SIGN-CHANGING SOLUTIONS FOR CRITICAL EQUATIONS WITH HARDY

POTENTIAL
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ABSTRACT. We consider the following perturbed critical Dirichlet problem involving the Hardy-
Schrédinger operator on a smooth bounded domain Q@ C RN, N > 3, with 0 € Q:

4
7Au7'yﬁfeu:\u|ﬁu in Q
u=20 on 0L,

2 2 . .

when € > 0 is small and v < %. Setting v; = (NZQ) (1— J(]\]]\,__Qf'])> € (—o00,0] for
2
j € N, we show that if v < % — 1 and v # v, for any j, then for small ¢, the above
equation has a positive —non variational- solution that develops a bubble at the origin. If
2
moreover 7 < % — 4, then for any integer k > 2, the equation has for small enough e,
a sign-changing solution that develops into a superposition of k bubbles with alternating sign
centered at the origin. The above result is optimal in the radial case, where the condition that
2
v # 5 is not necessary. Indeed, it is known that, if v > % —1 and Q is a ball B, then there
is no radial positive solution for € > 0 small. We complete the picture here by showing that, if
2

v > % — 4, then the above problem has no radial sign-changing solutions for € > 0 small.
These results recover and improve what is known in the non-singular case, i.e., when v = 0.
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1. INTRODUCTION
We consider existence issues for the following Dirichlet problem:

{ —Au— 7y — Au= |u|ﬁu in Q

1.1
u=20 on 09}, (1)

where Q c RV, N > 3, is a smooth bounded domain with 0 € Q, v < M and A € R. Problem
(1.1) is the Euler—Lagrange equation of the following action functional

A N -2 2N
2—7 Y s 7 HL(Q).

is the best constant in the classical Hardy inequality:

M:inf{/ |Vul?> 1 u e H}(Q) s.t. / u2:1}
4 Q Q ‘xl

see [22], we have that

/ Va2 _7/9 |“22 > (1 - (NA‘_VQZ)/ Vul? Y ue HHQ). (1.2)

It is then useful to equip the Hilbert space H{(£2) with the inner product

(u,v) /VUVU | |2,

2
and the assumption v < (Nf) guarantees that the induced norm ||-|| is equivalent to the usual one
in view of (1.2). Letting L, = —A— B |2 be the Hardy operator, let us denote by 0 < A; < Ag <
the eigenvalues of L.

(N-2)

Since

For A\ < A; positive solutions of (1.1) can be found through the minimization problem:

S, (Q) = 1nf{||u||2 )\/ L uc HY(Q) st /|uN2—1}

When \ = 0, it is classical to see that S, o(2) = S, o(RY) and is never attalned the difficulty being
here that (1.1) is doubly critical for the presence of the Hardy potential B |2 and the nonlinearity

|ul ~-24. Extremals for S,.0(RY) exist for v > 0 and have the form (up to a multiplicative constant)

T
_N-2 X QN W
UIL(I) =p U <> = 5 ar i~ M 0, (1'3)
|7~ (

" “(uNTE A o] vR)
where an ay
2|8 (1 + |2 ¥72) "2 5- g+ 4
(Ial™="" +[al 7 )
with
N —2)2 N —2 4F2

see [9, 12, 30]. For v < 0 the problem is even more difficult since S7 O(R ) = So.0(RY) is not
attained, even though (1.3) is still a family of positive solutions to
U

- AU -y — U~ in RV \ {0}. (1.6)
x
As in the classical Brézis-Nirenberg problem [3], on a bounded domain 2 the presence of a linear
perturbation with 0 < A < A; results in a symmetry breaking which is responsible for the existence
of minimizers for S, (£2) [20, 25, 29]. More precisely, a positive ground-state solution for (1.1) is
found when
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e v <0 and either

N =3 and the “Robin” function R, ) > 0 somewhere

or
1
N>4, A>y|infq—: 2€
|z[?
° 0<7§%—1
° max{(), (N22)2 - 1} <7< % and “mass” m, x > 0.

The question has been completely settled in [20], which we refer to for a precise definition of R, x
and m., x, and the ranges displayed above are essentially optimal for the attainability of S, (),
see also the recent survey [18]. Notice that the cases v < 0 and v = 0, N = 3 always require A to
be sufficiently away from zero.

By Pohozaev identity [28] equation (1.1) has no solution when A < 0 on domains which are strictly
starshaped w.r.t. 0. Since solutions of (1.1) can’t have a given sign when A > \;, to attack
existence issues for general \’s one needs to search for sign-changing solutions. We can summarize
the available results in literature [5, 6, 7, 10, 11, 16] as:

o if0<y< M — 4 there are infinitely many sign-changing solutions for all A > 0
e if max {O, % — 4} <7y< % — % there exists a sign-changing solution for all
A> )\
2 2 2
e if max {O, % — %} <7< % — 1 there exists a sign-changing solution for all
A€ U()\ka)\k—o—l)
k=1

e if v >0 and % —1l<y< % there exist nj sign-changing solutions for all A in a
suitable left open neighborhood of A, k > 2, where ny is the multiplicity of A.
Assumption vy > 0 allows here to use U, which are extremals of SMO(RN ), as an helpful family of
test functions in a variational approach.

Hereafter, we restrict our attention to the regime A\ = e, with € > 0 small:

u — |y ¥2 ;
{ —Au—'yw—au—\uh’ 2y in Q (1.7)

u=>0 on 0.

When v =0 Sy () is not achieved [3, 14, 15] for N = 3, and (1.7) in the ball B = B;(0) admits
no positive solutions for N = 3 [3] and no radial sign-changing solutions for N = 3,4,5,6 [1, 2].
In the singular case, a similar situation arises depending now on ~y: S, () is not achieved [20]

when either v < 0 or v > % — 1, and (1.7) in B admits no radial positive solutions [8] for
v > % — 1. Our first main result, along with Theorem 1.2 below, completes the picture in a
radial setting:

Theorem 1.1. When ~ > %

for e > 0 small.

— 4 problem (1.7) has no radial sign-changing solutions in B

Theorem 1.1 is based on a fine asymptotic analysis combined with Pohozaev identities. In this way
we also recover, see the precise statement in Corollary 2.3, the results in [1, 2] and [8] concerning

2
the regulag case v = 0 and the singular case v > % — 1, respectively. Moreover, when
v < % — 4 the analysis shows that radial sign-changing solutions need to develop in a very
precise way a bubble of alternating towers centered at 0 as ¢ — 0T, recovering and improving

the discussion in [23] concerning the asymptotics of radial least-energy sign-changing solutions in
the regular case v = 0 when N > 7. Once the radial case is well understood, we can attack by
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a perturbative approach the case of a general domain ) leading to the following result, which is
optimal in the radial case.

Theorem 1.2. Let

), (125

1 N1 ) € (-00,0], jeN (1.8)

Assume that either Q0 is a general domain with v # ~y; for all j € N or Q is j—admissible (see

Definition 3.3 and Remark 3.4) with v = y; for some j € N.
(N—2)*

i) Let v < *=5=~ — 1. Then there exists e1 > 0 such that for all € € (0,e1) problem (1.7) has a
positive solution u. developing a bubble at the origin.

2
it) Let v < % — 4. For any integer k > 2 there exists €, > 0 such that for all € € (0,¢eg)

problem (1.7) has a sign-changing solution u., which looks like the superposition of k bubbles with
alternating sign centered at the origin.

Theorem 1.2-(i) provides positive solutions of (1.7) for v < 0 which are not minimizers for S, . (),
exactly as U,, are solutions of (1.6) which are not extremals for S, o(RY). More generally, our
result allows to consider the case v < 0 which cannot be dealt in a variational way when € > 0 is
small. When 0 < v < % — 4 the solutions we found likely coincide with the infinitely many
ones found in [7, 11].

The paper is organized as follows. In Section 2 we discuss the asymptotic behavior for radial
solutions of problem (1.7) in B with € — 0T, establishing in particular the validity of Theorem 1.1.
In Sections 3 and 4 we deduce Theorem 1.2 by developing a very delicate perturbative approach
where a crucial splitting of the remainder term is performed, see [24, 26] for related results. In the
Appendix 5 we collect several technical estimates.

2. ASYMPTOTIC ANALYSIS IN THE RADIAL CASE: PROOF OF THEOREM 1.1

In this section we will consider the case when 2 is the unit ball B. From now on, for any function
uwe L1(A), 1< q < oo, we let [ulga = ([, |u\qd:c)1/q and |ulq = |ulq,0. We will denote by ¢,C
various positive constants which can vary from lines to lines.

Let u € H (B) be a radial solution of (1.1). The function

o) = (S ) TR ) 2.)
2r
is in H}(B) and is a radial solution of
—Av = |v|ﬁv+5\x|“v in B\ {0}, v=0o0n dB, (2.2)
where a = ¥ —2and e = (%)2/\. We have the following simple description of nodal regions:

Lemma 2.1. Given o > —2, any non-trivial radial solution v € H}(B) of (2.2) is in C(B) N
C?(B\ {0}) and, if € > 0 and v(0) > 0, there exist an integer k = k(v) > 1 and Ry =71 = 0 <
Ri<ro<- - <Rip_1<ry<Rp=rry1=1so0that forallj=1,... k

(71)j711} > U(Rj) =0 1in (Rj—lij)a (71)j1)/ > ’U/(Tj) =01n (Tj,Tj+1),

with the convention v'(0) = 0. Moreover, there exists g > 0 small, independent on v, so that for
all 0 < e < gq there holds

ov S n
/AIDIN*Z > (3)* (2.3)

for any nodal region A of v, where S = Soyo(RN) is the Sobolev constant.



SIGN-CHANGING SOLUTIONS FOR CRITICAL EQUATIONS WITH HARDY POTENTIAL 5

Proof. Since a > —2, we have that
N
|x|* € LP(B) for some p > 5 (2.4)

Since by the Sobolev embedding theorem v € L% (B), for any n > 0 we can decompose |v| w74
elz|* as f1 + fo with \f1|% <nand fy € L*°(B) in view of (2.4). We can re-write (2.2) as

v (=A)" (fiv) = (=8) " (f20).
By elliptic regularity theory and the Sobolev embedding WQ’%(B) — L*(B) we have that
(=8) 1 (fr)le < CU=A) (i)l oy, < Cliio] . < ol (25)

HWZ’ N+2s
in view of the Holder’s inequality and |f1|% <. Equivalently H : v € L*(B) — (=A)~1(fiv) €
L#(B) has operatorial norm < C7, and then the operator Id — H : L*(B) — L*(B) is invertible
for all s > 1 and 7 sufficiently small. Arguing as in (2.5), we have that

ol ey < 10d = )7 (=8) 7 (fov) sy < Clfaels < Clfaluclols

N—2s

when s < % and for all ¢ > 1
[olg <1 = H)"H[(=A) " (f20)lq < Clfav]s < Clfoloolv]s

when s > % Starting from v € L%(B) we iteratively prove that v € L*(B) for all s > 1, and
then Mﬁv + elz|v € Lo (B)N Lfoc(g\ {0}) for all s > 1, where p is given in (2.4). Since
pr > & by elliptic regularity theory we deduce that v € C(B) N C?(B \ {0}). Moreover, we

claim that

lim »V =1/ (r) = 0. (2.6)

r—0

Indeed, let us write equation (2.2) in radial coordinates as

1
— oy V) = | ¥ 2o 4elz/v e (0,1). (2.7)
Since v is non-trivial, then v(0) # 0 and then, by continuity of v, the R.H.S. in (2.7) has a given
sign near 0. By (2.7) we deduce that the function rV~1¢/(r) is monotone in r and then has limit

as r — 0: lin% rN=1v/(r) = 1. However, | # 0 would imply a discontinuity of v at 0, and then (2.6)
r—s

is established.

Take € > 0 and assume w.l.o.g. v(0) > 0. Given R so that 1irr}1% N7/ (r) = 0, observe that the
r—

integration of (2.7) in (R, r) gives
1

1o
v'(r) = TN

/ sN_l(|v|ﬁv+es“v)ds (2.8)
R

for all 7 > 0. Since v(0) > 0 and v’ < 0 near 0 in view of (2.8) with R = 0, let us define
Ry =sup{r € (0,1): v>0in (Ro,7)}, 7o =sup{r € (0,1):v <0in (ry,7)}.

If Ry =1, then 79 = 1 and the choice k = 1 completes the proof. If R; < 1, by (2.8) with R =0
and v(1) = 0 we deduce that Ry <7y < 1, v/(r2) =0 and

v>v(Ry)=0in (Ry,Ry), v <v'(r1)=0in (ry,rs).

In an iterative way, for ¢ > 2 assume to have found Ry =71 =0 < Ry <ry < < Ri_1 <r; <1
so that v'(r;) =0and for all j =1,...,i — 1

(71)3'711} > U(Rj) =0in (Rj—laRj)7 (71)j’Ul > UI(TJ') =0in (Tj,Tj+1).
Define
Ry =sup{rc (0,1): (=1)" v >0in (Ri_1,7)}, 741 =sup{r € (0,1): (=1 > 0in (r;,r)}.
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Since (—1)"*' > 0 in (r,_1,7;) and R;_1 € (r;_1,7;), we have that r; < R; < 1, and by (2.8)
with R = r; it follows that (—1)’ > 0 in (r;, R;]. If R; = 1, then ;11 = 1 and the choice k =i
completes the proof. If R; < 1, the boundary condition v(1) = 0 implies that R; < r;11 < 1, which
in turn leads to v'(r;41) = 0 and

(71)2-711) > U(Rz) =0in (Ri—h R,’), (71)1-1)/ > ’U/(T’i) =0in (T,’,T,’+1).
Such a process needs to stop after k steps. Otherwise, we would find an increasing sequence R;,
1 € N, so that v(R;) = v(R;y1) = 0. Letting R = ligl R; € (0,1], we would have that lim r; =
1—r+00

1—400
R in view of R;_1 <r; < R;. Since v € C*(B\ {0}), we would deduce that v(R) = v'(R) = 0, and
then by the uniqueness for the ODE v = 0, a contradiction.

Finally, let us integrate (2.2) against v on a nodal region A to get

N-—2
2N N 2N
S(/ |v|N—2> < /IVU|2:/|U\W+6/ || *v?
A A A A

N-2
2N 2n \ N

< [l ety ([ 10#)

A 2 A

thanks to the Holder’s inequality and to the embedding D*2(RY) C L%(RN ) with Sobolev

constant S. Setting ¢g = 2”Z|SC,‘ , the validity of (2.3) easily follows for all 0 < & < g. O

w2

Let v, € H}(B) be a sequence of non-trivial radial solutions to (2.2) with a > —2. Up to a
subsequence, we can assume that there exist k¥ > 1 and sequences Rjf =7 =0 < R} <ry <--- <

Ry | <rp <Rp=rpt <lsothatforallj=1,... k

(1) Mo, > 0u(RY) =0 in (R}, R}), (=1)v), > v, (r}) =0in (r},r} ). (2.9)
Notice that such an assumption simply means that all the v,’s have at least k nodal regions.
The case of positive solutions v,, corresponds to take £k = 1 and R} = 1, whereas for sign-

changing solutions we can always choose a subsequence with at least k£ > 2 nodal regions. Set
2
5;} = |vn(r?)|_m, where
|[vp|(r?) = max vyl (2.10)
n J [R;’_l,R?] n

Blow-up phenomena for (2.2) are described in terms of the limiting problem
— AV =V*~2 in RV, (2.11)

whose bounded solutions are completely classified [4, 21]. In particular, every radial positive and
bounded solution of (2.11) is given by

N-—2 Xz 1) N;2
—5 3 Iy — - 2.12
Vs(a) Ve = (5rrpr) (212)
for some 0 > 0, where ay = m and
Viz) = _ - (2.13)
 \1+an|z|? ' ’

The asymptotic behavior of v,, is described in the following main result:

Theorem 2.2. Asn — +oo there hold

é -0, ﬁ — 400, Vi(x) = (—1)7H00) T v (8Fa) - V in O] RV \{0})  (2.14)

forallj=1,... k. Moreover, a <N —4ifk=1and a < # if k > 2. If in addition
R, —0and R}, - R >0 (2.15)
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as n — 400, there hold R} =1 and forallj=1,... k-1

R ~ M] 070y (2.16)
(N=2) (D) k=T —(N—1-a) 1 (L N=2 ke
s [(@F2) fow 2oV oS [(N—Q)qu] Yo e
TN ) fpu VST Jin V3
g | Dt fo WPVE Ni
(Jpw VI=2)2

as n — +oo provided o < N — 4.

Asymptotics for radial least-energy sign-changing solutions of (2.2) with « = 0 and N > 7 has
been already considered in [23] and corresponds to the case k = 2. Here we develop the asymptotic
analysis in a completely general way by refining the results in [23] for k& = 2, by covering the
situation a # 0 and including the case k > 3. Several new difficulties arise:
e in each nodal region v, might develop multiple bubbles, but the Pohozaev identity will
show crucial to prevent the interaction between bubbles of same sign;
e the limiting problem admits positive radial solutions also on annuli or complements of
balls, but none of them can be limit of Vj*, as we will prove by a matching condition on
v, (R?) as computed from the left and the right;
e the precise law of 07 is prescribed by the Pohozaev identity in terms of £, and R}, but
the asymptotic behavior of R} has to be determined according to a tricky compatibility
condition between vy, (R}) and v, (17).

1 T r V' ' 1
Uj_2F—1<F—2> ~5 (2.17)

For pp = [\/N(N—2)6]¥, notice that the solution U, of (1.6) given by (1.3) corresponds
through (2.1) to the solu]tvi02n Vs of (2.11) given by (2.12). Setting M;' ;. , = (R;UNZ*Ez and
p =[/N(N —2)6;_ ;.17 , by Theorem 2.2 with a = N=2 — 2 we deduce the following:

Given I' in (1.5), let

Corollary 2.3. Let u, be a sequence of radial solutions for (1.7) in B with &, — 0% as n — +oo0.

(i) If u, are positive functions, then v < % —1 and

pi=dielt (14 0(1),  UP(x) = (u}) "% un(ufz) — U in CF, (RN \ {0})

asn—>+oowhen7<%—1

(ii) If u, are sign-changing solutions, then v < M —4.
(iii) If u,, have precisely k — 1 shrinking nodal regions with nodes

0=DM | <M <---<M—0, MP — My € (0,1]
as n — +o0, then there exist p >0, j =1,....k, so that as n — +oc0:
. " nyN=2 n )
W} =djeri (L+o(1), UN(x) = (uf) = up(pfz) = U in C) (RN \ {0})
forallj=1,... k and
MP =1, M} = A1) (14 0(1))

forallj=2,... k.
Here U is given in (1.4) and A,d; > 0 are explicit constants.
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Let us discuss first the behavior of v, in (0, R}). Notice that the function V" = (5f)¥vn(5fx)
solves

—AV = (V)N 4, (1) [2|°V] in By (0)
6’71/
0< VP <VP0) =1 in By (0)
ST
in view of 1
O < (71)j711)n S (—1)j71’l)n(7"?) = (671)71\,;2 in ( ?_1,R?), (218)
J

a simple re-writing of (2.10) through (2.9). By elliptic estimates we deduce that V;* is uniformly
bounded in CI()(;Z: (RN)OCT(’)Z: (RM\{0}), v € (0,1), in view of (2.4). By the Ascoli-Arzeld’s Theorem
and a diagonal process, we have that, up to a subsequence, V" — V in O, .(RY) ﬁClloc(RN \{0}),
where V solves
Nt2 N . n
—AV =V7¥~-2 in R", 0<V<V(@0)=1inR
and has the form (2.13) [4, 21]. We have used that

R'n.

B (2.19)
or

211 were bounded away from zero, then V/(z) = (R?)yvn( "2) would

be uniformly bounded in B in view of (2.18). Since V* > 0 solves

—AV = (Vl’b)% + e, (R} |2|*V]™ in B, V" =0 on 8B,

as n — +oo. Indeed, if

by elliptic estimates, as before, we would deduce that, up to a subsequence, f/{‘ — Vi in C(B)N
CIIOC(E\ {0}), where V4 > 0 is a bounded solution of

“AV; = ()% in B\ {0}, Vi =0 on dB.

Let us recall the Pohozaev identity [28] in a radial form: given a solution v of (2.2) and a radial
domain A C B, multiply (2.2) by (z, Vv) = |z|v" and integrate in A to get

N —2 N —2
(a+2)5/ 2o 2:/ {(v’)2+ o+ 0| 4 elafoo? | (@, 0). (2.20)
A 2A || N

Since 0 is a removable singularity in view of Vi € L*=({0}), by (2.20) with e = 0 on A = B we
would get that V3 = 0 and then
17 o
B

as n — +00, in contradiction with (2.3) in view of €, (R})?*t® — 0 as n — +oo.

We aim to show that there is no superposition of bubbles of same sign in [0, R}]. Interaction
between bubbles of same sign can be ruled out by the Pohozaev identity (2.20). Letting

J={j=1,...,k: (2.14) holds}, (2.21)
notice that 1 € J according to (2.19). We have the following general result:
Proposition 2.4. There exists C > 0 so that
[un| < CVer in [R}_q, R}] (2.22)
for all j € J, where Vy is given by (2.12).

Proof. The presence of other bubbles in [R?_;, R}| can be detected by the behavior of P o, (r).

J=b
Notice that the function 7"z V(r)= (H‘+JV7"2)¥ satisfies
- N(N —-2) n~- -
eyl o WDy 2Ry (2.23)

—, 2 )
r=a, 4 r—+00
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and s
N-2 N =277 (1—apnr?) . -1
rz V() = < 0in (ay?,+00). 2.24
Ve = MO <o (o o0 224
Thanks to (2.23) let us fix M > a;,% so that
N-—2 . N(N - 2) N-—2 (N — 2)2(N+ 1) N-2
M V(M) = _— . 2.25
V() = ming(F 2y (O 2 Dy (2.25)
We claim that for n large
(1) T wa] < 0 in [M8T, RY). (2.26)
Indeed, if (2.26) were not true, we could find M,, € [Md}, R7] so that
. _ _ M,
(1) T 0] < [T 7 ) (M) = 0 in [M&7, M,), =~ —0asn—+oo,  (2.27)

o5

as it follows by (2.24) and
N

(—1)j_15?[r¥1)n]’(7~5?) =[r o an]/ N [T¥V]/

locally uniformly in (0, +00) as n — 400 in view of (2.14). By (2.20) applied to v, on A = By, (0)
we get that

Mrvn (M) Myv,(My)  N—-2, , A 2

Tnin\TTng N -2 n M2|v, (M,)| 7= M2 99

| Un(Mp) P ) v (M) N alUn(Myp)| ¥ + e, M7 >0 (2.28)
in view of o > —2. Since by (2.27)

N -2
M”U;L(Mn) = D) Un(Mn)7
we deduce that ,
N -2 N -2
_( ) + M§|’Un(Mn)|ﬁ +5nMi+a>0.

4 N
Since
N-2 N-2 N-—2

(—1F M 7 0 (My) < (=11 (M82) 7 0, (M7 = MYT V(M) — M7 V(M)

as n — +o0o in view of (2.14) and (2.27), by (2.25) we deduce that

N-2?2 N-2 N —2)?2

for n large, a contradiction with (2.28). The claim (2.26) is established.

+e, <0

Once (2.26) is established, we can prove the validity of (2.22). First, since (—1)?~!v,, is a positive

solution of L,v, = 0 in [R}_;, R7], the operator L, = —A — |v,|¥-2 — e, |z|* satisfies the mini-
W-p@+y | NNz
o i . M N¥z o (§7)2(NFD)
mum principle in [R}_,, R?], and we can compare (—1)’ L, with ¢, = (N_2>((N’+1) in
r  N+2

(Mo}, R?]. Since

_ _9)2
MR (g B -y [V DV 4 1)
J (N +2)2

_ _9)2
NEpeE T (57‘1)1;((1%22))7”7 Nynee [(N—2)%(N +1)
= ) (N +2)°

in [Md}, RY] in view of (2.26), we have that L,p, > 0 in [Md7, R}] for n large in view of (2.14)
and (2.25). Since

Lppn = — r2|vn(r)|ﬁ — €n7”2+a:|

- MV ADEE e,

(1) L0 (MOT) < — = ou(MET),  (—1) L0, (RT) = 0 < pn(RY)

()%
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in view of (2.18), we have that

(N— 2)(N+1) —2)
j—1 M (6") 2(N+2) : n n
|’Un|(7n) = (_1)] vn(r) < (N—2)(N+1) m [M(sj ’Rj]v
r N+2
or equivalently
(N—I%])J(rg’-%—l) R
r N¥2z 6]'
By (2.8) with R = r7 we get that in [R}_, R}
. 1 r 2
(_1)”};(7‘) - rN-1 / SN_1(|Un‘% + €n8%|vn|)ds
y
N-—2 r
(5”) 2 ki _ oy NE2 €n r 1ta
= :.]Vi—l/i] SN 1(V7 )N72 + TN—l /n SN 1+ |'Un|d8. (230)
5T T
J

Inserting (2.29) into (2.30) we deduce that
(5n)N;2 MN %
/ < J MN+1/ -
e

52

2 1
5”)(”']\]+ + sup V72|, |(r

en M+

_|_

< rflw’v

+ €, sup rN*2|vn|(r)]
[M&7,RY]

for Mé? <r < R} in view of (2.18) and a + NE2 > N=2 Integrating in [r, R7] we get that

R} _
N2, (1) < V2 / ) < O(6m) 5

in [Mé7, R?], and then
<CL§L> i <CV in [Md7, R? 2.31
"Un|(’l") = PN—2 = o7 1 [ i j} ( . )

for n large. By (2.18) there holds that

|un| < % <CVsn in [R}
o =T

which, combined with (2.31), completes the proof. O

13M6n}

Thanks to Proposition 2.4 we are now in position to establish Theorem 2.2.

Proof (of Theorem 2.2). Let j € J, J given in (2.21), so that Proposition 2.4 applies. By (2.18)
and (2.31) we deduce that

R?
en [N unlds = Oea8)F 4 £0(8) T = ol(5]) ) (2.32)
as n — +oo in view of v + X2 > N2 "and (2.22) can be re-written as
R, R
Vi <OV in [——, =] (2.33)
op " 5
Inserting (2.32) into (2.30), by the Lebesgue’s Theorem we have that

N+2

~NE (RMN 1y (RY) / Ny (2.34)
0
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for all j € J as n — +o0, in view of V" — V' in Cloc(RY\ {0}) and (2.33).

Since 1 € J, let us apply (2.20) to v, on Bgy(0) if j =1 or on Bgr(0) \ Brr_,(0) if j > 2 with
j—1,j€J. Asn — +oo we get that

n

(-t 2en [ 7PN (RN @R~ (RY) 0 (B

j—1

2
NA42 or _ 57}71 _
= / PN VAT ) ()Y TP+ o(1) — ()Y TP+ o(1))] (2.35)
0 R; R}
in view of (2.34), with the convention 1‘;% = 0. The LHS above has the following asymptotic

behavior: if &« > N — 4 there holds

R™ R™

/ J PN—1+a,2 2 < C2[N(N 2>]N—2(5§L)N—2/ I 3+a—N:O((5§})N—2) (2.36)

n
j—1 j—1

in view of (2.22); if —2 < a < N — 4 there holds

i N-lta,2 _ (sn\24a % PN=l4a pmy2
[ e e [ e
it 57
(6m)2Fe [T pN-IHay2(1 4 o(1)) ifa <N —4
- { O((87)N | log 5% ) fa=n-4 257
in view of (2.14), (2.33) and the Lebesgue’s Theorem.
We have some useful properties to establish.
15t Claim: We have that
j—1€eJ, R} 1 <1= : max |vn| = 400 as n — +o0. (2.38)

J—=1""5

Up to a subsequence, assume that R? ; — R;_; and R} — R; as n — +o0. If : ma)lc2 lun| < C,
j-14t

by €, — 0 as n — +oo, (2.3) and elliptic estimates we deduce that R;_1 < R; and, up to a

subsequence, (—1)/~1v,, — v in CIQOC(A)7 A = Bg,;(0) \ Bgr,_,(0), as n — +o00, where v > 0 is a

bounded solution of
N

— Av=uN73 in A, v=0on0A\{0}. (2.39)
We have that R;_; > 0, since otherwise v would be a solution of (2.39) in the whole Bg,(0),
0 being a removable singularity, and then would vanish by the Pohozaev identity (2.20). Up
to a subsequence, by elliptic estimates ¥, (r) = (—1)j_1(R;-21)¥vn(rR§Ll) — ¥ in C2_(A),

loc
A=DB r; (0)\ B, as n — +00, where ¢ > 0 is a bounded solution of
] 1

2

+2

—A? =972 in A, ©=0o0n 0A.

In particular, o;,(1) = (=1)7~'(R}_ )z n(R}_1) — 9'(1) > 0, in contradiction with (2.34) when
j—1€Jand R? | — Rj > 0 as n — 4oo0. Then (2.38) is established and the Claim is
proved. O

ond Claim: We have that

,r,n

j—lEJ,R”1<1=>sup5—n<+oo (2.40)
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If 52 — 400 as n — +o00, then j > 2 and the function f/]”(r) = (=1)77(7) N52vn(r”+6nr) solves
_(an)” — (N — 1) n+5n (V") = (f/j )N 2 + En(5 ) (r + 5" )ozf/jn in I, = (_T _6}7?) 17 Rj(s?"j )
0< VP <Vr(0)=1 in I,

Vir=0 on 01,

in view of (2.18). Up to a subsequence, assume that

r— R R —r?

3577?31—}141 S [0,+OO], %—)LQE [0,+OO]

j J
as n — +00. As we will justify later, we have that
Li,Ly > 0. (2.41)
Notice that . s
n\2/,.n m, o __ J 2/,.mn n, .\ 2+« J 2

as n — +o0 in C)y.(—L1, L2), in view of — +00 as n — +00. Up to a subsequence by elliptic

estimates we have that Vj" — Vjin C’ ( Ll, Lz), where Vj is a solution of

{ (V)" = (V)% in (=Ly, Lo)
0< V § V (0) in (7L17L2).

Since by energy conservation there holds

N - .
VI + (V; =1
s (V)4 (7)) = 1,
the property f/j > 0 implies that Ly, Ly < +0c0. By (2.8) with R =77 and r = R}_; we get
(6mF
A J
TR = g [ st
(Rj—l) 1
0 TT.L—|—§7.15 — Srmy N2 n n n _\oay/rn
B /T;L—R;‘fl (Tl)N V)R + en(07)7(rf + 87'5)* Vi lds
S R i
0 ~  N+42
R / (V) ¥ s (2.43)
— L
in view of V* < 1, (2.42) and
n n n n r;L_R;Ll
Ty i — Ri i 57
— 400, — Ly €[0,400) = =1+ g — 1 (2.44)
o7 or R} 4 ;% T =1

as n — +o0o. When j — 1 € J, (2.43) is in contradiction with (2.34) since

n N-2 n n n
0j) = _ ( 01 )7 ( i) )%(54)% =0 L
(R)¥= R R enE T e

J J

[~ ~

r

as n — +oo, as it follows by (2.44), 7 — 1 € J and — +o00 as n — +oo. Then (2.40) is

established.

To complete the proof of the Claim, we need to establish (2.41). Apply (2.8) with R = r}' to get
by (2.18) that

=g
<73

rn N_a2 n __ (,’,n)aJrl

[0 ()] < (L)NL(6p) [ Sy,

r (5") N+« (245)
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for all Ry <r<r} and

N rotl
for all 77 <r < R?. We deduce the following estimates by integrating (2.45) in [R}_;,77]:
N—2 T;l T’T-L N—2 1"7.7‘ — Rn7 g
5™~ _ I < J N-1 SMYy~ Tz J j—1y2 n 2.47
a7 = [l < e e |EE e g ean
j—1 J J
and (2.46) in [r}, R7]:
N-—2 R;L N—2 R — 17 £
ST = <o T ()2 - 2.48
o)~ '[; S O | | (2.45)
in view of a +2 > 0 and fol ro*tldr < +00. Therefore we have shown that
RY —py o _ RT
I_J 4 il s 55 (2.49)
or o7
for some ¢ > 0 in view of (2.44), and the validity of (2.41) follows. O

When k = 1, we can apply (2.35) with j = 1 to get « < N — 4. Indeed, & > N — 4 would
imply, by inserting (2.36) into (2.35), that 1 = O(e,(R})N~2), yielding a contradiction in view
of en(RM)N=2 — 0 as n — +oo. If in addition R} — R; > 0 as n — +oo, by (2.38) for j = 2
condition R} < 1 would imply 65 — 0 and then :;—';Z — 400 as n — 400, in contradiction with
(2.40) for j = 2. Hence R} =1 for n large and, when o < N — 4, by inserting (2.37) into (2.35)
for j =1 we get that

1
N (a+2wn_1 fou |z]®VZ |70
r = Lo V2 o,
(f]RN VE=z)

completing the proof for &k = 1.

When k > 2, by (2.38) and (2.40) for j = 2 we can assume, up to a subsequence, that 65 — 0 and
2 — L€ 0,+00) as n — +oo.

oy
3rd Claim: There holds
lim 2 = 0. (2.50)

n——+oo 55‘
Assume by contradiction that L > 0. Since
ry —RT
ro Fig
2 =1 + 2

I iRy
&7 &7

—1

if T;gnR? — 0 as n — 400, by (2.47)-(2.48) we can still deduce the validity of (2.49) for j = 2. Up
2
to a subsequence, we can then assume that

Rn Rn

X 5 Lyeo, L), 2 & Ly e (L, +x).
oy oy

The function V5 does solve

N+42
+ R Ry

—AVP = (V3 V=2 4 £,(05)**|z|*V5" in I, = (Tg’ Tg)
0< V8 <V3(5) =1 in I,
Vzr=0 on 01,

2

=
NII
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in view of (2.18). Arguing as above, by elliptic estimates we have that, up to a subsequence,
V3t = Vo in Cp (A), A= Br,(0)\ B, (0), where V5 solves

N+42
—AVy = (V2)¥—2 in A, 0< Vo <Vo(L)=11in A.
By (2.30) it follows that

™ ry
_ 6’”. ,Sn
TR ED R = [ ST e [ ey
B %
L N+2
- sNTH (V) v=2 (2.51)
Ly

as n — +oo in view of V3* < 1. Since 1 € J, by (2.34) and (2.51) we get that 67 ~ 0% as n — +oo,
in contradiction with

o Ly LR

=>—=>_— 00

5r = 2L o7 ~ 2L o7

as n — +oo as it follows by (2.19). Then (2.50) is established and the Claim is proved. O

Once (2.50) is established, we proceed as follows. Since 0 < 7-;5—7LR{L < g—% — 0 observe that
2 2

Tﬁ; — 0 asn— 400 (2.52)

in view of (2.47). Up to a subsequence, we can assume that ?—5 — Ly € (0,400] in view of
2

(2.48), and, arguing as above, deduce by elliptic estimates that Vj* — V5 in Clloc(BL2 (0)\ {0}) as

n — 400, where V5 solves
—AVh = (Vo) ™2 in Br,(0),  0<Vy<1in By, (0)
with V2(Lg) = 0 if L < 4+o00. Since by (2.46) there holds

, 7‘3 4o Ta+1
|(V2)|(7“)§r—@-|—5n(52) m
for all Q% <r< *?g, we have that
2 2
" 1 rh rogotl
Vn =1 Vn/>1_7 _722_716”(14_2 s
o +/Tg(2)_ Q(T 53) e (%%) 0o N+«

5y
for all g—Z <r< ?—5, and then as n — +oo we deduce that 1 > Va(r) > 1 — %7"2 forall 0 < r < Lo.
2 2

Hence V2(0) = 1, Ly = 400 by Pohozaev identity (2.20) and Vo =V, where V is given by (2.13).

So far we have shown that 1 € J = 2 € J. As already explained, the new estimate (2.16) becomes
crucial here. The difficulty is that very few is known about v, in the range [R},r%], a problem
which can be by-passed through the following trick. The key remark is that

1 T _ n
/ SN ([up| V2 A+ £,,8% o) ds = (5;)—N220( "2 +5nro‘+1> (2.53)
R}

= G
for all r € [RY},r%] in view of (2.18). By integrating (2.7) for v, in (R}, r) we get that

EDY LR [T e
o) = e e [ 8T (al P esoa)ds (2.54)
1

for all » € [RY,7%]. Inserting (2.34) with j =1 and (2.53) into (2.54) we deduce that
N—-2

(oF) >
U;L(T') == ,:N—l

/ sSNTIVNS[L 4 o(1)] + (63)"T20 | 2o + eprot!
0 (05
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for all » € [R},7%], and then

G- - /R o (2.55)
SR e 1
— (]\[)_2/0 SN V=2 [1+O(1)H(R?)N—2 - (r")N_2]

n 1
)T 0(Ep e [ o)
2 0
as n — +oo. Since %&L, % — 0 as n — 400 in view of (2.14) with j = 2 and (2.52), by (2.55) we
deduce the validity of (2.16) for R7.
We already have that & < N —4. The case @« = N — 4 can be excluded since (2.37) into (2.35) for
j = 1 would provide 1 = O(g,,(R})V 2| log ?TH), a contradiction in view of ,,, R} — 0 and
RY 6% (R})? oy 1
T = Rroggr = Ol = 0(5)
of Ry 0703 Ry Ry
as n — +o0o, thanks to (2.16) for R}?. Hence aw < N —4 and (2.37) into (2.35) provides that

+oo oo niz\ 2 §n

(a+2)sn(5?)2+a/o pN-Ltay2 _ (/O ervN+2> (V=201 4+ 0(1). (2.56)
1

In view of (2.16) for R}, (2.56) gives that

N—6—2a

(07) = ~en(03) T =0

as n — —+o00, which necessarily requires a < %.
We can easily iterate the above procedure to show that J = {1,...,k} and (2.16) does hold
for all j = 1,...,k — 1. If (2.15) does hold, condition R} < 1 would imply the existence of
R} <rp . < Ry, <1sothat v,(R}, ;) =0and

vp| (T} = ma Unl.
| n|( k+1) [RngZXH]' n‘

Since by (2.14)

o on Rn gnopn
n] zin nj <in z:rl —0 asn — +oo
0y R of,  RY O,
forall j=1,...,k—1, by (2.35) and (2.37) we get that
2 +ooN1 2 OON1N+2257'LN2
(o + 2)en (67) +a/0 PN-ltoy2 _ (/0 PN v:vz> (V721 4+ o(1). (2.57)
J
For j = k by (2.57) we have that
. (a4 2)wn_1 [pn [2|*V? Noime
o = q V%];R;V)Q En (14 0(1)) (2.58)
Ry VT
as n — +o0o in view of R} = 1. For j =1,...,k — 1, by inserting (2.16) into (2.57) we have that
(@+2) [ el V2ea70) T = (V=) [ VERE) T 1o1)
RN RN
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as n — +o0o. We finally deduce that

2
a+2 x|eV2 | Voo —2
R e | I UMb I U BCED
—2) fan V=
asn — +oo for all j =1,...,k — 1, or equivalently
V-2 (o) P T - (V—a-) L (N=2 yk—j

o [0 el I (N gy | T

Ty P Jio VI
as it follows iteratively by (2.58)-(2.59). This completes the proof. O

3. A PERTURBATIVE APPROACH: SETTING OF THE PROBLEM

In this section we provide a very delicate perturbative scheme in order to prove Theorem 1.2. The
main ingredient in our construction are the Euclidean bubbles defined in (1.3) which are all the
solutions to the critical equation (1.6) with Hardy potential in the Euclidean space.

It turns out to be useful to rewrite problem (1.7) as follows. We let 1* : L (Q) — HX(Q) be the
adjoint operator of the embedding 1: H} () — L% (), i.e. for any w € L% (Q) the function
u=1*(w) € H (Q) is the unique solution of

Lvu:—Au—W#:win Q, u =0 on 900. (3.1)
By continuity of the embedding H{ () < LV (), we get
Iv* ()]l < C ] g,
for some C > 0. We rewrite problem (1.7) as
w=r [|u\ﬁu+eu L ue HY(Q). (3.2)
3.1. The projection of the bubble. To get a good approximation of our solution, it is necessary

N+2
to project the bubble U, onto the space H{(2). More precisely, letting PU, = 1* (UMN‘2),

according to (3.1) PU,, solves

N+2
L,PU, = LU, =UY > in Q, PU, =0 on 0Q (3.3)
N+2
in view of (1.6) for U,. Since U, > >0 in Q and PU,, € H}(Q), by the weak maximum principle
we have that PU, > 0 in €. To get the expansion of PU, with respect to i, we make use of some
tools introduced by Ghossoub and Robert [18, 20]. First, let us recall the existence of a positive
singular solution G, € C%(Q\ {0}) to

L,G,=0 inQ\ {0}
{ G,=0 on 0N (3.4)

having near the origin the following expansion:

o C1 Co 1
Gy(x) = 2 Tl +o <x|5 ) as x — 0, (3.5)
where ¢, co > 0 and S+ are given in (1.5). The function H, = ‘zcl—kJr — G, in turn satisfies
L,H,=0 in Q\ {0}

"R

on 0N (3.6)
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with .
2
H,(x) ~ - as x — 0. (3.7)
By Theorem 9 in [20] observe that H. € Hj (), whereas G., ¢ Hg (). The quantity m =m. o =
i—f > 0 is referred to as the Hardy interior mass of {) associated to L, and w.l.o.g. we can assume

c1 = 1.
We have the following estimates.
Lemma 3.1. There hold
(i) 0<PU,<U, inQ
NERT
(i) PU, =U, —anpu"H,+ O <"ﬁ> uniformly in Q as u — 0

||

(i) PU,=U,+0O (‘ﬁ%) uniformly in Q as p — 0.

Proof. (i) The function ¢, = U, — PU,, solves

Lypu=0  inQ\{0}
ou=U, on 0f).
Since U, > 0 and ¢, € H'(Q), by the weak maximum principle it follows that ¢, > 0 and (i)
holds.
(ii) Let W, = U, — PU,, — anu" H,. Then W, satisfies the following problem
LW,=0 in 2\ {0}
W, — anp” S anp” _ 0 (M%F> on 9.

ElG

_4r _4r
2]~ (uN =2 4]x|N-2) 2
Since W, € H 1(Q), by weak comparison principle it follows that

N+2F

N+42 N-2 .
W}L:O(,LLN72FH’Y> :O</1ix|ﬁ— > IHQ\{O}

in view of (3.7), and (ii) follows.
(iii) It follows immediately by (ii) and (3.7). O
3.2. The linearized operator. It is important to linearize the problem (1.6) around the solution
U defined in (1.4). More precisely, let us consider the linear problem

Z N +2
Vo = Y iyvsz i RY

z]> N -2 (3.8)
Z € DYA(RY).

Dancer, Gladiali and Grossi in [13] classified all the solutions to (3.8):

—AZ —

Lemma 3.2 (Lemma 1.3, [13]). Let v < % so that v # ~; for all j € N, where y; is given by
(1.8). Then the space of solutions to (3.8) has dimension 1 and is spanned by

1 — |z|¥=

Z(x) = -
2l (1+ a2

, xRN,

w2

If v =, for some j € N, then the space of solutions to (3.8) has dimension 1+ (N+2{R/2_)§%Jgrj73)l

and is spanned by

(N +2j—2)(N +j —3)!
(N — 215! ’

Z'(x) and Z](z)= yi=1,...,
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where {P;;} is a basis for the space P;(RYN) of j—homogeneous harmonic polynomials in RN .

Given G a closed subgroup in the space of linear isometries O(N) of RV, we say that a domain
Q c RY is G—invariant if Go C Q for any = € Q and a function u : @ — R is G—invariant if
u(gz) = u(x) for any x € Q and g € G.

Definition 3.3. If v = ~; for some j € N (see (1.8)), Q is said to be a j—admissible domain if 2
is G;—invariant for some closed subgroup G; C O(N) so that [ Z](z)¢(xz)dz = 0 for any i and
RN

any G,;—invariant function ¢ € D2(RY).
Remark 3.4. A ball is j—admissible for all j € N by taking G; = O(N). Any even domain

(ie. z € Qiff —x € Q) is j—admissible for all j € N odd by taking G; = {Id, —Id}, since any
homogeneous harmonic polynomials of odd degree is odd.

Remark 3.5. In the following we will work in a setting where the space of solutions to (3.8) is
simply generated by Z7. In a general domain, we will require either v > 0 or v < 0 with v # ~;
for all j € N. If v = ; for some j € N, we will assume that (2 is a j—admissible domain and we
will work in the space of G;—invariant functions. Indeed, by Lemma 3.2 we immediately deduce
that the space of G,—invariant solutions to (3.8) is spanned by Z7.

From now on we let Z = Z7 and we omit the dependence on ~. It is clear that the function

e pF(pv=z — 2| ¥72) N
Zﬂ(x):,u 2Z(>— — s r e RY,
|2|8- (u¥"2 4 |z]¥2) %

solves the linear problem

Z N +2

—AZ, — e 7UN *Zy RN
T2 T N =2 n
We need to project the function Z,, to fit Dirichlet boundary condition, i.e. we consider the function
_4
PZ,=1* (%‘%UHNQ ZM> according to (3.1). We need an expansion of PZ,, with respect to p.

Lemma 3.6. As p — 0 there hold uniformly in Q

2

N+2F
(i) PZ,=Z,+ u"H, +O<||ﬁ )

Gi) PZ, = Z, +o(‘ o )

Proof. We argue as in the proof of Lemma 3.1. O

3.3. The tower. Let k > 1 be a fixed integer. We look for solutions to (1.7), or equivalently to
(3.2), of the form

Mw

)Y PU,, + @, (3.9)
j:l
where
51
Hy=e = (3.10)
when I' = 1 and
,U/j:djf-fgj, j:].,...,]ii7 (311)

when I' > 1, with di,...,dy € (0,+00) and o, given by (2.17). The choice (3.10)-(3.11) of the
concentration rates is motivated by the validity of the following crucial relations: for I' = 1

1
pi ~ epilog — (3.12)
H1
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and for I' > 1

r
2l ~ep?  and (uj> ~ s,u?, i=2,... k. (3.13)
Hj—1

To build solutions of given sign with a simple blow-up point at the origin, we need to assume I' > 1
and consider the case k = 1. The assumption I' > 2 is necessary when constructing sign-changing
solutions, i.e. k > 2, to guarantee o1,...,0, > 0.

The remainder term ® shall be splitted into the sum of k terms of different order:

k
=3 ¢, (3.14)
=1
where each remainder term ¢, only depends on puq, ..., us and belongs to the space ICj- defined as
follows. For any £ =1, ...,k we define the subspace K; = Span{PZ,,,,...,PZ,,} and either
K ={¢€ H)(Q) : ($,PZ,,)=0,i=1,...,0}
when € is a general domain and « # «; for all j € N or
Ki = {p € Hj(Q) : ¢is Gj—invariant, (¢, PZ,,) =0, i=1,...,(}

when  is j—admissible and v = ~; for some j € N (see Remark 3.5). We also define IT, and II}
as the projections of the Sobolev space H}(€) onto the respective subspaces K, and ICZL.

In order to solve (3.2), we shall solve the system
I+ {u—l* [\u|ﬁu+€u}} =0 (3.15)
I, {u 1" {|u|ﬁu+ su} } =0

for u given as in (3.9). For sake of simplicity, for any j =1,...,k we set U; = U, and Z; = Z,,,.

4. THE LJAPUNOV-SCHMIDT PROCEDURE

In this section we give an outline for the proof of Theorem 1.2. To make the presentation more
clear, all the results are stated without proofs, which are postponed into the Appendix.

4.1. The remainder term: solving equation (3.15). In order to find the remainder term ®,
we shall find functions ¢g, £ = 1,..., k, which solve the following system:

Er+ L1(d1) + Ni(d1) =0
& + Lo(h2) + No(¢1,¢2) =0

Er + ﬁk(qﬁk) —|—Nk(¢)1, .. ~7¢k) =0.

Setting f(u) = |u\ﬁu, the error terms & are defined by

£ -1
E =T (1) PU—1" [ f| D (=1PU; | = f | D (-1 PU; | +e(-1)"PU,

Jj=1 Jj=1

and the linear operators £, are given by

L
Lo(¢) =T =17 |f | D (-1PU; | ¢+ed| ¢,

j=1
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with the convention that a sum over an empty set of indices is zero. The nonlinear terms N, have
the form

Ne(p1,...,b0) =
0 £ 4
I = | F (D (17 PU + ¢5) | = £ [ D(=17PU; | = £ | D (-1 PU; | 6
j=1 j=1 J=1 (4.2)
-1 -1
—f [ Do (17PU +¢5) | + £ [ Do(-1)PU;
7j=1 j=1

In order to solve system (4.1), first we need to evaluate the H}(Q)— norm of the error terms &,.

Lemma 4.1. For any { = 1,...,k and any compact subset A, C (0,+00)’ there exist C, gy > 0
such that for any € € (0,e0) and for any (di,...,ds) € Ay there holds

2" . < <

O (epl) F1<T <2 O(MQF)1 . F3SN <5

2 5 1 _
€= 0 (eutlog™ L) =2 4 f Ol o8 ) N =6 (4.3)
O (epi) if T > 2 o) <M1N2F) N> T
and
€]l = O(ep?) mlr if3<N<H (44
ol = O(epz) + iar . 2 . .
0] (N/ZZI)N_zzlogS i) ZfN>6

foranyl=2,...,k, when k>2 and T > 2.

Next, we need to understand the invertibility of the linear operators L£,. This is done in the
following lemma whose proof can be carried out as in [27].

Lemma 4.2. For any ¢ = 1,...,k and any compact subset Ay C (0,+00)’ there exist C,eq > 0
such that for any e € (0,&9) and for any (di,...,de) € Ag there holds

IZe(@e)ll = Cllgell for any ¢, € Ky (4.5)

In particular KZI : K — Kj- is well defined for e € (0,&0) and (dy, . ..,d) € Ay and has uniformly
bounded operatorial norm.

Finally, we are able to solve system (4.1). This is done in the following proposition, whose proof
in the Appendix relies on a sophisticated contraction mapping argument.

Proposition 4.3. Given A C (0,+00)F compact, there exists £g > 0 such that for any € € (0, o)
there exist Ct—maps (dy,...,dx) € A = ¢pe = ¢pe(di,...,do) € Ki, £ =1,...,k, which solve
(4.1) and satisfy uniform estimates:

r _N+42 2 1
I1.c]l = O(IE), ||¢e,s||:0(< PEr L ()t 4 (L) =n T 1088 ) (4.6)
He—1 He—1 He—1 He

forl>2 and
||V(d1,‘..,dg)¢é,f:‘|| =o(l) £=1,... k. (4.7)

Moreover, there exists p > 0 so that

00:(0)) = O (i ) 2 € By 0. (4.9)
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4.2. The reduced problem: proof of Theorem 1.2. Let us recall the expression for the energy
functional J. : H}(Q) — R:

1 u’ N -2 N
Je(u) = 5/ <|VU2 - 'YW - euz) dx — N / |u|¥=2dx,
2 Q

whose critical points are solutions to the problem (1.7). Let us introduce the reduced energy as

k
Je(pa, - ) = Jo | Y _(~1)'PU;

Jj=1

Given @, according to (3.14) and Proposition 4.3, the following result is the main core of the finite
dimensional reduction of our problem.

Proposition 4.4. Given (3.10)-(3.11), we have that

Aogmp? — Asep2log L ifI'=1
Js(ﬂl):A1+{ 2Mmpy 3EMT gﬂl f

Agmp3t — Azep? ifT>1 + Y1) (49)

and when I’ > 2

k
Je(pa,- - ) =kAy + Agmpd" — Agepd + [A‘*(;ffl )" = Azepf
=2 (4.10)

k
+ ZTK(NIW . .,,LL()7
(=1

where |Y1| = o(u3Y) and [Ty = o ((L)F), £ =2,...,k, do hold as ¢ — 0 locally uniformly

He—1
for (dy,...,dy) in (0,+00)k. Here Ay,..., Ay > 0 and m > 0 is the Hardy interior mass of Q
associated to L. Moreover, critical points of

k k
Je(pa, oo pr) = Je Z(—l)jPUj + O | =J(p1, - pe) + Z To(pa, ..., pe)
j=1 =1
k . ~
give rise to solutions Z(fl)jPUj + @, of (1.7), where Y, satisfies the same estimate as L.
j=1

Proof of Theorem 1.2. By (3.10)-(3.11) and Proposition 4.4 it is sufficient to find a critical
point of

2dq
Fe(dl) B (Agm — A3d1 + 0@(1))
when I' = 1 and

k
FE(d17 ey dk) = Z€20g+1 (Gé(dla s 7dl) + 02(1))

=1
when I' > 1, where
d
Galdy) = Agmdi® = Asdl,  Grld, o) = As( )" = Asdh, £= 2.k,
-1
Here 04(1) only depends on dy,...,d; and 0,(1) — 0 as ¢ — 0 locally uniformly for (di,...,ds) in
(0, 4+00)’. For k = 1 it is easily found an interval
A A .
s (A—im—ki,A—;m—ks) 1 ifr=1 € (0,4+00)
(%(Af%r)va(Af%r)m) ifr>1 ’
so that

inf F, < inf F,
P < r
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for £ small, which guarantees the existence of a minimum point d. € I of F.. For k > 2 it is still
possible to show that F. has a minimum point but the proof is more involved. Since it can be
carried out as in [26], we omit the details. O

5. APPENDIX

All the technical proofs can be carried out as in [26]. Since they are quite involved, we rewrite
some of them here by re-adapting the arguments to the present situation.

5.1. The rate of the error: proof of Lemma 4.1. By the property of 1*, we get

€1 = 0 (JU0) ¥ = (PUN) T3] 1 ) +0 (< PUL gy ) (5.1)
By Lemma 3.1 and scaling x = p1y we have that
O (ph) if1<T <2
PUL| gy, < [U1] g, = iU gy, 0 = § O (,ﬁl i) T =2 (5.2)
O (13) if I > 2

< 1and 22 = N=242T Gince |+ b|¥2 — |a| V2 = O(|a|~=2 [b] + [b| ¥=2) for all

in view of N+2 Ni3 N3
a,b € R, we deduce that

N+ N+2 4 _ N+2
’(Ul)z\rfz _(PUl)N—2 o :O<‘U1N2(PU1—U1) an ‘PUl Ul‘ . > . (53)
N+2 Nt2 N-32
By Lemma 3.1 and scaling x = 1y we have that
4
a4 U~N-=3
oo - o) L, <and || L =)™ T L
N+2 |$‘ 2 |y| N+2o g
O (13") if3<N <5 (5.4)
Jo (uﬁf log? ,i) if N =6
- N+2F
0] <,u1N2 ) ifN>T7
e N3 p N Fr
PU, — ’ - )= - .
P -0y =0 (' [~ zv”) ¢ (’“ ) | >9)
in view of 5 <1and
2N 45, 2N(N —6)
— (B =N- ———T. 5.6
N+2(ﬁ N—2) N2 -4 (56)

Inserting (5.4)-(5.5) into (5.3), by (5.1)-(5.2) we deduce the validity of (4.3).

Let us now consider the case k& > 2 and assume I' > 2. For ¢ > 2 we have that

L /-1
€| = |\Z 1) PU;| 72 Y (~1) PU; —\Z 1)) PU, |52 3 (=1)) PU, — (— 1) (PU,) ¥ a
j=1 j=1
B
+0 (‘(Utz)%tg — (PU,) o +€|PU4|1\$+N2>-
N+2

(1)

(I) is estimated as in (4.3) with p replaced by p;. As for (I), let us introduce disjoint annuli Ay,
as
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where pig satisfies pou; = r? with r = %dist((),aﬂ) and peyr1 = 0. Moreover define 1 so that
p—1p0 = (diam Q)2 in order to get Ay C B, /=75 (0) \ B /pgyr (0). Since

N+2 2 _
la+ b7 (0 +b) — |a] ¥ a — ~2 |a|75=b = O(b|FF) + O(la| ¥ 02) (5.8)
N -2 —_——
if 3<nN<s5
for all a,b € R, we have that
¢ -1 ‘ i
Z 1) PU;| ¥ Z 1Y PU; — \Z 1 PU;| %52 3 (=1)7PU; = (=)' (PU) Y| 2y, a,
j=1 j=1 j=1
= _4 %*g .
o[> |(PU;)¥= PU| a0, HIPU S ifth=0,...,1—1
_ J=1
o -1 -1 (5.9)
o> |(PUy~¥= 2 PU;| 2, AZ+Z|PU\2N | ifh=L
Jj=1 j=1
Hereafter we will repeatedly use that py >> ... >> ug. Since % <1 Lemma 3.1
and scaling x = p;y we have that
O((—)T) it j =t
. . — _ HFhih+1 o e g
Pl = kg = Ul 2 = { o=y en=e ~ 05
(5.10)

forany j = 1,...,£ and h = 0,...,¢ with max{j,h} = ¢, j # h. Since |z| >> p; in A, for any
j=1,...,4—1and h=0,...,f/ —1 by Lemma 3.1 we have

4

. 4 N2
(PU,)~=2 PU, <|U77U, <opp |2
’ e U N e
\ Ntz (5.11)
pyp |[UN-2 0
= oty |22 —o (1)
O N I f—1
N+27 py
when 3 < N <5 and
PU;) "2 PU, <|lv¥=y <o ¥ | U
‘( j) ) ‘ s An 7 ‘ 2N A =M ?\1572
+ N2 AR ‘x| - ﬁfzyAh
2

w.oar | U . ar [ logd YEEMERL i fN =6 519
= (7) 1B gC(*)Nfz H N6 ( . )

M N=3 e ( Ll )m itN>7

|y 2N An N ooy
20 Ty
_ ( )N E Jog3 1)
Hi—1 i
when N > 6, in view of 2ﬂ7 <1< 25* and
2N | 48_ 2N(N —6)
+ 2 T,
Ni2w gt = N2 _4
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Similarly, for j =1,...,] — 1 we have that

a4
(PU)F= AR <oy | U
225 A ! ] an A ! |$‘B_
N1z 2N_ 4
NF2 v (513)
el | T —o()
R e Y pi=t
Ntz
when 3 < N <5 and
(PU,) 2 PU, <|lv=y, <ot |
l VA ! ! 2N : =
N+2 l ~izA ‘$|N ’ J\?fz“Al
2
logs —_Hi N =
) (ﬂ) . (_{B 7 C(ﬂ)z\?fz OW ) lf 6 (5.14)
/’[’] |y|N—+2 oN A Hi (T)N ’ lfN 2 7
N2y ’
Hi—1 K

when N > 6 in view of % < 1 and (5.6). By inserting (5.10)-(5.14) into (5.9) we deduce an
estimate of (I) which, along with the estimate on (II) in terms of 1, leads to the validity of (4.4).

5.2. The reduced energy: proof of (4.9)-(4.10). To get an expansion of J.(u1, ..., ux), let us
first write that

k k Nis
T (=) PUY) = Y J(PUY) + 3 (—1)7 / [UN"? — ePU, — (PU,) V3| PU; da
=1 =1 i<t Q
k k 2N 2N N+
Z 1) PU, =D (PU)Y — — Z(—l)’”(PUg) ~=2 PU;] dz
=1 (=1 i<l
N+2
in view of PU; =1* (UéN 2). Introducing the quantities
-1 ‘ Nz o
ae =J.(PU) + Y (—1)+ / N — ePU, — (PU) NS PU, da
i=1 2

N -2 ¢ . 2N 2N 2N = ) N42
DY CI b —\Z FPUN#S — (PU S - 2N S (puy ¥ U da

2N Jq N -2

i=1 =1
for any £ = 1,...,k, let us notice that each ay only depends on di,...,d, and the following
decomposition does hold:

k k
T (=1)'PU) = ar. (5.15)

=1 =1

We claim that

ar = A1 + Aomp2 (1 + o(1)) — Ase(1 + o(1)) “1 log T =1 (5.16)

T AT AR s 13 it T > 1 '
and

r
ar = A + Ay <ﬂ“€> (1+o0(1)) — Azepi(L+o0(1)), £=2,... K, (5.17)
-1

where m > 0 is the Hardy interior mass of § associated to L, and Aj,..., A4 > 0. Inserting

(5.16)-(5.17) into (5.15), we deduce the validity of (4.9)-(4.10).
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To compute J.(PUy), let us first write

N+2
J.(PU,) = / UN de / U2 (PU, — Up)da — = / PUZdx
N 2 Jo

N e (5.18)
-~ P _ N—-2 _ _ =7 N-—2 P _
2N Q[( Ul) U[ N—2UZ ( U[ Ug)]dl‘
N2
in view of PU; =1* <UEN2>. We have that
5 2N ol
QUZ dzx = RNUN%dy—i—O(uE ), (5.19)
and by Lemma 3.1 and (3.7) we deduce that
Ntz Ni2 1\?52
| F v - vgds = —anif | uF @) + O ) ds
0 ||
N (5.20)
UNirg
——aymyi [ oy (14 o()
Ry Y]
and
2 2 MF 2 2
/QPUZd;v:/QUeda:—&—O(/QUqﬂm d;v):ue/ U? dy + O(u /‘ 2)
e
2log L [a2 1)) ifr=1 (52
_ [ pplog o-lajwn—1 +o(1)] i T =
17 fen U? dy + o(1)] ifT>1
in view of NB’ <N<p_+ N+26+ and 281 = N — 2+ 2T". Since
2N
la+b| ¥ — |a| ¥ — i |a|N 2ab = O(|a| ¥ 2b% + |b| ¥2) (5.22)
for all a,b € R, by Lemma 3.1 we finally deduce
2N 2N N+42
/Q[(PU@)J@§2 U % - N UN *(PUy — Uyp))dx
_4 2N _p
~0 (/ |PU, — Ud%dm—i—/ Ur = (PU, — Ug)Qda:‘) — Ol + 2 / "
o E (5.23)

ZNF .
Olp, ™~ "‘N?FIBR(O T];Zﬁz dy) if3<N <4

or
e | — ou")
O(ué\”2 + ) fQ ) fN>5

45+
|z N=2 28—

in view of ~— < 1and 4ﬁ+ +2B8_ = N —28=1T. Inserting (5.19)-(5.21) and (5.23) into (5.18)
we get the Vahdlty of (5. 16) for ay = Je (PU1)

Hereafter let us consider the case k > 2 with I' > 2. As for £ =1 in (5.16), the following expansion
does hold

J.(PUY) = Ay + Aomp2" (14 0(1)) — Asepz(1+0(1)), £=1,... k. (5.24)
Let ¢ > 2. Since

N

4 L 5 1 3 /’LN7
UN?2 — 0 He N (—— Vaw-2 | =0 £ s
‘ (( ) (MEIQJVL) (leﬁm*‘aw{m A-
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by Lemma 3.1 and (5.8) we have that for any i =1,...,¢—1

N+2

U2 — ePU, — (PU,) W

vear [ U Y
o|lp 2 /Tﬁ,dl‘—i_ué/QHTd +€/UlUng)

S1PU; dx

S~

— N
= ¢
‘x|N 2
e AN r d
He — Hi Her ~=s z W )T
S T — e [
/ |x|%+gﬁ +B+ (:U'z) He Q \x|2%%—2)5*+2<1\175—2)ﬁ+ ‘x|ﬁ +3+
and then
N+2
/ (U= — ePU, — (PU,) V2| PU; dz = o (( pe )F) (5.25)
Q He—1
in view of (3.10)-(3.11) and
N 12 AN — 5 5
—_— — N. 5.26
=T <N sy taw oy < (5.26)

14

In order to expand the last term in ag, £ = 2,...,k, let us split 2 as Q = U Ap, (see (5.7)), and
h=0

for h=0,...,¢ set
-1

4
Ih:/A}Z PU|N2—|Z ) PU;| %52 — (PU,) ¥~ S D
v i=1

=1

—1)"(PU,) ~2 PU;) da

By (5.10), (5.13)-(5.14) and (5.22) we deduce that

~0 (ZZ/ (P

-1
He
(Z|PU| L Y PUL gy, o [PUS PO 252,A5> —o ().
i=1 -

s 4 (PU,)?PUN ] dm)
(5.27)

¢ —1 by (5.8) and (5.22) we get that

For h=0,...,
-1 -1 4
I, = 1> (-1)'PU; ks > (-=1)'PU](~1)"PU, da
An =1 i=1

/ Z [(PU;) =2 (PU)? + (PU,) ¥ PU;| d:c+/ (PU) ™= da)
A Ah

ho§=1
2N
=53 (pUz )N PU, d$+o</ Z PU,_1)~= PU;PU, + (PU;) =2 PU,] da )
- An =1

£—1

Lo /A S(PUY)

h 5=1

= (PU))? + (PU,) ¥ PU; dx—i—/ (PU) ™ da).
Ahn
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Since 8- + 2B, = N + 55

5 > N, by Lemma 3.1 and (5.26) we deduce that

4 Uﬁ
/ (PU¢—1)~—2 PU;PU, = O((ﬂ)l“/ =1
.Ah _Ah

1\ U~ fe\r
dz) = O((** / —— dy) = O((**
p) L 7 =G [y e W =0
U U~
N2 . fe v N2 fe v
PU)Y2PU; dx = O F/ L dr) = O((*= / dy) = O((%==
[, (PUo¥EPU s = 0 || T an = o L, T = 0N
1o oUr U~
N+2 He N Hep, fe | 2r
PU, N—zPUid:c:Of/ L dr)=0((%= / dy) = O((55)H (=)~
IRGE Gr [, a0 =0 [ G an =0t )
forany i =1

123 He—1
L O—1land h=0,...,0—

1, which inserted into the previous expression for I, give
that
2N 2N
I, =——— (PU@ 1)N 2PU[d1’+O ZPU NZ(PUZ) dﬂ?+/ (PU[)N*2 dﬂf)
N =2 Ja, Ay = A
He T 2N Nt2
=—— PU;_1)V—2PU,; d
+O(<M@ 1 N =2 Ah,( o) c
He
/ Z| (PU;) N—2PU1| 18 Ah|PUl| 2N A, —|—|PUl| 2N Ah)+0 ( )F)
An i He—1
~N+2 He \r
PU,_1)¥—=2PU,; d
N72 Ah( r-1) ¢ $+0((M_1))
(5.28)
for h=0,...,£—1 in view of (5.10)-(5.12). By (5.8) and Lemma 3.1 we have that
s
N2 He \r He T
PUy_1)¥=2PUy dx = O / dy) =o 5.29
[, (pre)FEPU @ = o2 L WA e
for h=0,...,£—2and
/ (PU,_1)~2 PU, dx
Ag—1
N U 1)¥2U, | Nz U Uy
N3 —1) " 22U 2r [
= / U@Jilz U[ dﬂ:+0(/ [:U“E—l ! B +,UgN_12 Ni2 +,Uz£ ¢ 517 ] dI)
Ae—1 Ap—1 |.Z“ |$|

o] ¥
4
_ (M v / UNE2T oy dy o [ ub / (Up_1)~—2U, "
=) aios v e | TR

Nt2p dx dx N
+0 i — | +0y / —NF
<:ul—1 He /Ae . |x|g+§ﬁ +ﬁ+> (1o )( ~5—)

(5.30)

|| 7
U%tg He 1
ZaN(uji)F /RN e dy+o((ﬁ) )
in view of =ty > | [E=t — foo for all y € Ae L (5.26) and
US U o (|U4§U5|13527A“> =0((;25)") if3<N<5
/A“ Y Ue

@ (
[L

(5.31)
— T .
||N 25 +5+>_O((ul;€1)) if N >6
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thanks to (5.11). Therefore, inserting (5.29)-(5.30) into (5.28) we have the following expansion:

Megry gy = =2 A (P (), (5.32)

I, =o0
" ((Mq N—-2 "p fe—1

Summing up (5.27) and (5.32) we get that the third term in a,, £ = 2,...,k, takes the form

9 L
D In = Ay(
h=0

which, along with (5.24)-(5.25), finally establishes the validity of (5.17) for ag, £ =2,..., k.

¢ \I He 1
WH) +0((/~L271) )

5.3. The remainder term: proof of Proposition 4.3. We assume that either / =1 or £ > 2
and C'—maps (di,...,dx) € A = ¢;(di,...,d;) € IC]-L have already been constructed for j =
1,...,¢—1 satisfying the properties of Proposition 4.3. By Lemma 4.2 we can rewrite the equation

gf + £2(¢£) +-/V-E(¢1,Ev LR ¢E*1,Ev ¢Z) =0as
o =—L; (E+Ne(Priey s Pot,e,d0)) = Te(e).

Given R > 0 large, we show below that T, : B, — By = {¢ € K} : ||¢|| < RR} is a contraction
mapping for ¢ small, where

L[ lal ite=1 -
CTN R R E 4 re)  ogE L ire=a kO

Hence, for € > 0 small it follows the existence of a unique fixed point ¢y (d1,...,de) € B for any
(di,...,dr) € A. By the Implicit Function Theorem it is possible to show that (di,...,d;) € A —
bue(dy, ..., dp) is a C'—map satisfying also (4.7). Since the proof can be made similarly as in [26]
we omit it. The validity of (4.8) will be addressed at the end of this section.

Set Ne(¢) = Ne(d1.e,- -y Po—1,¢,$). Since by Lemma 4.2
ITe(@) < cEell + INe(@)) s 1 Te(p1) = Te(da)ll < el Ne(¢1) — Ne(2)ll,
by Lemma 4.1 and (3.10)-(3.13) it is enough to show that

[Ne(@)ll = O(Re) +o([[8l]),  [IVe(¢1) — Ne(¢2)l| = o(1)[|61 — ¢2]| (5.34)

uniformly for any ¢, ¢1, 92 € By. Let f(u) = |u|ﬁu and set

4 -1 ¢ 4
Ne = fIY_(-PU+) djct+¢| —f|D(-1)PU; | - Z 1) PU,
j=1 j=1 J=1 i=1
—1 ‘ —1 '
Y=V PU + ¢ | + £ | D (-1 PU;
j=1 j=1

First, by (5.8) for £ = 1 we have that

Vi@ < elN| an) = el f(=PUs + ¢) = f(=PUL) = f'(=PU1)¢| 2n
N42

< ello) S + U6 ) = ()
—_——

if 3<N<5
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and then the first in (5.34) is established. For £ > 2, by (5.8) we have the expansion

l —1 ¢ —1
Z VPU; + 3 je | = £ D (—1/PU; | = £ | D=1 PU; + 6]
j=1 j=1 j=1

i M“ i

4 -1 Y4
Y PU; | + | f | D (-17PU + > s | = £ | D(-1/PU; || ¢
j=1 j=1

= (5.35)
¢
O(¢| %) + O3 _(PU,) ¥ 2¢2+Z|¢H\N 2¢7)
Jj=1 Jj=1
if 3<N<5
Letting A;, be as in (5.7), we have that
[NVe (o) (5.36)
By (5.8) and
Ja+ 0|72 —Ja| 7= = O(1b| ™= + || 72 ]b)),
———
if 3<n<s5
for h=0,...,f£ —1 we have
N+2 1 s 4 = _4 N42
INel gy, < |0 + 0 SO e ¥ 0] 3 [ + 10|
j=1 =1 NE2h
6—N 9 9 £ -1 6—N
+e| YU +Z\¢ 52 3N U (0165 .y
j=1 =1 j=1 " (537)
if 3<nN<s5
-1
=0 [ R+ llojl =0 +o(ll¢l)
j=1
and
o -1 -1 s win
N g, a, < e|UT Y 0l + Y10l ¥ 4 1083
=1 j=1 Ntz
= SN e N e N (6
DS ARINED 3 al IS oy LIS SN e B
i=1 i=1 j=1 j=1 j=1 N2
if 3<N<5
. (53)
:O Z'UN 2¢]6|N+2’ +Z|¢j€ 2N2 A[+Z|¢j,s‘2ﬁ§2,fv
j=1 j=1
-1
N 2 N 2 N
+0 Z U2 &5, 6| 22 A, |U| 2N 4, [ 6| 2N A, +o([|])
i,j=1
if 3<nN<5

for any ¢ € B, in view of (5.10)-(5.12) and Holder inequality, where Ry is given in (5.33). Notice
in the estimate (5.37) we couple the first/second term in the expression (5.35) of N, with the
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third/fourth one, while in the estimate (5.38) the first two and the second two terms in (5.35) are
coupled.

For j=1,...,£—1 there holds A, C B,,,(0) and by (4.8) we deduce that

c, 1 He—1fbe ( e r)
i o| 2N < —= N <c¢(F—) =0 (—)2 5.39
|¢J7€|1\?72,«4z = N; \x|/3— |1\%—2"AE < 12 ) (M—l) ( )
and
N . c UN
| ¢]75|N+2, = F| |x|ﬁ |N+2,A
4
pe\D|UN-2 — He \I' < <
(,u,J) ‘ ‘yli_ |13$27i§ O ((Hef1) ) 1f3 N 5 (540)
< { BT e = O () hogP 3) N =6
4T
uN2 N B Ni2T .
¢ eﬂg ||ac|ﬁ*'*'N4_23+|1\2;752’A’Z _O<(/‘i’tf1)N722) EN 2T

For h=0,...,¢—2 by (5.10) we deduce

T
4 4 4
1641 77 PUz| g, 4, < ell65. 77| PUL| s, A§<\/IﬁT+) - ((M‘Z_lf) (5.41)

for any j = 1,...,¢ — 1. Splitting A,y as A,_; UA)_,, where A, | = As_1 N B,,, ,(0) and
Al 1 =A-1\ By, ,(0), by (4.8) and (5.10) we get that

C PU[ _4
65| ™2 PULl 2, 4, , < —a =l T ellfie T 1PUel oy, ay
py 0z
N2 if > N2
< s |PU,| oy 1{ gy o 1 = 272 +C(ﬂ)F (5.42)
) (po—1pee) N2 if I < M2 Ho—1
:O(( Pe yy55 (M )E+1>
He—1 He—1
in view of
|PUe| 22 4y | < pz U 2N RN\B 0 =0 <M%( He )gl>
= NE=s .

(5.43)

He \r
P 1y, < Ul gy 0= (GES)").
He

Estimates (5.10), (5.39)-(5.40) into (5.38) and (5.41)-(5.42) into (5.37) lead to |Nf|13—ﬂf2,Ah =

O(Ry¢)+o0(]|¢]]) for any h = 0,..., ¢, which, inserted into (5.36), finally give the validity of the first
in (5.34) for £ > 2.

Concerning the second one in (5.34), we have that

—1
INe(61) = No(@2) | < €|[D 161l ™2 +161]7= + |62] ¥21(61 — 62)

=1 s
|

eSS UFTY 165l 4 161 + [62l) (61— 62)
i=1 j=1 1352

if 3<N<5
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in view of

_4_ 4 N+2 a4
la+b+ci| 2 (a+b+er)—latb+ca| T2 (a+b+co) — la| 2 (cy — ¢2)

N -2

—N
=1 — o]0 | D™ + |ea| ¥ + |ea ¥ 4 [a] 572 (8] + [ea] + |eal)

if 3<n<s5

for all a,b, c1,co € R. Therefore there holds

4

-1
INe(61) = Ne(2)ll < ¢ | S el ™= + o1l ™= + 62| 7= | |61 — o]

j=1
£ 6-n |01
+ e YOG | S el + ol + oall| llor — ool (544)
=1 j=1
if 3<N<5
= o(1)]|¢1 — 2.

in view of ¢y, ¢2 € By. The validity of (5.34) has been fully established.

To prove the validity of (4.8), assume that either £ = 1 or £ > 2 and C*—maps (di,...,d) € A —
Gje(dr,....dj) € lel have already been constructed for j = 1,...,¢ — 1 satisfying the properties
of Proposition 4.3. Setting u; = (—=1)? PU; + ¢, j = 1,..., £, we have that u; satisfies

J j—1
wy =1 | w) — S w) +eus | 405, W€K, (5.45)
=1 =1

for any j =1,...,¢, and then

4 14 l 14
Soup =1 [ fO w)+ed ui| +> NPZ (5.46)
j=1 i=1 j=1 j=1

¢
in view of Z\Ilj € KC¢. We claim that \j. = o(1) as ¢ — 0 for any j = 1,...,¢. Indeed, let us
j=1
take the inner product of (5.46) against PZ;, i = 1,...,¢, to get

¢ ; o
Nj(PZ;,PZ;) :/Q[Z(_l)JUjN

1 j=1

¢
_€Z/UjPZidx
j=1"9

J

12 4 i—1
= O _u)PZidz + Y (¢, PZ)
=t = (5.47)

N42
in view of ¢;. € K- for any j > i and PU; = 1*(U;"~*). By Proposition 3.6 and (5.22) we have
that

N+2 2N_1

oN ZN-2 N-2
/(PZi)z\%yz dr = / ZiN_2 dx+ O M{/ - B_ dSCJr/ ‘LL%T/J’ dzx
Q Q a | Q |z|v=2"-

N+2
—2

N
Z7% dy + 0 (u?r /Q ly1P- dy> +o(1) = /NZ% dy + o(1)
2 R

(5.48)

I
e

Hi
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and
N +2
PZ; PZ; N2ZiPZ;
( = 2/U do
4 _
N +2 _4 U~N_2Zj
= UN7?Z;Zydx+ O -F/Jid
W Um0 | [ S
) (5.49)
N 42 ) rp [ UNEZ
N—26” &UN 27 dy+0<uiuj Pk dy | + o(1)
1
N+2
50 i Uv=2Z%dy + o(1)
4
in view of PZ; =1 (%UJ—N’QZj), |Z;| < U; and
4 N2 dy if j >
|| U722 da) < c / U U; da < " e L
Q Q piyT UNs if i<
c(w) fRN T dy if j <i.
By inserting (5.48)-(5.49) into (5.47) we get that
N +2 ‘ ‘
Z2dy ) N\ = (P 1YY PU;)|PZ;d
N—Q(/RNUM y) . /Zl U;) Z-:l U;) x
- = (5.50)

L
o3 s +o()

in view of (4.6), (5.3)-(5.5), (5.8) and ||PU;|| = O(1). We have that

4 4
/[Z(—l)f‘(PUj)%fi Z 1Y/ PU,)|PZ; du
Q=

:—Z/ lf( ZPU1> f( PU) (1) (PU;)~2 | PZ; dx
j=1"9
£ J j—1
—o(Y (Z(—l)iPUz) ~f (Z(—l)iPUi) G AL )
h=0 i=1 i=1 N+2/th

in view of (5.48), with A given as in (5.7). By (5.9)-(5.14) we deduce that

L

4
[ IS 17 (P = f(3S(-1 PUIPZid = o),

Jj=1

and then (5.50) reduces to

N +2 4
PR UN—2
v (L

¢
This in turn implies that Z |Aje| = o(1), and the claim is established.
j=1

?
22 dy) M = o> Pyel) + (1)
j=1
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vz t
The function Uy (y) = p, 2 (Z u;)(1ey) solves
j=1
N2 Q0
— AUy — #L{e —epiy —U > =h in ™ (5.51)

in view of (5.46), where

¢
fg\N+2 _N+2 [lp
h=0 Z\)\j,a\(f) 2 U””(*_Z/)

j=1 /u’J /“’LJ

We have that

L
7| = O el (91 = 0(1)

with 7 = %B_ < pf-+2and

N-2

(/ mﬁdey) §e</ Uzv”zdy)
B,.(0) B,.(0)

in view of B,,, C By, for any j =1,...,£—1 and (4.6), for some r = r(¢). We are in position to
apply Proposition 5.1 below to get the existence of p, K > 0 such that

N—-2
2N

2N

¢
+ ) llosell = < e
j=1

lyl” [Ue(2)| < K

for all z € B,(0), or equivalently

Since by assumption for any j=1,...,¢/—1
C C
Tl = T8
Mj|x| - pg |]P=

luj| < PU; + |¢je| <

in By, (0) with B,,,(0) C B,,,(0), we deduce that |ue| < ﬁ and then |¢g .| < in
Y] xr

By, (0), and (4.8) is established.

3
wy le|”=

The following result is established using the same scheme as in [20] and for convenience we repro-
duce it here.

Proposition 5.1. Let M >0 and 7 < B_ + 2. There exist €,p, K > 0 so that

sup ol |u(z)| < K (5.52)
2€B,(0)
does hold for any solution u of
—Au— #u = au+ [u|¥=u+hin By(0), wue HY(Bi(0)), (5.53)
with
|ul 2n B, 0y S € (5.54)

laloo,B1(0) + sup_|a|"[h(z)| < M. (5.55)
z€B1(0)
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Proof. We need some preliminary facts.

15t Claim: Let M > 0 and q > 2 with 4(’;§1) > (N{YQ)Z' There exist ¢, K > 0 so that for any
0 < p2 < p1 <1 there holds

|u|392(0),NNj2 <K |U|B,,1(O),q + |h(z )prl(o) (5.56)

TN— 2+2J

for any solution u € L(B,, (0)) of (5.53) so that (5.54), KN € Li(B,, (0)) and |a|oo,B,, (0) < M
do hold.

Indeed, given L > 0 define
Gmﬂ_{mr% i L <L
(q— 1)L *t—(¢q—2)L% ' signt if|t|>L
and .
H(t) = { |gt|;‘122|t _ 2 ; Iil : ;
in such a way that Hy, Gy € C1(R) satisfy

Gl (t) = 4(qu Vimmp, ter (5.57)

Observe that for all ¢ € R there hold

q—1)

0 <tGp(t) < Hi(t), |GL(t)] < H2 (). (5.58)

Given 0 < p2 < p1 < 1, let n € C(RY) be so that n = 1 in B,,(0) and n = 0 in RN \ B, (0).
Test (5.53) against n?G.(u) to get

/ (Vu, V(n?Gr(u)))ds — / %nzuGL(u) dz
B1(0) Bi1(0) |Z|

(5.59)
= )\/ n*uGyp(u) dr + / n2|u|ﬁuGL(u) dx + / n*h(z)Gp(u) d.
B1(0) B1(0) B1(0)
By (5.57) an integration by parts leads to
4(g—1
[ G =10 [ )
B1(0) q B1(0) (5.60)
4(g—1 )
+ M / nAnH? (u) dx — / A(n?)Jr(u) dx
q B1(0) B1(0)
where Jp, (¢ fo G (7)dr. Inserting (5.60) into (5.59) we get
4o / 9 /
— V(nH dz — ——n*uG
(a+1)° Bl<o>| ) B,(0) |95|2 e (5.61)
<K/ W+ )] do+ K | = pH @ +rf @) G W)} de
B1(0)

in view of (5.58), where K denotes a generic constant just depending on ¢, M, v, N and py, p2.
By Holder and Sobolev inequalities we have that
N

/ u| 772 [nHy (u)]? da < (/ u|N2dex> (/ InHy, (u)| ¥ dm)
5o B1(0) B1(0) (5.62)

s&ﬁ/ IV (1 H () de
B, (0)

N-—2

2o
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in view of (5.54) and

2(¢—1)

/ P2 1h(@))| G ()| d < / () [ () 5
B1(0) B1(0)
N-2+2¢ =1 (5.63)

<K (/Bl(o) |h(1})|N:2+2q d.r) (/Bl(o) |V(7]HL(U))| dx)

in view of (5.58). Plugging (5.62)-(5.63) into (5.61) by (5.58) we get

Mf EN4—2 u 2 €T — + i U 2 X
{ e K }/BI(O)W(UHL( NI de =~ /131(0) |x‘2[77HL( ))7d

<K (2 (w) + J1 (u)] do + K < / \h(z)| 75 dx> ( / IV (1 () dx)
By, (0) B1(0) B1(0)

where v = max{v,0}. By the Hardy inequality we finally deduce that

4(g —1) s Ayt 2 2
M ke - | [ v ) sk [ ) ds »
N—242q a=1 . (b.64

+K/ \h(z)| ™2 dz
B1(0)

Since (q SN
we deduce that

( / v<nHL<u>>|2dx> q
B;(0)

for € small we can assume that (‘; D _ Kevs — (N 2)2 > 0. By (5.64)

(N 2)27

N—-2

-~
( RO d:c> <K [ |VHy(w) dz
B1(0) B1(0)
N— 2+2q (565)
<K/ uw) + Jp(uw)]de + K / |h(z)|~=2+24 2 dy
Bl(
in view of 4= L <1 and the Sobolev inequality. Since 0 < Jp(t) < tG(t ) < |t|? does hold
for all ¢t € R in view of (5.58), by (5.65) we get that
N-—2+2q

N-—2
N N

</ HL(U)I\?dex> SK/ |U|qdw+K</ |h(x)|$q+zq dw)
By, (0) By, (0) B,, (0)

Taking the power % and letting L — +o00 by the Fatou’s Lemma we obtain the validity of (5.56).

ond Claim: Tet 1 < ¢g<Q,M>0and 7 < B_+ 2, where

f 4o ify <0
Q= 2 ify>0.

There exist €, K > 0 so that
[uly.y 0) < K [m%ﬁl(m 1 (5.66)

does hold for any solution u of (5.53) so that (5.54)-(5.55) are valid.

Indeed, notice that for v > 0 the property (q b > (NL%)Q? q > 2, is equivalent to 2 < ¢ < % =

T2Q' Since

N <

Ng N ify<0 N
- B_+2 lf’}/>0 T




36 PIERPAOLO ESPOSITO, NASSIF GHOUSSOUB, A. PISTOIA, AND GIUSI VAIRA

if 7 < B_ + 2, we have that
|h|__~g
N—2+2q°

for any ¢ € [1,%2Q), 7 < 10 and h satisfying (5.55). Let ¢; = (8-2)/q, j € N, and r; be any

decreasing sequence so that rg = 1 and r; = % Since g; — 0 as j — 400, we can find a smallest

index k£ € N so that ¢, < % Notice that ¢; < ¢1 < %Q for all j > 1 and g > 2 in view of

B0y < K(M,T) (5.67)

qr—1 > % We can apply the 15t Claim with g; between rjy; and r; for j =1,...,k—1 and
obtain by (5.67) that for ¢ > 0 small
lu 281 (0) <K [|u|qk,Bl(0) + 1] (5.68)

does hold for some K > 0. We can conclude in view of g < % and
2N —(N—2)q,
2Nqy,
‘u|q1c731(0) < Wy

lul 25, (0)-

3'd Claim: TLet < q<Q, M >0and 7 < B_+2. There exist ¢, K > 0 so that

sup |x\%|u(x)| <K (5.69)
JJEB%(O)

does hold for any solution u of (5.53) so that (5.54)-(5.55) are valid.

Given % <qg< @, M>0and T < _+ 2, choose € > 0 small so that the 90d Claim applies.
The function U(y) = |x\%u(\x|y) satisfies

~AU — U = [efa(|2ly)U + [T [U|72U + 2|7 2h(|zly) in By(0) \ By (0),

lyl?
where o
[lzPalely)U +|af*~ 7 U] ¥2U| < e U] + 47000 2 U| R (5.70)
and
Ni2 Nyo oo M 27— N _o
|2« T h(|zly)] < fofs T < 4T T M (5.71)
lyl™

for any |z| < § and § < |y| < 2, inviewof%+2—7> %+2—726,+2—T>0. Since
Ulg,200\810) < lula,34 0);

by (5.70)-(5.71) standard elliptic estimates apply for any ¢ > ¢ > % and through a bootstrap

argument yield the validity of (5.69) for some universal constant K > 0.

To conclude the proof, let us rewrite (5.53) as

v+a(w)u
|[2

4

=h(z), a(z) = |z[a(z) + |2]*u(z)| 7. (5.72)

— Au—

Since Q(4N71\£2) < 2, by 314 Claim and (5.55) it follows that there exists Cp, 0 > 0 such that
la(z)| < Colz|® (5.73)

for any |z| < i. Since 7 < _ + 2, we can fix a so that f_ — 0 < a < f_ and a > 7 — 2. Then we
can find p > 0 small so that ®(z) = |z[~F- — |z[~* > J|z[~?- in B,(0) and satisfies
v+a a?—a(N—-2)+v a a? —a(N —2)+7v Co M

—AD — d = ——® > — >
|[? [+ =2~ || || P=t20

Edl

in B,(0) in view of a® — a(N —2) + v > 0. Since |u(z)| < K®(z) for some K > 1 and any
x € 0B,(0) in view of (5.69), by (5.55) we can use K ® as a supersolution of (5.72) with h and —h
to get by the maximum principle |u(z)| < K®(x) < K|z|=#- for any = € B,(0), as desired. O
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5.4. The reduced energy: end of the proof for Proposition 4.4. Let us first show that J.
has the same expansion as J.. Setting uy = (=1)*PU; + ¢y, £ = 1,...,k, we have that

k k
~ 1
JE(Ml)"'?/J’k?) = JE(MI?"'?/‘L]C)—’_ § |:<Ulv¢i,a> _E/Quﬁgsi,sdx] - 5” E d)l,e 2
£,i=1 (=1 (574)

k
|ZUg|N 2 —|Z PUglN 2‘| dx
{=1

in view (u + v,u + v) = (u,u) — (v,v) + 2(u + v,v) for any bi-linear form (-,-). By multiplying
(5.45) against ¢; . € K7, i > £, we get that

Q

l —1
(ug, pie) — € /Q uey e dz = /Q FO u) = O uy)| bicdw
j=1 j=1

for any ¢ > ¢. Therefore, (5.74) reads as

Te(pay i) =Je(uu, ) + Y (-1 [PUe,quE)g/QPUmE d;z:]

1<l
k /—1
— IS el + zmﬁz zuj 1w | éiedr (575)
2
=1 i>0 j=1
k
SN bzuaﬁ% - |Z<—1>fpw|ﬁf2] dz.
Q] =1 =1

Setting

TZ (PUEaZQSze _E/PUE Z(bza) %|¢€E”2 |¢28|2 /fzu] (b[gdl'

~

-1

0 -1 J4
N72 2N 2N . 2N
- AN— — JN=—2 — _ J J N=
W Jy || 2l Il IS PUIE P

by (5.75) we have that

k
JE(M17'~'7Mk) = JE(M17‘-‘7/1’]€)+ZTZ
=1

in view of

Z/ Z“J (jzjuj) Giedr = iz_k;[)f(gw)@,a dz.

>0
Since for £ > 2

-1 —1
—1)! <<PUZ,Z¢i7E> —ELPUE(Z¢i75)>

N+2

-1 N2 N -1
= (-1 [ PO Z@a d$+O<Uz — (PU) 2| +€|PUZ|;§2) D il
i=1

/PUzNg ¢m>dx+o<( B )F+su3>

He—1
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in view of (4.6) and (5.2)-(5.5) with p; replaced by g, we have that
=~ N —2 ~ =~ N —2 ~ 1274
T =-——F" dz+O(|E)?), To=—-—F— d ) +epf 5.76
=N [mavotalr), To=-N32 [naso Loy vai)  s19

for any ¢ = 2,...,k, where

4 N -1 N 4 -1 N
~ 2 2 . 2
D= 1D w3 ¥ = | Y (1 PU R (-1 P, R
Jj=1 J=1 Jj=1 Jj=1

¢ -1
N
P ui)ore + (=) (PUNYE (Y 61.)
j=1 i=1
By (5.8) and (5.22) we have the expansion

Up = | jPU+Z¢J6|N2_|Z“J|N2_|Z ]PU|N

~
~

j:].
“! . o ON N2
+[ (-1 PU =2 — o (1) (PU) Y= qum (5.77)
j=1
2N ¢
+0 | [pee|¥= + Y (PU)T= 67, +Z|¢]E\N 27
j=1 j=1
We have that B
Y1 = O(|&1]°) = o(ui") (5.78)

in view of (3.10)-(3.13) and (5.76).

Let us now discuss the case ¢ > 2. Given Ay, as in (5.7), by (5.8) and (5.22) for h=0,...,¢—1
we have

. Ny 4 ¥
Belv.an < e|US + U 20T 4 1056l ™3]+ US D [ye]
j= j=1

1,Ap
-1 -1 A
e|lF o)~ FOOPUIUL + Ol6ee ) (5.79)
j=1 =1 b
{—1 Nao -1 4 "
< U ‘[—:m UUW . N 2
<o 3 [oreret¥3] v 32 e, o (A4 ent)
and
£ (-1
CAIWIEED D) BART +Z|¢JE|N Y U »
=1 j=1 1,0=1 ‘
Z .
+ e F (1Y PUS) — F(-1)PUY) Z@E Ollléecl®)  (5:80)
i=1 b

L Te ((W)F + 5u%)

He—1

4 —1 0—
<Y+ Y bl
j=1 j=1

in view of (4.6), (5.10)-(5.14) and for any ¢,j =1,...,4—1

oS 3 2 4 e 42
UFU lan, = O(U; 2 Uel 2, 4, 1Uel 25, 4,)5 Uilgsel =2 + U2 ¢l = O(Urlje| 7=

RE=PP) e 2 3 =) iz, 2N 2N
Ui 7€ + Uz |¢j,5‘ = O(|¢)j,€| N2+ Ui )a Ug Ui¢j,€ = O([Ué Ul] Ntz + |¢j,s| N=z2 )
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Notice in the estimate (5.79) we couple the first two and the second two terms in the expression
(5.77) of Uy, while in the estimate (5.80) the first /second term is coupled with the third /fourth one
in (5.77).

For j=1,...,£—1 there holds A, C B,,,(0) and by (4.8) we deduce that

4
< / ur— P / dx
57 X
— 2 26_ 2N 2N
1,A, i J A, |ZE| B g\uzF A, |x‘N—2B*

4
N—=3 ;2 2N
‘UeN “Pje t 0| V2

) Ky (5.81)
He 2F/ U~-z He \ N p o < Me | N_p 1)
<e(— dy+c "2 =0 | (——)~" 2 log— |.
- (uj) Ac [y|?- v (MH) (MH) ® i
For h=0,...,£—2 by (4.6) and (5.10) we deduce
Nt2 s N2
)| N2 Utlr,a,, + UV > bjclia, < clldjell ™2 Uel 2, 4, + clldjell|Uel 2 4,
VHRER+1 Pe—1

for any 4,5 = 1,...,¢ — 1. Splitting A, as A,_,; UA)_;, where A;,_; = A;—1 N By, ,(0) and
A 1 = A1\ By, ,(0), by (4.6) and (4.8) we get that

=17 UUS ¢,
||¢J,6| E|1,A271 + |Ue i ¢J7€|1»A571
5N2_21N+18

S cll@s el TP DG U=y 4+ cll@je| T2 |UU; joe SN=0 A

N+2
¢ 19317 + gscll] 106l g, ay

I d T
xz N=2 dx 5N—10
=0 g ( — )N 1 Fe ( ) sN=o
NESE N—_2C ar 5N2 21N 418 , N— 18T
s Ap_y ‘-73| N-2 N—2 (N-2(6N-9) A, |x‘ 5(N=2)
K My

He \r He \r
+o0 ol (—
<(Ml) ) ((Ml) )
(5.83)
forany i,5 =1,...,£—1in view of (5.43). Inserting (5.82)-(5.83) into (5.79) and (5.81) into (5.80)
we deduce that |U¢]1, 4, =0 ((i)F + euf) for any h =0,...,¢ and then

He—1
Y=o <(‘“)F) (5.84)
He—1
for any ¢ > 2 in view of (3.10)-(3.13) and (5.76). Thanks to (5.78) and (5.84) we have established
that Y, satisfies the same estimate as Ty, £ =1,... k.

To conclude the proof of Proposition 4.4, let us show that, if (di,...,dx) is a critical point of js,

k
then Z(—l)éPUg + &, is a critical point of the functional J.. Assume that
=1

k
0= g, Je(dy,....dy) = VJ. (Z(—l)EPUe - <I>E> [(=1)"0a,, PUp, + Oa), -]
=1

for any h =1,..., k. Since

k k
A (Z(—l)fPUg + <1>€> =Y "\PZ;,
j=1

{=1
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we get that

k
0="> X (PZ;,(~1)"0a, PUy + 04, :) (5.85)
j=1

for any h =1,...,k. Since by (5.49) there hold

|PZu||? = co + o(1), (PZ;,PZy) = o(1) V¥ j # h,

we have that

k k

(PZj,04,%e) = ) (PZ;,0a,00.e) = O | D IPZ;]| [0a,e.cll | =o0(1).
=h t=h

in view of (4.7). Since

by (5.85) we deduce that A\;. =0 for any j =1,...,

-1 ifr=1
6thUh:—I‘aNPZh><{ é&‘ 1fF>1,
k, or equivalently

k
VI (Y (-1)'PU+ . | =0.
=1

k
Then Z(—l)ePUg + ®. is a critical point of the functional J. and the proof of Proposition 4.4 is
=1

complege.
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