n times. The sequence
my, = inf{Tp(u,v); p,v € P(X)} is superadditive, that is my, 1 = m, +my for all positive
integers, n, k. Since

m 1
7" < sup 5771(#0,,“0) < T (po, po) < 400,
n

it follows that there exists a number ¢(7) € R such that

lim % .= lim ! inf {7, (p,v); p,v € P(X)} = supinf Tulp,v) =c(T) < +o0.  (223)

n o n n n n MV n

2) follows from 1) since

77 (@) =supd | 1 do = To(a.0)s 0 € PX))

sup f —inf{Tp(z,0); 0 € P(X)}
sup f — inf{7n(p,0); p,0 € P(X)}.
For 3) note that

[ s an=sup( [ £ do = Taw.o)i o € PX)
X X
>/deu—’fn(u,u)
>/deu—nT(M,u)-
4) Write
sup /(T”f(a:)+nc) du= sup sup { [ fdo— Ty(u,0)+nc}

neP(X) HEP(X) oeP(X)
=inf f —inf 7,,(u, 0) + nc
X %

> inf f.
1£1(f
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The latter inequality follows from Lemma 11.1 since inf, ; T (1, 0) < ne.
For 5), write

sup iminf 7" f(x) + ne < liminf sup 7" f(x) + ke
zeX T noozeX

=liminfsup sup { /[ fdo—T"(z,0)+ nc}
" reXoeP(X) JX

<liminfsup sup {sup f — T%(z,0) + ke}
" zeXoeP(X)

= — i inf inf {7T"(z,0)—
sup f 1mnsup nf ael’lr?l(X){ (x,0) —nc}

<sup f — limnsup maier%jf(x){T"(ﬂ, o) —nc}

<sup f — limnsup maier%)f(x){T"(u, o) —nc}

<sup f+ K.
Now we can prove the following.

Theorem 9.2. Suppose T is a backward linear transfer on P(X) x P(X) such that Di(T)
contains all Dirac measures. Assume (217), (221) and

sup inf T (x,0) < +oo. 224
xGEUEP(X) (. 2) (224)

If T:C(X) = USC(X), where T is the backward Kantorovich operator associated to T,
then there exists h € USCy(X) such that Th+c¢=h on X.

Proof: Note that condition (224) means that 7" f is bounded below for any f € C(X) and
any ¢ € N. We distinguish two cases:

Case 1: Assume the following:
There is f € C(X) so that Vo € X, there exists n € N with 7" f(z) + nc < f(z). (225)

Since T" f is in USC(X), then for each z € X, there exists n € N such that T" f + nc < f
on a neighborhood of z, and since X is compact, there is a finite number r of iterates of T’
such that infoc;c (T f +ic) < f.
Set g, = infi<i<, (T f +ic) and note that g, € USC(X), inf g, > —o0o because of (224), and
gr < f. Note now that

Tg.+c< inf {T'f +ic}.

2<i<r+1

< 1 i f . .

It follows that the sequence {T"g, + nc}, is decreasing to some function h € USC(X).
Note that h < g, hence is bounded above.

Now we show that h is proper, that is not identically —oco. Indeed, if it was, then for
every x, the sequence g,(z) = T"g,(x) + nc will be decreasing to —oo. It follows that for
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each x € X, there exists ¢, such that g;(x) < infg, — 1, hence on a neighborhood of z
since g; is in USC(X). By compactness and since the (g, ), is decreasing, we get a function
gn such that gy < infg, — 1 on X. On the other hand, the preceding lemma yields that
SUP,ep(x) [ gn dp > inf g, Tt follows that

inf g, < sup /gN dp < inf g, — 1,
peP(X)

which is a contradiction, hence h is proper.
Finally, note that by Lemma 4.2, we have

Th+c=TUmT"g, +nc) +c=UmT" g, + (n+ 1)c = h.
n n

Case 2: We now assume that for any f € C'(X), there exists x € X such that
T"f(x) +nc> f(x) forallneN. (226)

We now consider for each f € C'(X), the function f := liminf,, T" f +nc. 1t is clear that f €
USCy;(X), and by our assumption, there exists x € X such that f(z) > f(x) > —oo, and

hence it is proper. On the other, we have by Lemma 9.1, that sup,cx f < sup,cx f(z)+ K.
Moreover, by Lemma 4.2,

Tf+c=Tlminf T"f 4+ nc) + ¢ > liminf 7" f + (n + 1)c = f.
n n

It follows that the sequence {1 f + ne}y is increasing to a function h € USCy(X). Note
that h > f, hence it is proper. On the other hand, by Lemma 9.1, we have h < sup f <
sup f + K < 400 and we are done.

Corollary 9.3. Let X is a compact space and let T be a backward linear transfer such that
Di(T) contains the Dirac measures. If T is bounded above on P(X) x P(X), then

Tn(p1,v)

n

— ¢ uniformly on P(X) x P(X). (227)

Moreover, there exists an idempotent operator To, : C(X) — USCy(X) such that for each
feCX), Toof is a backward weak KAM solution.

Proof: Note that conditions (217) and (224) are readily satisfied. To prove (221), one can
easily see that for any p,v € P(X),

inf 2 inf T < V) <2 inf 7o,
7;1;7)7?L+ #EPT Tota2(p,v) ;1X117))T+7;I>}P7;1

from which follows that

sup’7;+2—7glx11;37;+2§28up7'+ inf 7, — inf 7, — 2 inf T

PxP PxP PxP PxP PxP
=2sup7 —2inf T
PxP PxP
=: K < 0.
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Theorem 9.2 then applies to get a weak KAM solution h in USC,(X).
Note now that since h is bounded above and is proper, i.e., h(xg) > —oo for some xg € X,
we have

h(zo) — sup Tn, < Tph(y) =sup{ | h do—Ty(y,0} <suph — inf Ty,
X PxP

PxP oeP JX
hence
inf 7, —suph < nc— h(zg) < sup T, — h(zg) < inf T, + K — h(zo),
PxP X PXP PxP
and
—-K < 7;1(:“‘7 V) —nc< K+ Suph - h(l‘l))v (228)
X
from which follows that
Tnl,v) — ¢ uniformly on P(X) x P(X). (229)
n

Note now that (228) yields that for every f € C(X), there is C' > 0 such that
17" f + nelloo < [Iflloo + C, (230)

from which follows that Tf :=liminf, T"f + nc is bounded, belongs to USC(X) and sat-
isfies T(T'f) + ¢ > T f. The sequence (T™(T' f) + nc), is therefore increasing to a function
Toof in USC,(X) such that To T f + ¢ = Teo f - 0

Here is another situation where we can obtain weak KAM solutions. It will be relevant
for the stochastic Mather theory.

Proposition 9.4. Suppose T is a backward linear transfer on P(X)xP(X) such that D1(T)
contains all Dirac measures and that (217), (224) hold. If there exists u,v € USC(X) that
are bounded below such that

T'"w+nv=u forallneN, (231)

then there exists h € USC(X) such that Th + ¢ = h on X, where T is the backward
Kantorovich operator associated to T .

Proof: Note that (231) and Lemma 9.1 yield that necessarily —v(z) < —¢, from which
follows that
Ty +nec<u forallnéeN.

Applying T™ and using the linearity of T with respect to constants, we find 7" u+cn <
T™u, and hence
Ty + c(m +n) < T™u + cm

So n — T™u+ cn is decreasing. The same reasoning as in Case (1) of the proof of Theorem
9.2 yields that (T"u+cn),, decreases to a proper function h € USC(X) such that Th+c=h
on X.
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9.2 Weak KAM solutions associated to non-continuous optimal mass
transports

The following extends a result established by Bernard-Buffoni [7] in the case where the cost
function c(x,y) is continuous.

Corollary 9.5. Let ¢ be a bounded lower semi-continuous cost functional on a compact

space X and consider the associated optimal mass transport

T (p,v) = inf{ . c(x,y)dm(z,y); 7 € K(p,v)}. (232)

Let coo(z,y) := liminf,, o0 cn(x,y), where for each n € N,
en(y,x) = inf {c(y, x1) + c(x1, 22).... + c(Tp_1,2); X1, T2, Tn—1 € X }.
Then, the following hold:

1. The corresponding effective transfer is given by

Toolptsv) = Teos (pyv) i=inf{ | coola,y) dmlz, y); m € Kp, v)}, (233)

and the associated effective Kantorovich maps are given by

T f(x) = sup{f(y) — co(z,y) s y € X} and T, f(y) = inf{f(z) + coo(z,y) ; © € X}
(234)

2. The following also holds

o(T) = inf{T(p,p);p € P(X)} = Mél;gi&) /XxX c(x,y)dn(z,y);m € K(u,v)}.. (235)

3. The set A:= {0 € P(X);T(0,0) =0} consists of those o € P(X) supported on the
set A={z € X;co(x,x) =0}.

4. The minimizing measures in (235) are all supported on the set

D = {(l’,y) €X xX; C(iL',y) + Coo(yvx) = C(T)}

Example 7.1: Iterates of power costs: Let ¢,(z,y) = |z — y|P for p > 0, then, ¢, *
cp(z,y) = inf{jx — 2P + |z — y|P; 2 € X} is minimised at some point z = (1 — A\)z + Ay

on the line between x and y, so that ¢, x ¢,(x,y) = (AP + (1 — A)P) |z — y|P. For p > 1, the

optimal A is % Hence, by considering 7, to be the optimal mass transport associated to

¢p with its corresponding Kantorovich operator, Ty, f(z) = sup{f(y) — ¢p(z,vy); y € X}, we

then have 1

(T,)" f(@) = sup{f(y) = — |z — yP"}.

Hence when n — oo, (Tp)" f(z) — sup, f(z) = Too f(x) and ¢(7,) = 0.
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10 Linear transfers and ergodic optimization

This section was developed jointly with Dorian Martino [46]. We shall consider here linear
transfers where the associated Kantorovich maps are affine operators that is of the form
T~ f(x) = Tf(z) — A(z), where T is a Markov operator and A is a given function (ob-
servable). We have already noted that if A = 0, then the general Aubry theory reduces
to standard ergodic theory. In this section, we shall see that the presence of A allows the
theory of transfers to incorporate ergodic optimization for expanding dynamical systems.
For simplicity, we shall focus here on the case where the linear Markov operator is given by
a point transformation o.

Proposition 10.1. Let 0 : X — X a continuous onto map on a compact space X, and
assume there is a compact space Y such that for each y € Y, there exists a compact subset
Xy of X and a continuous map 1, : X, — X such that o o ty(x) = x for all z € X,.
Let A € C(Y x X) be a continuous function and consider the lower semi-continuous cost
function ¢ : X x X — RU {400} defined by

C(Z T) = inf{A(yvx); /S vaTy(x) = Z} ifo(z) ==
T 4o otherwise,

where for each v € X, Y, :={y € Y;z € X,}. Assume that x — A(z) := c(z,0(z)) is
continuous and sup,ey A(z) < +o0. Then,

1. The optimal mass transport T associated to the cost ¢ has a backward (resp. forward)
Kantorovich operator given by

Tg(z) = g(o(z)) — A(x), (resp., T'f(x)= Jnf {£(7y()) + Ay, 2)}),

2. The following duality formulae holds:

e(T):= inf T(u,p)

HEP(X) inf{ /X Aly, =) dji(y, 2); 1 € Mo}
= inf{/X A(@) dp(x); p € Po(X)}

= sup inf {f(z) — f(o(2)) + A(2)}

fec(x) zeX

= Jnf inf {f(7y(2)) - f(z) + Ay, 2)}

3. Moreover, there exists h € USC,(X) such that
h(o(z)) — A(x) +c(T) = h(x) for allz € X, (236)
equivalently,

yiél}fz{h(ry(x)) + A(y,2)} —e(T) = h(z) forallze X. (237)

Remark 10.2. The assumption that o is surjective ensures that c is lower semi-continuous.
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i {/Xfi(ﬂf)dﬂ(ﬂf);MEPU(X)}z sup inf {f(z) — f(o(z)) + A(z)}

fGC(X) zeX

ProoFr. (1) is straightforward, For (2) note first that the dualities
nf

and
e [ Al 2) i) i Mo} = sup indind (S(7,(2) ) + Ay, )

are established by a standard application of the Fenchel-Rockafeller duality formula. Indeed,
for the first, let h1, he : C(X) — R be defined by hi(p) = sup, ¢(z) — A(z) and

hz(cp):{ 0 if ¢ is in the closure of {f oo — f; f € C(X)}

—oo otherwise

then their respective Legendre transforms are given by

hi‘(u)z{ [x Adp if p e P(X)

400 otherwise
and
ha() = 0 if p e Py(X)
2V —o0 otherwise
where hi () = supyecx{[x ©(x) du(z) — hi(p)} and h3(p) == infeoon{ [y w(@) du(z) —

ha(p)}. It now suffices to apply the formula

inf {hi(p) —ha(u)} = sup {ha(p) —h(e)}.

REM(X) weC(X)

Similarly, let hi, he : C(X) — R be defined by hi(p) = SUD(, e X o(y,r) — A(y, x), where
X :={(y,x); r€ X,y € X,} and

ha(p) = {
Their respective Legendre transforms are then given by

hf(g):{ [x Adp if e P(X)

400 otherwise,

0 if ¢ is in the closure of {f — fo7,; f e C(X)}
—o0o otherwise.

and
N if 1 € My
ha (i) = { —o0 otherwise,
where Mg := {,u € P(X) | f f(ry(z)) — f(x) du(y,x) = 0}. It now suffices to apply again
the formula  inf { T(a) —h5()} = sup {ha(yp) —hi(p)}.
peEM(X peC(X) B
To equate the two duahty statements, we observe by definition of A that

Inf {f(z) — f(o(x)) + A=)} = inf inf {f(z) = fo(x)) + Aly, o(x))}

zeX era’(z) Ty (U(I)):

= inf inf {f(7,(2)) — f(2) + A(y, 2)}

zeX yeyY,
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where the last equality holds by making the change of variable z := o(x), along with the
fact that o is assumed to be surjective.

To establish further equality with inf,,cp_(x) T (1, 1), we just note that the optimal plan for
T (u, 1) must be supported on the graph of o since c is finite only on these points. Hence
7 = (id X 0)#p, so that T(u, pn) = [ c(z,0(z))du(z) = [y Adp.

(3) To establish the existence of a function satlsfylng (236), note that this is equivalent
to having a function h such that T~ h(z)+c(T) = h(z) and Tt h(z) —c(T) = h(z), hence it
suffices to show that the assumptions of Theorem 9.2 are satisfied (see also Remark 10.3).
For that, first note that by a theorem of Bogolyubov and Krylov, o has an invariant measure
i, hence T (i, i) < 400 and condition (217) is satisfied. On the other hand, we have for
each r € X,

sup inf T (6:,v) < sup A(z) < +oo,

zeX vEP(E) xeX
hence Condition (221) is also satisfied. Finally, in order to show (224), we let for each
n € N, u, € P(X) be such that Ty, (pn, (6™)gtn) = inf,, Tn(p, v). Up to extraction, we can

assume that (% D (Jk)ﬁun> \ converges to some i € P(X). Then g is o-invariant.
ne
Indeed,

Ly 1=, 1 _
oyt = lim = (oFyun = lim, <n (@ st + (0" Vet = ) | =

k=1 k=0

Up to extraction again, one can assume that there exists K > 0 such that

‘/Adu—Z/Ad )

\ n'
Finally, we obtain
lim inf f — inf n{l,
imiad (g o) =, i Tl
< liminf 7, (7, /i) = To(pin, ()31t
n—1
k okl
lﬂngT = T((6")ghtn, (" )g1in)

hnnilcgfn</ Adu—Z/Ad WN>

Theorem 9.2 now applies to get the existence of h € USC,(X) such that T~ h + ¢(T) = h.
Remark 10.3. In fact, for any g € C(X),

\

7 limsup, o (0" (@), if Alz) = (T
T o9(x) = 1i£ﬂ_>solip{g(0”($)) +n(c(T) — A(z))} =  +oo, if A(z) > ¢(T)
—00, if A(z) < (T

solves (236).
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10.1 Ergodic optimization in the deterministic holonomic setting
Fix r» € N, and let M be an r x r transition matrix. Denote by
S={ze{l,.,r}N|Vi>0, M(zjzi1)=1}

the set of admissible words, its dual

S ={ye{l,. .. rN|Vi>0, M(yis1,y) =1},

and consider the space

~

$ = {(y.2) € T x T| M(yo,a0) = 1}.

For each z € X, we let £* = {y € ¥* | (y,z) € X} and assume that Vz, X% # 0.

We will denote the words of ¥ with their starting letters, i.e., (zg, 1, ...) while the words
in ¥* will be identified with their ending letters, i.e., (...,y1,v0). We consider ¥ and ¥* as
metric spaces with the distance d(z,z) = o~ min{jeN; =;#%;} Tp particular, all these sets are
compact.

Consider now the two continuous maps ¢ : ¥ — X and 7 : 3 — Y defined as

o(xg,x1,...) = (x1,22,...) and 7(y,z) = (Yo, X0, 1, ...)-

We will denote 7(y, z) by 7,(x) and consider the set of holonomic probability measures

Motz{uGP I/ny )du(y,:v)ZO}-

An application of the previous proposition yields the following results of E. Garibaldi and
A. O. Lopes related to the Aubry-Mather theory for symbolic dynamics [?].

Proposition 10.4. Given A € C(X), then the following hold:

= ug}\go/ Adp = fesgp (ylil)fezf(Ty( z)) — f(z) + Ay, z). (238)

Moreover, there exists h € USCy(X) such that

1€n2f* h(ty(z)) + A(y,z) — c(A) = h(z) VzeX. (239)

Remark 10.5. If we iterate T™, we obtain Vk, Vf € C(X), Vz € %,
k_l . . .
(THEf(x) = inf {f(Tykl(x’f—l)) +Y AW, at) [ 2% =a, Vi, g €55, 2t = W(ﬂ)} ,
i=0

which correspond to the non-regularized Mané functional S§ Garibaldi and Lopes [?] where
we limit the number of steps to k and with € = 0.
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10.2 Ergodic optimization in the stochastic holonomic setting

We now propose the following model: Given X° € ¥ a random word, we consider a random
“noise” BY € %0 and let X0 = 750(X?). We then use a random “control” Y € X% o and
consider X1 := 7y0(X?). We assume that BY, Y, satisfy the following martmgale—type

property:
E[f(Y?, 750 (X)) X" = o(2)] = E[f(Y°,2)] for any f € C(D). (240)

Iterating this process, an entire random past trajectory of X° is represented via the
random family (X"), € ¥N. The goal is to minimise the long time average cost,

lim IE ZA (Y X1

n—oo N

among all possible such choices.

Remark 10.6. Note that (B*); also depends on such a choice, one should define a brownian
motion on each X or fix a probability measure on each X} and choose B following this
law. Moreover, the choice of Y € 3%, depends only on BO, given the definition of )y
Y'eXg & 1= MYy, Xj) = M(Y()vBo))

Given now a “strategy” (Y"), € (29N, we consider for each n € N, the measure p, €
P(X) defined as

Ve € O(5), /2 Pl = - 3 Blp(V, X1

From (py)n, one can extract a subsequence converging to some measure M(Y )i. We denote

Mo = {pY)i | (Yi); is a strategy} € M(D).
For f € C(X) and (y,z) € 3, denote

LDV f() = f(ry (o) — fla) - LA ZH D 0@ Tn() ~To(w),

Note that the assumption made on the random noise B yields an Ito-type formula: For all

i 0 * 0 *
fel®), zeX, with BY € X0, YU € X0 ),

E[f(ryo(rpo(0(x)))) — f(o(2))] = E[DY" f(2)].

Let
No={neME) |Vf el /Dyf ) duy, z) = 0},

which is closed in M(X) as a kernel of a continuous linear map.

Lemma 10.7. We have My C Nj.
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PROOF. Each measure /,L(Yi)i € My,

Le [f(x7) - £(XO)] — 0.

n n—o00

.0 f@ dnata.) =

n—1
FCORE f(Xi)] =

1=0

Proposition 10.8. With the above notation, we have the following

c(A inf / dit = inf /Ad = su inf DY 1 Ay, z). (241
)= AeEMoNP(L) e HENONP(E = feC’pZ)(y, )es: f(x) (y, ). ( )

Moreover, there exists an h € USC,(X) such that

c(A) = yienzf* DYh(x) + A(y, x). (242)

PROOF. The last equality in (241), i.e

inf /Adﬂ: sup inf DYf(x)+ A(y,z) (243)
AENONP(X) fec(®) (v, z)es

is again an application of the Rockafellar-Fenchel duality. Indeed, consider the functions

[ CoE) - RU{+oc0}
I { o = sup, sle(z) - Al2)}

C(2) — RU{+oc}
ha : oo {0 if pc {Df | feC(®)}

—o0 otherwise,
and note that hy is convex lower semicontinuous and hs is concave upper semicontinuous.
Their Legendre transform h{(f1) = sup s {J ¢dft —h1(e)} and h3(f1) = inf, { [ o dfi—
ho(p)} are given by
. CAdp if e P(S
i) = { Je A e T

+00 otherwise.

If i € M(X) is nonpositive, there exists (pn), € C(Z)N such that ¥n, ¢, < 0 and
Js on dft —— 400. Thus, hi(pn) —— —oc and hj(j1) = +oo.
n—oo n—o0

If fi is positive, then

M) = sup_int [ pdi-g(:) + AG)
peC(S)7€X /T
= [ Adia+ sup inf (/ (p—A)dia — ¢(z) + A(z))
by peC(S )ZEE by

Adp+ sup. </1pd,u—supzp )) withy =¢p— A

by PpeC (X z€EX

Adu + sup a(i(2) — 1).
a€ER

WV
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Hence, hj(ji) = +oo if 1 ¢ P(X). If o € P(Y), [ ¥ diy < sup, g ¥(2) and b} (i) = [5 Adf.
Similarly,

0 if 1 € Ny

—oo otherwise.

Ve M(),  h(j) = {
Indeed, if ji ¢ Ny, there exists f € C(3) such that J& DY f(x)dfi(y,z) # 0. Hence,

W0 = inf | DV5(a) i) < int o [ D) dity.a) =

fec(x acR

If i € Np, by definition, hl(i) = 0.
The claimed equality is then a consequence of the Fenchel-Rockafellar duality inf; A (i) —

h3(i1) = supy, ha() — ha(e).
We now provide the proof of (242): Consider the functional: VYu,v € P(%),

X0~ v
T (u,v) == inf { E[A(Y?, X?)] | X9 = 750(X?) B e ©%,
X' =70(X0) ~p YO € X%,

Note first that if 7(u,v) < +oo, then necessarily v = o2#p. We then have X0 = o2(X))
and X® = 750(X?) = o(X1). So

T, v) = inf{EA(Y, (X )]5 X" ~ 1, ryo(o(X1)) = X1, 70 (02(X1)) = o(X 1)}

If we condition on X! in the expectation above, then

T, v) = / inf{A(y, 0()) ; 7y(0(x)) = x} dp(z / Adu,

where A is as defined in the deterministic section above. T is then a forward linear transfer
with forward Kantorovich operator

Yge C(R), Ve eX, Trg(z) :=inf{E[g(ryo(rpo(z)) + AY ", 750 (2))]; YO € EiBo(z)}'
T is also a backward linear transfer with backward Kantorovich operator

T~ f(x):= f(o®(x)) — inf A(y,o(z)).

y622(1>
Indeed, let v € P(X), g € C(X), then
(0 = sw [ gdu-Tluw)
HEP(X) J 3
— sup sup  Efg(rye(X%) — A(YO, X0
B X0~y YO BO X1rp
= sup sup Elg(ryo(rp0(X?))) — A(Y?, 750 (X°))]
XOnu YOES! o), BOESY,
B

= [ sw Elglrye(rpe(a)) AN, ()] do(o)
voes: o,

= —/T+(—g)(x)dy(x).
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At the same time, for p € P(X), f € C(X), then
(T (5) =sup{ [ v = T(uw) = [ Fao*ttu—T(u.o*#u)
= /f oo®dpu— T(p, o #u)
_ 0o2dy — . 0 1
_ / fostdp—  inf . AY.o(x))

_ / foo?du— / il Al0(@) duto)

o(z)

= [T 1) duta).

We now show that the hypotheses for application of Theorem 9.2 to the backward linear
transfer T (u, v) := T (v, 1), are satisfied.

First, it is easy to see that sup,cy inf,epx) 7-(6x,y) < +o00. Indeed, for a fixed z € X,
take any random noise B? € ¥* and random strategy YO € EiBo(x)’ and denote the law of

Tyo(Tgo(x)) by vz. Then

sup inf T (0, v) < sup T (7s,0,) < sup E[A(Y?, 750 (2))] < sup A < +o0.
zex VEP(Y) FIDY z€EX )S)

For the hypothesis, 3 € P(X), T (u, 1) < +o0o. The verification that (224) holds follows
similarly as in the proof of Proposition 10.1. Therefore we obtain the existence of a h €
USC,(X) such that

T~ h(z) +¢(T) = h(z), VzeX.

With g := —h, this is equivalent to
Tg(x) — o(T) = g(). (244)

The corresponding Mané constant is given by

oT) = lim lir1f771(,u,y)

n—00 N, W,V
1 n—1
. . . L . i i
= nlgglo Lr}f - Z;mf{E[A(Y , X}
1=

= lim inf  inf /Ad,uq(lw)i
~v

n—00 [,V X0~y X1

= inf / Adj
pEMoNP(E) J35
= ¢(A).

Replacing = with o(z) for x € ¥ in equation (244), we have
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Recalling the definition of T and the martingale assumption (240), we can write
o(4) = T*g(o(w)) - g(o(2)) = mf{Elg(ryo(p0(0(2))) + A", 7po (0 ()]} - g(0(x))
= inf{Elg(ryo(z)) + A, 2)]} — g(o(x))
= nf {9(7y(2)) = g(o(2)) + Aly, 2)}

= inf*{Dyg(x) + Ay, )}
yex;

In view of the duality (243), this implies that (241) holds and concludes the proof.

11 Regularizations of linear transfers and applications

We continue to deal with cases where 7T is not necessarily weak*-continuous on M(X) and
may even have infinite values. The strategy now is to reduce the situation to the bounded
and continuous case via a regularization procedure.

11.1 Regularization and weak KAM solutions for unbounded transfers

Lemma 11.1 (Regularisation of a backward linear transfer). Let (X,d) be a complete
metric space and let Wy(u,v) be the cost minimising optimal transport associated to the
cost d(x,y). For a given backward linear transfer T : P(X) x P(X) — R U {+oo}, we
associate for each € > 0 the functional
el 1
Te(p,v) := 1nf{gW1(u, o1) + T (o1,02) + ;Wl(ag, v); 01,02 € P(X)}.
Then, T¢ has the following properties:

1. T¢ is a weak* continuous backward linear transfer.
2. inf{Tc(u,v); p,v € P(X)} = inf{T (u,v); p,v e P(X)}.
8. Te(u,v) < T(p,v) and Te(p,v) 1T (p,v) as € — 0.
4. Te T-converges to T as € — 0.
5

. If T., T, denote the backward Kantorovich operators associated to T¢, T, respectively,
then for any f € USC(X), Tef(z) T f(x) ase — 0 .

ProoF. First note that since d is continuous, the linear transfer WW; is weak-* continuous
on P(X) (See e.g., [55], Theorem 1.51, p.40).

1. We know that for each fixed € > 0, 7T¢ is a weak™ lower semi-continuous linear backward
transfer. To prove that it is continuous, assume w, — p and v, — v. By the lower semi-
continuity, we have liminf,, 7¢(tn, vn) = Te(p,v). On the other hand, from the fact that
limsup,, inf,, 5, < infs, 4, limsup,,, we have

1 1
lim sup 7 (pin, ) < inf{lim sup EW1(,un,01) + T (01, 02) + limsup Ewl(@, vn); 01,09 € P(X)}

1 1
= inf {€W1(/J, 0'1) +T(O’1,O'2) + EW1(O’2,V); 01,02 € P(X)}

= Te(p,v),
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which shows that Tc(pn, vn) — Te(p, v) as n — oo.
2. Observe from the definition of 7¢, that
1 1
nf{T.(0 )} = inf {(2Wi(,0) + T(0,0") + Wi(0',0)} (245)
v o0 ,uv € €
and it is clear that for fixed o,0’, the minimal u is o, and v is ¢/, and the transport cost
Wi(u,0) =0=Wi(co,v).
3. The inequality Tc(u,v) < T (i, v) holds by selecting 0y = pu and o2 = v and noting
that Wy(o,0) = 0 for every o € P(X). The monotone property of € — T¢(u, v) is immediate
by definition. Let now of, 0§ realise the infimum

1 1
Telwv) = - Wil o) + T(o2,0%) + Wi (02, 0). (246)

By refining if necessary, we may assume that o

L' > 5 and 02 - 59 as e — 0. If
SUpeso Te(p, v) < o0), then Wi(u,0l) — 0 and Wi(o2,v) — 0 as € — 0, hence 71 =

and g3 = v. Then (246) and weak-* lower semi-continuity of 7 implies
liminf 7;(p, v) > liminf T (o, 62) > T (1, v).
e—0 e—0

4. First recall that for I'-convergence, one needs to prove the I'-lim inf inequality: For ev-
ery sequence (u€, v¢) — (u,v), it holds that liminf._,o 7c(u€, v¢) = T (u,v), and the I'-lim sup
inequality: There exists a sequence (u€,v¢) — (u,v) such that limsup, o 7c(p,v°) <

T (. v).

The I'-limsup inequality is immediate: Take (u¢,v¢) = (u,v), and the inequality follows
from 7. < 7T.

For the I'-liminf inequality, we can assume without loss that liminf. .o 7c(u, v°) < 400,
since otherwise there is nothing to prove. Now by monotonicity, we have Tc(u¢,v¢) >
T (u, v¢) for € < €. The weak-* lower semi-continuity of 7. therefore implies

lim inf 7¢(p€, v¢) > liminf 7o (u€,v) = To(u, v).
e—0 e—0

By 3) and letting ¢ — 0, we obtain lim inf_, Tc(u, v¢) = T (u, v).
5. First note that the monotonicity of T, f(x) is immediate from the expression

T.f(x) = sup {/ fdo —T:(6a, a)} ,

and the monotonicity of 7. We immediately have liminf._,o T, f(x) > T'f(z). On the other
hand, let €; be a sequence such that T¢, f(x) — limsup,_,o T f(x). Then

T, f(x) = sup {/fda - ﬁ(éx,a)} = /fdaej — Te; (0z,0%).

By refining to a further subsequence if necessary, we may assume 0% — ¢*. Then we obtain
with 7 — oo,

limsup T, f(z) < / fdo* —liminf 7, (05, 0%)
e—0 J—0

< [ 10 = TG0
< sup { [rao- mx,o)} — Tf(x),
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where the second inequality was obtained from the I'-convergence.

Lemma 11.2. Let X be a compact metric space and let T be a backward linear transfer
such that D1(T) contains the Dirac measures. Assume hypothesis (217) and let T; be the
reqularisation of T according to Lemma 11.1. Then, the following properties hold:

1. ¢(Te) is the unique constant such that |(Te)n(p, v) — nee| < Ce, for all n and all p,v.
2. ¢(Te) T e(T) as e = 0.
8. ¢o(T) = f{T(u,p); p € P(X)}.

Proof: Use Lemma 11.1 to regularise 7 to 7¢ , and let . be the modulus of continuity for
Te, which is also the modulus of continuity for (7¢),, the n-fold inf-convolution of 7¢. Use
now Corollary 8.1 for each € to find ¢, = ¢(7¢) with the properties stated there. Note, in
particular that ¢(7:) < ¢(T). It follows that ¢(7;) converges as e — 0. We let K(7") be this
limit. Note that K(7) < ¢(7). We shall prove that

o(T) = inf{T (p, p); p € P(X)} = K(T). (247)
This follows from the I'-convergence, since
o(Te) = inf{Te(p, p); p € P(X)} = Tepte: pre)

for some pie, then if i is a cluster point for (u) as € — 0, the I'-convergence of 7T implies
that ¢(T¢) = Te(pe, pre) — T (fi, i). If now v is any other probability measure, then T (v, v) >
Te(v,v) = Te(pie, pe), hence T (v,v) = T(p, i) = K(T) and

K(T) = inf{T (u, p); p € P(X)}.

On the other hand, for every u,

¢(T) = supinf Tulo,v) < sup 7;1(:;’ 1)

n OV n n

< T (w5 ),
since Ty, (i, ) is subadditive on the diagonal, hence ¢(7) < K(T) and (247) follows. 0

The above theorem has the following useful corollary, which implies the uniqueness of
the level ¢, where weak KAM solutions occur.

Corollary 11.3. Suppose T is a backward linear transfer on P(X)x P(X) such that D1(T)
contains all Dirac measures and that (217), (224) hold. Then,

1. If Tu+d < u for some d € R and some u € USC(X), then d < c.
2. If Tv+d > v for some d € R and some v € USC(X), then d > c.

Proof: If Tu +d < u for some d € R and u € USC(X), then T"u + nd < u for all
n € N. Applying T™ and using the linearity of T™ with respect to constants, we find
Ty 4+ dn < T™u, and hence

Ty +d(m+n) < T"u+ dm
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So n — T™u+dn is decreasing to a function @. But if d > ¢, then T"u+dn > T"u+ cn and
4 is proper by the first part of the proof of Theorem 9.2 and T4 + d = % on X. It follows
that for any p € P(X),
/ T udu = —nd+/ U dyt.
X X
On the other hand, let i be such that 7 (fi, i) = inf,ep(x) T (@, #) = c. Then, from Lemma
9.1 we have

1
liminf/ T"fdp > —T (@, p) = —c.
nJx

n

It follows that —c¢ < —d, which is a contradiction. 0O

Here is a case where we can associate to T an effective Kantorovich operator without
the equicontinuity assumption.

Theorem 11.4. Let X is a compact metric space and let T be a backward linear transfer
such that D1(T) contains the Dirac measures. Assume (217) and that for some e > 0, we
have

o(Te) = e(T), (248)

where Te be the regularisation of T according to Lemma 11.1. Then, there exists an
idempotent backward linear transfer To on P(X) x P(X), with a Kantorovich operator
T°:C(X) > USC(X) such that T o Too f + ¢ = Too f for all f € C(X).

Proof: Consider the regularisation 7, of 7. By Corollary 8.1, there exists a Kantorovich
operator T>° : C(X) — C(X), such that T, o T°f 4+ c. = T>°f for all f € C(X), and an
idempotent transfer 7c ... We have the following properties: Under the assumption that
Ce=c,

L T f < TP f for all f, whenever e < €.

2. There exists a i € P(X) such that 7(fi, i) = ¢, and [ T*fdi > [y fdf.

To see that property 1 holds, observe that from monotonicity in € for T, (see Lemma 11.1),
we obtain monotonicity in e for T.f(z) := limsup,, (7" f(z) + nc.) under the assumption
that ¢ = c. Hence by definition of T°f(z) = lim, oo (T" o T.f(x) + nc.), we deduce
monotonicity for 7.>°.

For Property 2, let fi. achieve ¢, = Tc(fie, fie). By Theorem 8.5, we have T¢ oo (fie, fte) = 0,
which implies [ fdfe < [ T2°f dfie.

On the other hand, extract a subsequence €; of the fi. so that ji; — ji. Then for any
e > 0, eventually, ¢; < e. It then follows the monotonicity of Property 1 that [, Te‘;o fdiie; <

Jx T2 f dfic;. Let j — oo to obtain

[ ran< [ m=ran
X X

The monotonicity of T>°f and the above lower bound ensures that for p-a.e. x, the
limit lime_,o0 7°° f(z) exists as a real number and is not —oo. In particular, we deduce
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that T f(x) := lime_o T° f(z), satisfies [ T*fdn > [y fdp; in particular, it is not
identically —oo, and belongs to USC/(X).
By Lemma 4.2, we have

ToT*®f(x)+c=lmToTXf(x)+c <UImT, oTf(x) +ce =lMm T f(x) =T>f.
e—0 e—0 e—0
On the other hand, the monotonicity in € gives
TXf=TcoTXf+ce <TegoTXf+c

for any ¢ > e. By Lemma 4.2 applied to T, and the sequence T2° f, we can pass the limit
in € through 7/ to obtain

T f(x) = I%Tfof(x) < h_I)I(l)TE/ oT®f(x)+c=TooTf(x)+c.
€ €

Now we let ¢ — 0 and use Property 4 of Lemma 11.1 to obtain Too f(z) < T o T f(z) + ¢,
and thus obtaining equality.
11.2 Weak KAM solutions for unbounded transfers

The following lemma shows that the above hypothesis ¢(7:) = ¢(7T) is not vacuous as it
occurs in many examples.

Proposition 11.5. Let T be a backward linear transfer with Kantorovich operator T. In
any of the following cases,

£ nf{T(,v)i v € P(X)} = nf{T(,)s € P(X)},

2. T is symmetric and for some eg > 0, T~ maps every continuous function to a 1/¢y-
Lipschitz function,

we have ¢(T¢) = ¢(T) for all small enough € > 0.

Proof: To see 1) note that inf{7 (u,v); u,v € P(X)} = inf{Tc(u,v); p,v € P(X)} for every
€ > 0. By property 2 of Lemma 11.1, and property 3 of Lemma 11.2, we get

o(Te) < ¢e(T) = #Eig(fX) T (p, p) = mf{T (g, v); p,v € P(X)} = inf{Te(p, v); p, v € P(X)} < e(Te).

For 2) write

Teuo ) = i (W (1) + Tlor,72) + =W (o2, )}

01,02 €

WV

1 1
inf {-W(p,01) —T(01,01) + T (01,02) + EW(O’z,M)} +inf{7(01,01); 01}

01,02 €

1 1
inf {~W(u,01) —T(01,03) + T (03,02) + EW(U%M)} +inf{T (01,01); o1}

01,02,03 €

= W) x (= T) % T (W) (o) + .

WV

82



It suffices to show that (1W)* (=7) * T * (W) (u, ) = 0. Note that we can write
(=T) > T(u,v) = wi{ =T (p,0) + T (o, )}

:it}fir;f{/Xde,u—/dea—FT(a,l/)}
— - +(_
—11}1f{/XT fd,u—l—/XT (—f)dv}.

Then with the notation that S. is the backward Kantorovich operator for %W, we arrive
at

(W) x (<T) % T ) (o) = inf (T () + (=T) % T(o1,02) + W o2, 0)}

€ 01,02 €

= inf inf {1W(,u,01)+/XTfd01+/XT+(—f)d02+1W(og,,u)}

f o1,02 €
— inf{~ /X So(-T f)du— /X So(~TH(—f)) dp}
~ inf{~ /X So(-T f) dyu - /X So(Tf) du)

—int(~ [ (-1 pap- [ T fap)
f X X
=0,
where the second-last equality follows from the fact that whenever g is %—Lipschitz, then
Sc9=g9
Proposition 11.6. Let S : C(X) — C(Y) be a Markov operator (i.e., a bounded linear

positive operator such that T1 = 1) and let S* : M(X) — M(Y) be its adjoint. Given a
backward linear transfer T : P(X) x P(Y) and A € (0,1), define

T v) = T AS 0+ (1 — ). (249)
Then, T is a backward linear transfer with Kantorovich operator
~_ _ 1 A
T f(z):=T <1_/\f> () — ﬁSf(x) (250)

Proof: Write
()" () = sup{ /X fdo — (o)}
= supf [ fdo = T(uAS"n+ (1= o)}

with & := AS*1 + (1 — A)o, we obtain 0 = 256 — ﬁS*,u. Hence after substitution we
obtain

T () =sunl | 5 do =Ty - 5 [ st

- ()2
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Theorem 11.7. Let T be a backward linear transfer on P(X) x P(X). Then, for every
A € (0,1), there exists a convex function @y such that the linear transfer given by

Ta(p,v) =T (p M(Ver) g+ (1 —Av) (251)

is such that

inf )ﬁ(w/) = Ta(s ).

inf
preP(X HeEP(X)
In particular, Ty admits weak KAM solutions, that is there exists g € USC(X) and c € R
such that

T g+c=Ag(Ve)+(1-XN)g. (252)

Proof: Let T (uo,v0) = inf,, T (i, ) < 400 for some py and vy, and use Brenier’s theorem
to find a convex function ¢ such that Vogpo = (1 — %)MO + %1/0.

Consider now the backward linear transfer T (i, v) := T (u, \Vp#u + (1 — A)v) and note
that T (1o, o) = T (o, o) < +00. Moreover,

Lnlg 7-(,“7 V) > Lng T(,U,, V) == T(MOv VO) = 7-(,LLO, MO) 2 lﬂf 7-(M7 ,u’)7

hence inf, , T (i1, v) = inf,, T (u, p)., and in particular, 7 satisfies the hypotheses of Theorem
11.4, and admits weak KAM solutions for its Kantorovich operator, which is given by
T f= T*(ﬁf) — %f o V. In other words, by setting g := ﬁf, we have

T g+c=Xg(Vp)+(1-=N)g.

11.3 The heat semi-group and other examples

Assumption (248) is actually satisfied by a large number of our transfer examples.

1) Let T be the backward transfer associated to a convex lower semi-continuous func-
tional I on Wasserstein space, that is 7 (i, v) := I(r). Assumption (248) then holds trivially
as ¢(T) = inf I in this case, and the associated idempotent transfer is Too (u, v) := I(v) — ¢,
while the corresponding idempotent operator is Too f = I*(f) 4 ¢, where I* is the Legendre
transform of I.

2) Assumption (248) clearly holds for any transfer that is {0, 400 }-valued provided (217)
is satisfied. Note that if 7" is a Markov operator, then assumption (217) means that 7" has
an invariant measure. In this case, ¢(7) = 0, and for every f, Tw f is an invariant function
under f.

3) If T is induced by a continuous point transformation, i.e., Tf(z) = f(o(x) for a
continuous map o : X — X, then by a Theorem of Bogolyubov and Krylov, T has an
invariant measure and the above applies. The operator T, is then given by

T f(x) = f(limsup o™ (xz)) := f(o™(x)).

m— 00

However, the regularity of the invariant functions T f can vary widely. For example,
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e If one takes X = [0,1] and o(z) = 22, then 0*°(z) =0, if z € [0,1) and 1 if z = 1. In
this case, T°°f only belongs to USCy(X).

e On the other hand, if o(z) =1 — z, then 0°°(z) = max{z,1 — z} is continuous.

4) The heat semi-group: Recall the Skorokhod transfer of Example 3. 4. Instead of
considering a stopping time 7, we let 7 =t > 0 to be deterministic, and define, for measures
1, v, on a compact Riemannian manifold M, the linear transfer,

0 if By~ pand By ~ v
7;(#’ V) = .

400 otherwise.
Then T;f(z) = E*[f(B;)] = P.f(x), where P, is the heat semigroup. Note that since the
volume measure Ajps, i.e., the uniform probability measure on M, is invariant, we have
Ti(Anr, Aar) = 0, hence Condition (217) is satisfied. We now have the following easy propo-
sition, which puts our asymptotic result in the following classical context.

Proposition 11.8. The collection {T;}1~0 is a semigroup of backward linear transfers with
Kantorovich operators {T;}1~0. The corresponding idempotent backward linear transfer
Too(p,v) = sup{ [y, fdv — [y, fddars f € C(M)} with Kantorovich operator Too f(z) =
fM fdAar.

Proof: It is immediate to verify that
(Tew)*(f) = sup{/ fdv; v such that By ~ v, By ~ pu} = / P, f(z)du(z).
M M

Moreover, it is a standard property of the heat semigroup, that P;f — P f = || v fdAar,
uniformly on M, as t — oo, for any f € C(M). By the 1-Lipschitz property of T}, we
conclude Ty o Too f = Too f .

12 Stochastic weak KAM on the Torus

In this section, we are interested in making the connection between our general notion of
linear transfers, stochastic mass transports, and existing work on stochastic weak KAM
theory, in particular, by Gomes [36]. We shall therefore restrict our setting to M = T¢ :=
R?/ Z%, the d-dimensional flat torus. Note that, unlike the deterministic Mather theory, this
does not fall under the Monge-Kantorovich setting.

First, we introduce the stochastic mass transport of a probability measure p to a prob-
ability measure v on P(M) in time ¢ > 0 (see e.g. [52] when the space is R? and ¢ = 1).
Define T¢(u,v) : P(M) x P(M) — R U {400} via the formula,

t
Ti(y,v) o= inf {E | L), B (5. X)) dsi X(0) ~ X (1) X € A[o,t]} . (253)

0
where L : TM — [0,00) is a given Lagrangian function which we detail below, and X is a

continuous semi-martingale with an associated drift Sx, belonging to a class of stochastic
processes A ;) defined below.
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Stochastic transport has a dual formulation (first proven in Mikami-Thieullin [52] for the
space R?) that permits it to be realised as a backward linear transfer. In fact, by introducing
the operator T} : C(M) — USC(M) via the formula

Tof(z) == sup {E[f<x<t>>|x<o> —4]-E [ / L(X(s). B(s, X)) ds| X (0) = ] }

XE.A[O’t]

(254)
the duality relation between T; and T; can be readily detailed, see Proposition 12.1. The
operator T; connects to the work of Gomes via a Hamilton-Jacobi-Bellman equation (255),

Concerning the assumptions on L, we make the following hypotheses.

A0) L is continuous, non-negative, L(z,0) = 0, and D2L(x,v) is positive definite for all
(2
(x,v) € TM (in particular v — L(x,v) is convex).
(A1) There exists a function v = (|v|) : R* — [0, 00) such that limj,_ % = +o00 and
lv]

limyy 00 % =0.

To complete the definition for 7;, we need to define the set of processes Ay ;. As in [52], let
(2, F,P) be a complete probability space with normal filtration {F;}:>0, and define Ao
to be the set of continuous semi-martingales X :  x [0,¢] — M such that there exists a
Borel measurable drift Bx : [0,t] x C([0,¢]) — R? for which

1. w— Bx(s,w) is B(C(|0, s]))+-measurable for all s € [0,t], where B(C([0, s])) is the
Borel o-algbera of C0, s].

2. Wx(s) == X(s)—X(0)— [, Bx(s',X)ds" isa 0(X(s); 0 < s <t) M-valued Brownian
motion.

An adaptation of their proofs to the case of a compact torus yields the following.
Proposition 12.1. Under the above hypothesis on L, the following assertions hold:

1. For eacht > 0, T; is a backward linear transfer with Kantorovich operator T;, and the
family {Ti}e=o0 is a semi-group of transfers under convolutions.

2. For any p,v € P(M) for which T;(j1,v) < oo, there exists a minimiser X € Ao, for
Ti(p,v). For every f € C(M) and x € M, there exists a maximiser for Ty f(x).

3. Fizt1 >0, and uw € C(M), the function U(t,z) := Ti,—yu(x) defined for 0 <t <ty is
the unique viscosity solution of

1
%—[i(t,w) + 58U (k) + H(z, VU (L a) =0, (ta) € [0,0) x M, (255)

with U(ty, z) = u(z).
4. If f € C®°(M) and t > 0, U(t',z) :== Ty_pf € CY2([0,t] x M) and U is a classical

solution to the Hamilton-Jacobi-Bellman equation (255). The maximiser X satisfies

Bx (s, X) = DpH(X(s), DU (s, X(5)))-
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In order to define the Mané constant ¢(7) and develop a corresponding Mather theory,
we need to establish that there exists a probability measure p € P(M) such that 77 (u, p) <
+00. Such a measure can be obtained as the first marginal of a probability measure m on
phase space T'M that is flow invariant, that is one that satisfies

AYp(x) dm(z,v) = 0 for all p € C?(M) where A% := 3Ap +v - V. (256)
T™

To this end, let P, (M) denote the set of probability measures on 7'M such that

|2 dmia.) < o,
™
and denote by Ny the class of such probability measures m, that is,

No :={m € Py(TM); A’p(z) dm(x,v) = 0 for all p € C*(M)}.

™

Proposition 12.2. The set Ny of ‘flow-invariant’ probability measures m on TM is non-
empty and

c:=inf{T1(p,p); p € P(M)} = inf{ L(z,v)dm(z,v); m € Np}. (257)

™

Moreover, the infimum over Ny is attained by a measure m, that we call a stochastic Mather
measure. Its projection pz on P(M) is a minimiser for Ty.
Conversely, every minimizing measure i of Ti(u, 1) induces a stochastic Mather measure

Proof: Given y € P(M), consider X € Ajg ;) that realises the infimum for 71 (u, p1), that is

1
Ti(u ) =E /O L(X(s), Bx (s, X)) ds.

Define a probability measure m = m,, € P, (T'M) via its action on the subset of continuous

functions ¢ : TM — R with sup(, ,yerm ‘w’gr(rvgz) < 400 and lim|( )00 wy(?vqf) — 0 via the
formula .
vla,) dm(e, )= B [ 6(X(5), 5x (5, X)) ds. (258)
TM 0

We claim that [, AY¢(z)dm(z,v) = 0 for every ¢ € C*(M). Indeed, by the definition of
m7

Ap(x)dm(z,v) = E 1 APXX) 05X (5)) ds
TM 0
1
=E %[@(X(s))] ds (Itd’s lemma)
0
= Ep(X (1)) — Ep(X(0))

=0,  (X(0) ~p~X(1)).
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This implies that m € N, so that

1
T1(p, 1) —E/O L(X(s),Bx(s,X))ds = /TM L(z,v)dm(z,v) > mlélj{[g /TM L(z,v)dm(z,v),
(259)

hence

inf > inf L(z,v) dm(z, v).
ot Tl > ot [ L) dm(e.o)

Conversely, suppose m € N, and let ¢(x,t) be a smooth solution to the Hamilton-Jacobi-
Bellman equation. Since [, AY¢(z,t)dm(z,v) = 0 for every ¢, it follows that p, :=
Ty Fm satisfies

d
[ oo = [ | [ o) a
= /1 Orp(x,t) dm(z,v)dt
0 TM
1
— [ [ o Velet) - @ Vapla, )] dm(a, ) dt.
0 TM
Since H(x,p) := sup, {{p,v) — L(z,v)},
v - VSO(JTat) - H(.I‘, Vz(p(x7t)) < L(J),’U),

hence combining the above two displays implies

/ (2, 1) — o, 0)] dpim() < / L(z,v) dmf(z, v)
M

TM

for every Hamilton-Jacobi-Bellman solution ¢ on [0,1) x M with ¢(-,1) € C*>°(M). Taking
the supremum over all such solutions ¢ yields

sup {/M[W(ﬂf, 1) = o(2,0)]dpm(z) ; ¢(-,1) € COO(M)} < /TM L(z,v) dm(z,v).

By duality, 71 (ttm, pm) = sup { [3,[¢(x,1) — o(2,0)] dum(z) ; ¢(-,1) € C(M)}, so that

T in) < [ Lia,0)dm(a,0) (260)
™
and therefore inf,cpary T1(p, 1) <[5, L(x,v) dm(z,v), and we are done. 0

The following summarizes the main asymptotic properties of {7;}¢>0.

Proposition 12.3. Let {T:}+>0 be the family of stochastic transfers defined via (253) with
associated backward Kantorovich operators {T;}1>0 given by (254). Let ¢ be the critical value
obtained in the last proposition. Then,
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1. The equation
Tiw+kt=u, t>0, ueC(M),

has solutions (the backward weak KAM solutions) if and only if k = c.

2. The backward weak KAM solutions are exactly the viscosity solutions of the stationary
Hamilton-Jacobi-Bellman equation

%Au + H(z, Dyu) = —c. (261)

PROOF. The fact that there are solutions for (261) was established by Gomes [36]. We
give a proof based on Proposition 9.4 that clarifies the relationship between such solutions
and the notion of backward weak KAM solutions.

Let @ > 0 and consider

+oo
uq(x) := inf {IE/ e "L(X(s), Bx(s,X))ds; X € Ajgy, X(0) = x} .
0
It is well known that one then has
t
uq(x) = inf {E/ e L(X(s), Bx (s, X)) ds + e uq(X (1) ; X € Ajpg, X(0) = x} ,
0

and 1
Qg — §Au0‘ + H(z, Dyuy) = 0.

It is straightforward to check that this implies that
Tiug + taug = Uq.

Proposition 9.4 applies to get the result with ¢t = n. Note that for constructing a viscosity
solution for (261), it suffices to find a weak KAM solution for T3. Indeed, suppose there
exists a function f € C(M) such that T} f(z) + ¢ = f(x) for all x € M, we need to show
that T, f(z) + ct = f(x) for all ¢t > 0. But note that from the semi-group property, the
claim is true for t = n € N. For other ¢ > 0, by writing uniquely t = n + o where n € N
and 0 < o < 1, it then suffices to prove that T, f(z) + ac = f(x). Note that the function
U(t,x) :==Ti—1f(x) + ¢(1 — t) satisfies the Hamilton-Jacobi-Bellman equation

{%3(7:,9;) + AUt @) + Ho(z,VU(t,2)) =0, te[0,1),zeM
U(lat) = f(I‘)

where H.(x,p) := H(z,p) + ¢, with the additional property that U(0,z) = U(1,z). We
may then apply a comparison result for Hamilton-Jacobi-Bellman (see e.g. [26], Section V.8,
Theorem 8.1) to deduce that in fact the condition U (0, z) = U(1,z) implies U (¢, z) = U(1,x)
for every ¢ € [0,1]. In particular, at ¢t = 1 — «, we deduce that T, f(z) + ca = f(x).

As to the relationship between 1) and 2) observe that if u is a backward weak KAM
solution, then U(t,x) := Ty, —su(x) + c(t1 — t) = u(x) is a viscosity solution to (262) where
the final time is ¢;. Hence u is a viscosity solution of (261).

Conversely, suppose u is a viscosity solution to (261).Then, (z,t) — u(x) is a viscosity
solution to (262). On the other hand, T}, su + c(t1 —t) is also a viscosity solution of (262).
By the uniqueness of such solutions, it follows that T3, _su(x) + c(t1 —t) = u(z). Ast; >0
is arbitrary, this shows that u is a backward weak KAM solution.

(262)
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We finish this section with the following characterization of the Mané value, motivated
by the work of Fathi [25] in the deterministic case. Let uw € C'(M) and k € R, and say that
u is dominated by L —k and write u < L — k if for every t > 0, it holds for every X € Ay
and every x € M,

E[u(X (1)) X(0) = z] — u(z) < E [/0 L(X(s), Bx (s, X)ds|X(0) = x| —kt.  (263)

Proposition 12.4. The Mané critical value satisfies
c=sup{keR : 3Ju such that uw~<L—k}.

ProOF. By the above, there exists a u such that Tiu + ¢t = u, so that by definition of T3,
t
(@) — ot > Eju(X(£)|X(0) = 2] — E U L(X(s), Bx (5, X) ds| X (0) = o
0

for every X € Ay . This shows that u < L — ¢, so c is itself admissible in the supremum.

On the other hand, if k¥ € R is such that u < L — k, then it is easy to see that Tiu(z) <
u(x) — kt for all t. In particular, applying Ty and using the linearity of Ts with respect to
constants, we find Tsu + kt < Tsu, and hence

T5+tu + k(t + S) < TSU + ks

So t — Tyu + kt is decreasing and the result follows from Corollary 11.3.

13 Convex couplings and convex and Entropic Transfers

First, recall that the increasing Legendre transform (vesp., decreasing Legendre transform)
of a function o : R™ — R (resp., f: RT \ {0} — R) is defined as

a®(t) = sup{ts — a(s);s > 0} resp., B3°(t) = sup{—ts — B(s); s > 0} (264)

By extending « to the whole real line by setting «(t) = +o0 if t < 0, and using the standard
Legendre transform, one can easily show that « is convex increasing on R* if and only if
a® is convex and increasing on RT. We then have the following reciprocal formula

a(t) = sup{ts — a®(s); s > 0}. (265)
Similarly, if 8 is convex decreasing on R™ \ {0}, we have

B(t) = sup{—ts — B2(s); s > 0}. (266)

13.1 Convex couplings

We now give a few examples of convex couplings, which are not necessarily convex transfers.
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Proposition 13.1. Let a : RT — R (resp., f : RT \ {0} — R) be a convex (resp.,
concave) increasing functions. If T is a linear backward (resp., forward) transfer with
Kantorovich operator T~ (resp., Kantorovich operator T™ ), then o(T) is a backward convex
(resp., forward convex) coupling associated to a family of (Kantorovich) operators (T, )s>o

S
(resp.,(T5 )50, where

T f = ST—(f) —a®(s) (resp., T f = sTH(L) — a®(s). (267)

In particular, for any p > 1, TP is a forward (resp., backward) convezr coupling.

Proof: It suffices to write
a(T(p,v)) = sup{s/ THfdv— s/ fdp—a®(s); seRY, feC(X)}
Y X

= sup{/ysTJr(Z)dV—a@(s)—/th,u;SER+,h€C(X)},

which means that «(7) is a forward convex coupling corresponding to the family of (Kan-
torvich) operators Ty f = sTF (%) — a®(s).

Example 11.1): A mean-field planning problem (Orrieri-Porretta-Savaré [58])

Let L : RY x R? — R be a Tonelli Lagrangian and F : R? x L>([0,T]; P(R%)) — R be
a functional that is convex in the second variable, and consider the following mean-field
planning problem between two probability measures p and v,

T, v) = min{/OT /RdL(:U,v) ot d) dt + /OT P, p(t,dz)) dt; v € L2(p(t, dx) dt)},

(268)
subject to p and v satisfying

Op+V-(pv)=0, p(0,")=p,p(T,")=v. (269)

Then, T is both a forward and backward convex coupling.
Indeed, following Orrieri-Porretta-Savaré [58], we consider for each ¢ € C([0, T], R?) the
Kantorovich operator defined on C(R%) via

Ty(u) = ug(T, z) — / /Q F*(2, ((t, z)) dz

where uy(t, z) is a solution of the Hamilton-Jacobi equation

—Owu+ H(x,Du) = ¢ inQ:=(0,T)xR% (270)
u(0,z) = wu(x). (271)

and F*(z,0) = sup { (¢, p) — F(z, p);m € L(0, T]; P(RY)}.
A standard min-max argument then yields that

T(u,v) = sup{/RdTgudV—/Rdud,u;ueC(Rd),KEC([O,T],Rd)}

_ sup{ /R (T, )y - /R ug(0,2) dp() — / /Q F*(, (1, ) dz; g solves (270)}.
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Remark 13.2. Another convex -but only backward- coupling can be defined as

T T
T(u,v) = min/ / L(z,v) p(t,dz) dt—l—/ F(x, p(t,dx)) dt; v € L*(p(t, dx) dt), (272)
0o Jrd 0
subject to p and v satisfying
op—Dp+V-(pv)=0,p0,) =p,p(T,) =r. (273)

We do not know whether 7 is a convex transfer. This is equivalent to the question
whether ¢ — Ty is concave, or equivalently whether the map ¢ — u,(T, z) is concave.

Example 11.2: A backward convex coupling which is not a convex transfer
Let © C R be a Borel measurable subset with 1 < || < 0o, A := ﬁ, and define for
any two given probability measures y, v on €2, the correlation,

0 if v e Cy(p)

i (274)
+o00  otherwise,

Ta(p,v) = {

where Cy(p) = {v € P(Q); A ‘%Z

measure on §2),

< lp-ae.}. Note that when p = Adz|q (the uniform

0 if ‘% < 1 Lebesgue-a.e.

+o00 otherwise.

Ta(Adzlo,v) = { (275)

We claim that T is a backward convex coupling but not a convex transfer. Indeed, for the
first claim, consider oy, (t) := (At)"™ log(At) for m > 1 and ¢ > 0, and define

dv :
m |52 ) du, ifv<<pu,
Tt o { S ([85]) e 6 << (276)
+00 otherwise.
By Example 11.1, 7, is a backward convex transfer and
(T (1) = inf{ [ [05((@) +1) = dua) s t € R) (217)
The function off can be explicitly computed as
— 5 W (Bmt) L WBaD] ift> A o1
08 (1) = e T [Bmt + e | ift> m)jle , (278)
0 lf t < —me_l.

m—1

where (3, := We%, and W is the Lambert-W function. It is easy to see that Ty(u,v) =
sup,,, Tm (1, v); hence it is a backward convex coupling (as a supremum of backward convex
transfers).

However, T, is not a backward convex transfer, since

(Ta)"(F) = (5up Ton) () < inf T, () = /J;du,

m
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with the inequality being in general strict.
Note that this also implies that the Wasserstein projection on the set C,,, that is

da

W2(P,[v],v) = inf{W3(o,v); <1} = inf{Th(Adz|q, o)+ Wi(o,v); 0 € P(Q)} (279)

is in fact an inf-convolution of a backward convex coupling 7y with the linear transfer W2,
and no duality formula can then be extracted.

13.2 Convex and entropic transfers

Proposition 13.3. Let a: RT — R (resp., B : RT\ {0} = R) be a convez (resp., concave)
increasing functions.

1. If € is a B-entropic backward transfer with Kantorovich operator E~, then it is a
backward convex transfer with Kantorovich family (T, )s=o given by

T, f=sT"f+(=B)(s). (280)

2. Similarly, if € is an a-entropic forward transfer with Kantorovich operator ET, then
it is a forward convex transfer with Kantorovich family (TS )s>o given by

THf=sTTf—a%(s). (281)
Proof: Use the fact that (—f) is convex decreasing to write that for any g € C(Y),
5 [ Tgdw) =int(s [ Tgdut (-5)°(:5 > 0}
X X

hence E is a backward convex transfer with Kantorovich family given by T, f = sT~ f +

(=B)°(s)-

Example 11.4: General entropic functionals are convex transfers
Consider the following generalized entropy,

Ealp,v) = / a(|;l—l/\) dp, if v << p and +o0o otherwise, (282)
X H

where « is any strictly convex lower semi-continuous superlinear (i.e., lim =2 = 4+00)
t—-+o0

real-valued function on R*. It is then easy to show [39] that

()" (f) = inf{ / )+ 1) — f] dpu(x):t € R}, (283)
In other words, &, is a backward convex transfer with Kantorovich family

Ty f(z) = a®(f(z) +1) -

Example 11.5: The logarithmic entropy is a log-entropic backward transfer
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The relative logarithmic entropy H(u,v) is defined as
H(p,v) = [y log(g—;) dv if v << p and +o00 otherwise.
It can also be written as
Hp,v) = [y h(%) dp if v << p and +oo otherwise,

where h(t) = tlogt —t + 1, which is strictly convex and positive. Since h*(t) = e' — 1, it
follows that

H,(f) = inf{/X(etef(x) —1—t)du(z);t e R} = log/X el dp.

In other words, H(p,v) = sup{[y fdv —log [y e/ du; f € C(X)}, and H is therefore a
B-entropic backward transfer with B(t) = logt, and E~ f = ef is a Kantorovich operator.
H is a backward convex transfer since for any f € C'(X),

log/ efdu:inf{s/ el du+ 8°(s); s > 0}.
X b's

In other words, it is a backward convex transfer with Kantorovich family 7T}, f = sel +39(s)
where s > 0.

Example 11.6: The Fisher-Donsker-Varadhan information is a backward convex
transfer [23]

Consider an X-valued time-continuous Markov process (£, F, (Xt)t>0, (Pz)zex) with an
invariant probability measure . Assume the transition semigroup, denoted (F;)¢>0, to be
completely continuous on L?(u) := L*(X,B, ). Let L be its generator with domain Dy (L)
on L?(u) and assume the corresponding Dirichlet form &(g, g) := (—Lg, g}, for g € Do(L)
is closable in L?(u), with closure (£,D(€)). The Fisher-Donsker-Varadhan information of
v with respect to u is defined by

o g(\/fa\/?)a if V:fﬂ,\/fED(g)
Tu) =

0, otherwise.

(284)

Note that when (P;) is p-symmetric, v — I(u|v) is exactly the Donsker-Varadhan entropy
i.e. the rate function governing the large deviation principle of the empirical measure L; :=
% fot x,ds for large time ¢. The corresponding Feynman-Kac semigroup on L?(j)

Plg(z) = E*g(X)) exp ( /O Cu(X) ds) | (285)

It has been proved in [65] that Z;(f) = log HPlf | £2(u), which yields that Z is a backward
convex transfer.

i} 1 1
T3(f) =10 1P llz2() = 5 108 | P 132, = 5 logsupf / (PS g2 dps gl 2 < 13-
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In other words, with §(t) = logt, we have

1
Tv) = sl | fav—Glogsun | |PoP duslglizg < 1157 € O}

sup{ | fdv+sup sup ;{/ (—s|P1fg|2 —B%9(s))du}; f € C(X)}
Y X

s>0 ||9HL2(H)<1

1
= sup{/ fdv—inf inf =
Y >0 gl 12,y <1 2

{ / (s\PLgf* + B°(s)) du}; f € C(X)}
X

sup{/yfdu — /XTsygfdu;s e R, HgHLQ(H) <1, feC(X)}.

Hence, it is a backward convex transfer, with Kantorovich family (Tsjg)&g defined by
Toof = 3|P gl +38%(s)-

13.3 Operations on convex and entropic transfers

The class of backward (resp., forward) convex couplings and transfers satisfy the following
permanence properties. The most important being that the inf-convolution with linear
transfers generate many new examples of convex and entropic transfers..

Proposition 13.4. Let F be a backward convex coupling (resp., transfer) with Kantorovich
family (F);, Then,

1. If a € R\ {0}, then aF is a backward convexr coupling (resp., transfer) with Kan-
torovich family given by F;i(f) = aF;(g).

2. If T is a backward linear transport on'Y X Z with Kantorovich operator T~ , and F is
a backward convex transfer, then FxT is a backward convex transfer with Kantorovich
family given by F,” oT™.

Proof: Immediate. For 2) we calculate the Legendre dual of (F xT), at g € C(Z) and
obtain,

Feite) = sw swp { [ gt Fuo) - T}

veP(Z)oeP(Y)

= sup {7, (9) — F(p,0)}
ceP(Y)

= o {[Todr—Fno)
= (5T (9)

= inf | R T gla)) duta).

The same properties hold for entropic transfers. That we will denote by £ as opposed to T
to distinguish them from the linear transfers. We shall use E™ and E~ for their Kantorovich
operators.
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Proposition 13.5. Let 5 : R — R be a concave increasing function and let £ be a backward
[B-entropic transfer with Kantorovich operator £~. Then,

1.

If A € R\ {0}, then A€ is a backward ()\j3)-entropic transfer with Kantorovich
operator K (f) = E‘({)

. Eis aforward ((—f3)°)®-entropic transfer with Kantorovich operator Eth = —E~(—h).

. If T is a backward linear transfer on Y x Z with Kantorovich operator T, then £x7T

is a a backward fS-entropic transfer on X x Z with Kantorovich operator equal to
E~ oT~. In other words,

ExT (j,v) = sup | /Z 9(y) dv(y) — B( /X B~ o T g(x))du(z)); g € C(Z)}. (286)

Proof: 1) is trivial. For 2) note that since [ is concave and increasing, then

7-<V7M)) =
= sup{/gdv—ﬁ(/ T gdp);g € C(Y)}

= s [ gav+supl [ ~sTgdn = (=5)*(s kg € O(X)}

= s [ gav—s [ Tgdu— (=85 > 0. € C(X))
= sup{s/X ~T~(=h)du — (—B)(s) —/ hdv;s > 0,9 € C(X)

Y

= su —B3)°)® =1 (- — Vs .
= sup{((-5)°) </X T~ (—h) dp) /thu > 0,h € C(X))

In other words, 7 is a (3°)®-entropic forward transfer.
For 3) we calculate the Legendre dual of (£ xT'),, at g € C(Z) and obtain,

exmite) = sw swp [ gd—euo)-Tio]

veEP(Z) oeP(Y)

= sup {7, (9) —E(u,0)}
o€P(Y)

= s {[roa e
= (LT (9))
= 5( /X B~ o T~ g(x)) du(x)).

A similar statement holds for forward a-entropic transfers where « is now a convex increas-
ing function on RT. But we then have to reverse the orders. For example, if T (resp., £)
is a forward linear transfer on Z x X (resp., a forward a-entropic transfer on X x Y) with
Kantorovich operator T'" (resp., E1), then T x & is a forward a-entropic transfer on Z x Y’
with Kantorovich operator equal to E™ o T". In other words,

T ) =sup{a( [ B*oT* f)dvl)) - [ f@)duta)s € CX)). (257)
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13.4 Subdifferentials of linear and convex transfers

If T is a linear transfer, then both 7, and 7, are convex weak* lower semi-continuous and
one can therefore consider their (weak*) subdifferential 07, (resp., 97,) in the sense of
convex analysis. In other words,

g € T, (v) if and only if T(p,v') > T(u,v) + [, gd(v/ —v) for any v/ € P(Y).

In other words, g € 97,(v) if and only if 7,(v) + 7, (9) = (g, v). Since T, (v) = T (11, ) and
T* = [T~ gdu, we then obtain the following characterization of the subdifferentials.

Proposition 13.6. Let T be a backward (resp., forward) linear transfer. Then the sub-
differential of T, : P(Y) = RU {+o0} at v € P(Y) (resp., T, : P(X) = RU {400} at
we P(X)) is given by

5ﬁﬁ0={g€CGﬁ:Lﬂ@ﬁb@%—éj“mwdmw=¥NMVﬁ (288)

respectively,

o ={sec s [ T - [ @ =T} es)
In other words, the subdifferential of T, at v (resp., T, at ju) is exactly the set of maximisers
for the dual formulation of T (u,v).

It is easy to see that the same expressions hold - with the necessary modifications - for
backward convex (resp., forward) transfers, as well as backward S-entropic (resp., forward
a-entropic) transfers.

In the following, we observe some elementary consequences for elements in the subdif-
ferential.

Proposition 13.7. Suppose T is a linear backward transfer such that the Dirac masses are
contained in Di(T). Fiz p € P(X) andv € P(Y). Then, there exists T € K(u,v) such that
for each f € 0T,(v), we have

/ fy)dm,(y) — T (2, %), for p-a.e. x € X, (290)
where Ty 1s a disintegration of ™ with w.r.t. p.

Conversely, if v+ T (u,v) is strictly convex and f € 0T, (v) for some v € P(Y). If
T — oy 1S any selection such that

g

Tf(x):sup{/fda—T(éx,a)}:/deox—T(éx,ax),

then T (u,v) is attained by the measure T = [y oxdu(x).

Proof: By a recent result [5], there exists 7T € K(u,v) such that
~ [ TR duta),
X
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If f € 0T,(v), then by definition

[ Fw v — [ 77 f@) du@) = Tla) = [ Tlo.70) duta),

thatis [y [T f(z) — [y f(y) d7z(y) + T (z,7z)] dpu = 0. Since T~ f(z) = sup, { [ fdo — T (z

the quantity in the brackets is non-negative and we get our claim.

Conversely, If f € 0T,(v) is non-empty for some v € P(Y), then [ fdv — [T~ fdu =
T (p,v). From the expression T~ f(z) = sup, { [y, f do — T(8z,0)}, we know the supremum
will be achieved by some o,. Defining 7 by d7(z,y) = du(z)dox(y), and the right marginal
of ™ by I, we integrate against p to achieve

/T‘fdu:/fdﬁ—/T(él,,ax)du

This shows that 7 (u,7) = infrep(,,n) [T (6z,7z)dp = [T (6z,04)du, and consequently,
f € 0T,(7). But by strict convexity, this can only be true if 7 = v. 0O

While the attainment in the primal problem 7 (u,v) holds in full generality as shown
n [5], the attainment in the dual problem depends heavily on the problem at hand [31].
However, since this is equivalent to the sub-differentiability of the partial functional 7,,, we
can use general existence results such as the Brondsted-Rockafellar theorem [54], to state
that 07,(v) exist for a weak*-dense set of v € P(Y), and therefore the dual problem is
generically attained.

Corollary 13.8. Suppose T s a linear backward transfer on P(X) x P(Y) such that the
Dirac masses are contained in D1(T). Assume Y is metrizable. Fiz pn € P(X), then for
every v € P(Y) and every e > 0, there exists v. € P(Y') such that Wa(v,ve) < € and the
dual problem for T (p,ve) is attained.

The following can be seen as Euler-Lagrange equations for variational problems on spaces
of measures, and follows closely [27].

Proposition 13.9. Let 7T, fX ( ) du be the generalised entropy transfer con-

stdered in Fxample 11.1, and let T be any linear backward transfer. For a fized p, consider
the functional 1,(v) := Ta(p,v) — T (1, v), and assume v realises inf,cp(x) [u(v). Then,
there exists f € OT,(v) such that the following Euler-Lagrange equation holds for v—a.e.

re X,
Oé/ (dl/) :f_‘_|_07
dp

where C' is a constant.

If T, is replaced with the logarithmic entropic transfer H(u,v) flog dy then
di _
log <V> =f+C.
du
Proof: Recall that 7, = [y« e |)du if v << p (and +oo otherwise) is a backward

convex transfervvlth

T (f) = inf { /X a°(f(e) +1) ~ dula); 1 € R}

98

)},



where T} f(z) := a®(f(x) +t) — t. are the corresponding Kantorovich transfers. Here
a € C1, is strictly convex and superlinear. It follows that

dv
o (1521) € OT,(0).
We can see this either directly from the subdifferential definition, or from observing

a@(a’aj: ) = j:a'uj: ) - a(@j )

o) Lo () o

The rest is an easy adaptation of Theorem 2.2 in [27].

In particular,

14 Inequalities between transfers

Let 7 be a linear or convex coupling, and let £, & be entropic transfers on X x X. Standard
Transport-Entropy or Transport-Information inequalities are usually of the form

T(o,pn) < M&i(p,0)  forall o € P(X), (291)
T(p,0) < A2&a(p,0) for all o € P(X), (292)
T(Ul,dg) <A1€1(01,u)+/\2€2(02,,u) for all o1, 09 GP(X), (293)

where p is a fixed measure, and A1, Ay are two positive reals. In our terminology, Problem
291 (resp., 292), (resp., 293) amount to find u, A1, and Ao such that

(Mé&) * (=T) (u, 1) 2 0, (294)
(N2€2) * (=T) (1, 1) = 0, (295)
(M&1) * (=T) * (A2&2) (p, 1) = 0, (296)

where T (u, ) = T (v, ). Note for example that
& % (=T)* & (pn,v) = inf{gl(,u,, 01) — Ta(o1,09) + E2(09,v); 01,090 € P(Z)}.

We shall therefore write duality formulas for the transfers & % (=7, o % (=T) and & *
(=T) * & between any two measures p and v, where 7 is any convex transfer, while &£, &
are entropic transfers.
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14.1 Backward convex coupling to backward convex transfer inequalities

We would like to prove inequalities such as
Fao(o,p) < Fi(p, o)  for all o € P(X), (297)

where F; is a backward convex transfer and F3 is a backward convex coupling. We then
apply it to Transport-Entropy inequalities of the form

Floyu) <K AE*T(u,0) forall o € P(X), (298)

where F is a backward convex coupling, while £ is a S-entropic transfer and 7T is a backward
linear transfer.

Proposition 14.1. Let F; be a backward convex transfer with Kantorovich operator (Ffi)z'el
on X1 X Xo, and Fo is a backward convex coupling on Xo X X3 with Kantorovich operator

(Fy ;) jed-
1. The following duality formula hold:

Fix—Fa(p,v) = inf infsup { / jo by fdu— / fdv} . (299)
Xl X3

FeC(Xz)jed jer

2. If F1 is a backward (-entropic transfer on X; x Xo with Kantorovich operator E,
then

Fi*x—=Fa(u,v)= inf inf { / Ey o Fy f dp) — /X fdu} : (300)

fGC(Xg ]E]
Proof: Write

Fi*x—=Fa(p,v) = inf{Fi(u,0)— Falo,v); o € P(X2)}

= inf Fi(p,0) — sup sup{ dy—/ F. da}
aGP(Xz){ 1{s-2) feC(Xs) jeJ ng X Q’Jf

= inf inf inf {]:1 (n,0) — fdv —i—/ FyLf do’}
X3 Xy

ceP(X2) feC(X3) jeJ

= inf inf {— sup {— Fy fdo— Fi(p, o)} — de}
P X5

feC(Xs)jed ceP(Xo2) Xo
= inf inf{ —(F))(—F;.f) — d
felcn(Xg)jl'relJ{ (F1)p(=Fy ;i f) /Xsf V}

= inf inf { —inf F . o—F,.fdu— dv
fGC(Xg)jEJ{ ieI/X1 1, Q’Jf H /ng }

= inf infsu / F[,o—F d / dl/}.
feC(Xs)jed 'LG?{ X1 1 2‘7f " ng

2) If Fy is a backward S-entropic transfer on X x Xg with Kantorovich operator F , then
use in the above calculation that (F1);,(—F,;f) = fX o —F, . fdpu).
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Corollary 14.2. Let F be a backward convex coupling on Yo X Xy with Kantorovich family

(7 )ier and let € be a backward [5-entropic transfer on X1 x Y1 with Kantorovich operator

E~. Let T be a backward linear transfer on Y1 x Yo with Kantorovich operator T~ and
A > 0. Then, for any fixed pair of probability measures p € P(X1) and v € P(X3), the
following are equivalent:

1. For all o € P(Ya), we have F(o,v) K AEXT (p,0).
2. For all g € C(X3) and i € I, we have B(IX1 E=oT~ o5 E(Ag) dp) + [y, 9dv <0.
In particular, if we apply the above in the case where £ is the logarithmic entropy, that
is
Hp,v) = [y log(g—z) dv if v << p and 400 otherwise, (301)

which is a backward S-entropic transfer with §(t) = logt and E~f = ef as a backward
Kantorovich operator.

Corollary 14.3. Let F be a backward convexr coupling on Xo X Yo with Kantorovich family
(7 )ier and let £ be a backward (-entropic transfer on X1 x Y1. with Kantorovich operator
E~. Let T be a backward linear transfer on Y1 x Yo with Kantorovich operator T~ and
A > 0. Then, for any fixed pair of probability measures p € P(X1) and v € P(X3), the
following are equivalent:

1. For all o € P(Y), we have F(o,v) < AH*T (u,0).

2. For all g € C(X2), we have sup fX1 eI oFF (M) du<e” Ix,9dv
el

In particular, if T is the identity transfer and F is a backward linear transfer, then the
following are equivalent:

1. F(o,v) < AH (o, p) for allo € P(Y)

2. le e P79 gy < e~ xe Ty 9 for all g € C(X3).

14.2 Forward convex coupling to backward convex transfer inequalities

We are now interested in inequalities such as
Fao(v,0) < Fi(p,o) for all o € P(X), (302)

where both F7 and F3 are convex backward transfers, and in particular, Transport-Entropy
inequalities of the form

Fv,0) K XxT(u,0) forall o € P(X), (303)

where £ is a [-entropic transfer and 7T is a backward linear transfer. But we can write
(304) as )
Folo,v) < Fi(u,0) for all o € P(X), (304)

where now Fo(o,v) = Fa(v,0) is a convex forward transfer. So, we need to establish the
following type of duality.
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Proposition 14.4. Let Fy be a backward convex transfer with Kantorovich operator (Fy;)icr
on X1 X Xo, and let Fo be a convex forward coupling on Xo x X3 with Kantorovich operator

(Fy)jer-

1. The following duality formula then holds:

Firx—=Fa(p,v)= inf infsu F.(— dl/—/ F. dl/}. 305
e =t nte = [ Fcoa- [ B (305)

2. If F1 is a backward -entropic transfer on X; x Xo with Kantorovich operator E ,
then

Fix—=Fo(u,v)= inf inf {—B( . E; (—g)dp) —/X Ff(g) du}. (306)

gEC(Xz) jeJ

3. If F1 is a backward B-entropic transfer with Kantorovich operator Ei , and F2 is a
forward a-entropic transfer with Kantorovich operator E; , then

FieFatun) = int {=0([ B (g —al [ Epg wj. e

4. In particular, if € is a backward B-entropic transfer with Kantorovich operator E—,
and T is a forward linear transfer with Kantorovich operator TT, then

Ex T (uv) = nl {—6( [ o - / 3 T+gdu} L 308)

Proof: 1) Assume F; is a backward convex transfer with Kantorovich operator F7;, and

Fo is a forward convex coupling with Kantorovich operator F2+ i then

‘7:1*_~7:2(M7V) = inf{fl(/"g)_}b(o-?l/);UEP(XQ)}
= inf < Fi(u,0)— sup sup(/ FJr sgdv) — / gdo
UGP(XQ) gEC(XQ) jEJ X3 Xo
= inf inf inf < F1(u,0) — / Ft.gdv —|—/ da}
cEP(X2) geC(Xa) jEJ { 1w o) Xs 2,59 X g

= inf inf{— sup {— gdo — Fi(p,0)} — /F+gdy}

geC(Xz) jeJ ceP(Xs) Xo

gEICI%XQ)Jl‘gJ{ (]:1)“( 9) /X3 2,j (9) V}
— inf inf { —(inf F dy — . dy}
geC(Xz)jeJ{ (iel /X1 1 Z( 9) /Xs 2,;(9)

= inf infsu / F du—/ Joxe du}
geC(X2) jeJ ze?{ X, 11( 9) X 2,](9)

2) If F is a backward - entropic transfer With Kantorovich operator £, it suffices to note
in the above proof that (/1) B([x Er dpu).

102



3) If now F; is a forward a-entropic transfer with Kantorovich operator E; , then it suffices
to note in the above proof that (F2)}(g) = a( [y By gdv).
4) corresponds to when «a(t) = t.

Corollary 14.5. Let F be a convex backward coupling on Xo X Yo with Kantorovich family

(F7 )ier and let € be a backward [-entropic transfer on X1 x Y1 with Kantorovich operator

E~. Let T be a backward linear transfer on Y1 x Y with Kantorovich operator T~ and
A > 0. Then, for any fixed pair of probability measures p € P(X1) and v € P(X3), the
following are equivalent:

1. For all o0 € P(Ya), we have F(v,0) K AEXT (p,0).
2. For all g € C(X2), we have ﬁ(fx E~oT g)dp) < 1nf x Jx, Fi (Ag)dv.

In particular, if £ is a backward Pa-entropic transfer on Xo X Yo with Kantorovich operator
E5 , and & is a backward Bi-entropic transfer on X1 x Y1 with Kantorovich operator E,
then the following are equivalent:

1. For all o0 € P(Ya), we have E2(v,0) K A&+ T (1, 0).
2. For all g € C(X2) and i € I, we have Bl(le Ef 0T g)dp) < )\62 fX 5 (Ag)dv).

Proof: Note that here, we need the formula for (€ « T) % (=F)(u,v). Since F is now a
convex forward transfer with Kantorovich operators equal to F;"™(g9) = —F; (—g), we can
apply Part 2) of Proposition 14.4 to Fy = %]:" and 1 = & x T, which is a backward
(B-entropic transfer with Kantorovich operator £~ o T, to obtain

(ExT)% (~F)(uv) = int i.nf{—mXE—oT—gdmi/X Fj()\g)du}.

geC(X2) jeJ

A similar argument applies for 2).
We now apply the above to the case where £ is the backward logarithmic transfer to obtain,

Corollary 14.6. Let F be a backward convex transfer on Xo X Yo with Kantorovich family

(F )ier, and let T be a backward linear transfer on Y1 x Yo with Kantorovich operator T~

and A > 0. Then, for any fized pair of probability measures p € P(X1) and v € P(X3), the
following are equivalent:

1. For all o € P(Y2), we have F(v,0) < AH*T (u,0)
2. For all g € C(X3), we have log (f el 9dp) < 1nf 5 Jx, Fi (Ag)dv.

Remark 14.7. An immediate application of (4) in Proposition 14.4 is the following result
n [22]

inf (Wa(p, o) + H(dz, 0): 0 € P(RY)} = inf{— log / e dz 4 / Fdu: f € CRYY, (309)

where Conv(R?) is the cone of convex functions on R%, and Wa (1, 0) = —Whs(0, i), the latter
being the Brenier transfer of Example 3.12 and i is defined as [ f(z)du(z) = [ f(—
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Note that in this case, TT f(z) = —f*(—z), E~f = ¢f and B(t) = logt, and since ¢** < g,
inf(Wo(p, 0) + H(dz,0);0 € P(RD} = Hx(=Wa)(dz, i)
= inf{—log/e_g d:ﬂ+/g*(m) d; g € C(RH}

= inf{—log/ef* dx+/fdu;f € Conv(R%)}.

What is remarkable in the result of Cordero-Erausquin and Klartag [22] is the characteri-
zation of those measures p (the moment measures) for which there is attainment in both
minimization problems.

14.3 Maurey-type inequalities

We are now interested in inequalities of the following type: For all o1 € P(X71), 09 € P(X2),
we have

]'-(01,02) <)\171*7’[1(0‘1,#)+A275*H2(02,U). (310)

This will requires a duality formula for the expression & * (—F) &, where F is a backward
convex transfer and &1, & are forward entropic transfers.

Theorem 14.8. Assume F is a backward convex coupling on Y1 X Yo with Kantorovich
family (F )ier, &1 (resp., £2) is a forward aq-entropic transfer on Y1 x X1 (resp., a forward
ag-entropic transfer on Yo x X ) with Kantorovich operator Efr (resp., E;r), then for any
(u,v) € P(X71) x P(X2), we have

BN} ()

E % (— & =inf inf EftoF fd
1 (=F)xE (p,v) ;Iellfegtxg){al( L o fdu)+ as(

X2
Proof: If & a forward aj-entropic transfer on Vi x X7, then & is a backward —(a?)e—

entropic transfer on X7 x Y7 with Kantorovich operator E} g = —E (—g). Apply Proposi-
tion 14.1 with F; = &1, and F5 = F to get

E1x (=F) (w,v) = inf inf{(a?)e(/xl—EfoFffdu)—/ngdV}

feC(X3)icl

= inf inf{al( Ef o F fdu) —/ fdu}.
X1 X3

feC(xs) i€l

Write now,
E1x (=F)x& (u,v) = inf {5’1 * (=F)(p,0) + E(o,v); 0 € P(Yg)}

= inf inf Infla EtoF fdu) —
UEP(Y2)f€C(X3)ieI{ 1(/)(1 1 i fdw)

fdo+ &o, I/)}

X3

= inf inf Q E+0Fi_fd,u — sup fdo—&(o,v
iEIfEC(X3){ 1( X3 ! ) UGP(Y2){ Ya 2( )}

= inf inf Ef o F™ fdu) +
?ejlfegl(xg){al(/xl v o d) ool

Bf (-fan |-

Xo
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Corollary 14.9. Assume & (resp., £2) is a forward ay-entropic transfer on Zy x Xy (resp.,
ag-entropic transfer on Zy x Xa) with Kantorovich operator Ef (resp., Ey ). Let Ty (resp.,
T2) be forward linear transfers on Y1 X Z1 (resp., Ya x Za) with Kantorovich operator Tfr
(resp., T;), and let F be a backward convexr coupling on Y1 x Yo with Kantorovich family
(F)i. Then, for any given A, A2 € RT and (u,v) € P(X1) x P(Xa), the following are

(2
equivalent:

1. For all o1 € P(Y1),09 € P(Y2), we have

F(o1,02) S MTh* (o1, p) + A2 Te * Ea2(02, V). (312)
2. For all g € C(Y2) and all i € I, we have

1 -1
)\1041( Efono(—Fi g) du) —i—)\gag( E;_OT—%(*

dv) = 0. 313
. 5 | BT (S 0) ) (313)

Proof: It suffices to apply the above with the forward A;q;-transfers F; := \;T; x &;, whose
Kantorovich operators are F;(g) = E;" o Tf(/\%) fori=1,2.

By applying the above to &;(u,v) =: H the forward logarithmic entropy where «;(t) =
—log(—t) and Kantorovich operator ETf = e~/ we get the following extension of a cele-
brated result of Maurey [50].

Corollary 14.10. Assume F is a convezr backward coupling on Y1 X Yo with Kantorovich
family (F; )icr, and let Ty (resp., Ta) be forward linear transfer on Y1 x X1 (resp., Yo x X3)
with Kantorovich operator Ty (resp., Ty ), then for any given A1, 2 € RT and (u,v) €
P(X1) x P(X2), the following are equivalent:

1. For all o1 € P(X1),02 € P(X2), we have

F(o1,02) < MTi*H(o1, 1) + XoTa x H(oa, v). (314)

2. For all g € C(Y2) and all i € I, we have

—TFol P Ty (=g
(/ e Tresthi gd#)h(/ © = d’/)M < L (315)
X1 Xo

If T1 = T3 are the identity transfer, then the above is equivalent to saying that for all
g€ C(Ya) and all i € I, we have

R —
(/ emFi gdu)/\l(/ ¢339 dv)* < 1. (316)
X1

Xo
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