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Abstract

We consider the semilinear elliptic problem −∆u = f (x, u), posed in a smooth bounded
domain Ω of RN with Dirichiel data u|∂Ω = 0, where f : Ω × [0, a f ) → R+ (0 < a f 6 +∞)
is a function of appropriate regularity which blows up at a f . We give pointwise lower
bounds for the supersolutions under some appropriate conditions on f , and apply them to
eigenvalue problem −∆u = λ f (x, u), by giving upper and lower bounds for the extremal
parameter λ∗ and the extremal solution u∗. To demonstrate the sharpness of our results, we
consider the eigenvalue problem −∆u = λ f (up) (p > 1) with Dirichlet boundary condition,
and show that for every increasing, convex and superlinear C2 function f : R+ → R+ with
f (0) > 0, λ∗p →

1
f (0)ψΩ

and ||u∗p||∞ → ∞, where ψΩ is the maximum of the torsion function
of Ω. Also, we consider the eigenvalue problem −∆u = λρ(x) f (u), where f is either a
regular singularity such as f (u) = eu, or a singular one such as f (u) = 1

(1−u)2 and give
explicit estimates on λ∗ and u∗, that improve and extend several results in the literature,
by Payne[17], Sperb [21], Brezis-Vasquez [3], Guo-Pan-Ward [11], Ghoussoub-Guo [10],
Cowan-Ghoussoub [6], and others.
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1 Introduction and preliminaries
We consider semilinear second-order elliptic equation of the form{

−∆u = f (x, u) x ∈ Ω,
u = 0 x ∈ ∂Ω,

(1.1)

where Ω is a bounded smooth domain in RN and f : Ω × [0, a f ) → R+ (0 < a f 6 +∞) is a
given function which blows up at a f . It is said that a solution of (1.1) is classical provided the
map f̃ (x) := f (x, u(x)) ∈ C(Ω), u ∈ C2(Ω) ∩ C(Ω). Note that if f is Hölder continuous in its first
variable and locally Lipschitz continuous in the second variable; by elliptic regularity theory, this is
equivalent to saying that a classical solution is in C2,α for some α > 0 [20]. The aim of this paper is
to give a nonexistence result for problem (1.1) and find pointwise lower bounds for supersolutions of
(1.1) under some appropriate conditions on f . Then we apply the results to study the corresponding
eigenvalue problem, i.e., {

−∆u = λ f (x, u) x ∈ Ω,
u = 0 x ∈ ∂Ω.

(1.2)

In particular, we consider the nonlinear eigenvalue problem

(Pλ,ρ)


−∆u = λρ(x) f (u) x ∈ Ω,

u > 0 x ∈ Ω

u = 0 x ∈ ∂Ω,

where Ω is a bounded smooth domain in RN , 0 < λ, ρ is a nonnegative nonzero bounded Hölder
continuous function and f : [0, a f ) → R+ is a smooth, increasing, convex nonlinearity such that
f (0) > 0 and which blows up at the endpoint of its domain. We consider two cases (according
the notations of [6]) either f is a regular nonlinearity i.e., f is superlinear, namely f (t)/t → ∞ as
t → ∞, and its domain is D f := [0,+∞), or when D f := [0, 1) and limt↗a f f (t) = +∞ called a
singular nonlinearity. Typical examples of regular nonlinearities f are eu, (1 + u)p for p > 1, while
singular nonlinearities include (1 − u)−p for p > 1.

It is said that a solution of (Pλ,ρ) is classical provided ‖u‖L∞ < ∞ (resp., ‖u‖∞ < 1) if f is
a regular (resp., singular) nonlinearity. Note that by elliptic regularity theory, this is equivalent
to saying that a classical solution is in C2,α for some α > 0 [6]. It is known that there exist an
extremal parameter λ∗(Ω, ρ) ∈ (0,∞) depending on Ω, ρ and N, such that (Pλ,ρ) has a minimal
classical solution uλ ∈ C2(Ω) if 0 < λ < λ∗(Ω, ρ) while no solution exists, even in the weak sense,
for λ > λ∗(Ω, ρ) (see [10] for a precise definition of weak solution). It can be shown that the map
λ 7→ uλ is increasing in λ. Its increasing pointwise limit u∗(x) := limλ→λ∗(Ω,ρ) uλ(x) is a weak solution
of (Pλ,ρ) for λ = λ∗(Ω, ρ) which is called the extremal solution of (Pλ,ρ) (see [10, 13, 14, 2]). For
problem (Pλ,1) we refer the reader to L.E. Payne [16, 17, 18]. In this paper we are mostly interested
in upper and lower bounds for the extremal parameter λ∗, as well as pointwise lower bounds for the
corresponding extremal solution u∗ of (Pλ,ρ).

The ball of radius R centred at x0 in RN will be denoted by BR(x0). If x0 = 0 and R = 1, then
we just write B. Given a set Ω in RN we let |Ω| denote its N-dimensional Lebesgue measure, while
ωN denotes the volume of the unit ball B in RN . The torsion ψ of a domain Ω is the non-negative
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function ψ ∈ C2(Ω), that is the unique classical solution of the problem{
−∆u = 1 x ∈ Ω,

u = 0 x ∈ ∂Ω.

We shall denote ψΩ := supx∈Ω ψ(x) = ‖ψ‖∞. It is a classical result [21] that whenever f is an
increasing function with f (0) > 0, then the extremal parameter λ∗(Ω, 1) for problem (Pλ,1) satisfies
the estimates:

1
ψΩ

sup
0<t<a f

t
f (t)
6 λ∗(Ω, 1) 6 λ1(Ω) sup

0<t<a f

t
f (t)

, (1.3)

where λ1(Ω) is the first eigenvalue of Laplacian with Dirichlet boundary condition. Brezis-Vasquez
[3], Gazzola-Malchiodi [9], Guo-Pan-Ward [11], Ghoussoub-Guo [10], Cowan-Ghoussoub [6], and
others improved these estimates, at least for some specific nonlinearities f and provided upper and
lower L∞ estimates for the minimal solutions of nonlinear eigenvalue problem (Pλ,ρ). In this paper,
we offer another approach to these problems, which will yield improvements to the known estimates
on both λ∗ and ‖u∗‖∞.

The upper bounds will be dealt with in section 4, where we prove that

λ∗(Ω, 1) 6
1
ψΩ

∫ a f

0

dt
f (t)

, (1.4)

which, in many cases, represents a sharper upper bound than (1.3). Indeed, for example in the case
of f (u) = (1 − u)−2, Ghoussoub-Guo [10] used Pohozaev-type arguments, to show that for a star-
shaped domain Ω, one has λ∗(Ω, 1) 6 (N+2)2P(Ω)

8aN|Ω| , where P(Ω) is the perimeter of Ω. In particular,

λ∗(B, 1) 6 (N+2)2

8 , where B is the unit ball. Formula (1.4) gives however a much better estimate,

since in this case, F(t) :=
∫ t

0
ds
f (s) =

1−(1−t)3

3 , and ψΩ = 1
2N yielding that for all N > 3, λ∗(B, 1) 6 2N

3 .
Actually, (1.4) is an improvement on (1.3) for any nonlinearity f as long as the dimension is

large enough. Indeed, by using known asymptotics for λ1(Ω), one can show that if

¯̄λ(N) :=
1
ψΩ

∫ a f

0

ds
f (s)

and λ̄(N) := λ1(Ω) sup
06t6a f

t
f (t)

,

then λ̄(N)
N → ∞ goes to infinity as the dimension N → ∞, while

¯̄λ(N)
N remains bounded.

Another illustration of how our estimate (1.4) is an improvement on (1.3), we consider in section
4, semilinear second-order elliptic equations of the form{

−∆u = λ f (up) x ∈ Ω,
u = 0 x ∈ ∂Ω,

(1.5)

where Ω is a bounded smooth domain in RN , p > 1 and f : R+ → R+ is an increasing, convex and
superlinear C2 function with f (0) > 0. Denoting by λ∗p (resp. u∗p) the extremal parameter (resp. the
extremal solution) of problem (1.5), we show by using (1.4) that

lim
p→∞

λ∗p =
1

f (0)ψΩ

and lim
p→∞
‖u∗p‖∞ = +∞.
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In particular, when f (0) = 1, then limp→+∞ λ
∗
p(B) = 2N. Note that with the earlier result (1.3), one

only arrives at

1
f (0)ψΩ

6 lim inf
p→+∞

λ∗p 6 lim sup
p→+∞

λ∗p 6
λ1(Ω)
f (0)

.

In section 3, we provide improvements for the lower bound for the critical parameter λ∗, by estab-
lishing the following estimate:

sup
0<t< ‖F‖∞ψΩ

t − t2β(t) 6 λ∗(Ω, 1), (1.6)

where

β(t) = sup
x∈Ω

f ′(F−1(tψ(x)))|∇ψ(x)|2, (1.7)

and F(t) :=
∫ t

0
ds
f (s) , t > 0. In particular, if Ω is the unit ball B, we then have

sup
0<t<‖F‖∞

2Nt − 4tα(t) 6 λ∗(B, 1), (1.8)

where α(t) = sup
0<s<F−1(t)

f ′(s)(t − F(s)). As we shall see, this lower bound (1.8) is sometimes an

improvement on the estimate (1.3), and yields –at least in some dimensions– the exact value of the
extremal parameter for the standard nonlinearities f (u) = eu, f (u) = (1 + u)p and f (u) = (1 − u)−p

with p > 1. For example for f (u) = eu, the previous estimate (1.3) gives that λ∗(B) > 2N
e , while our

formula above gives that

λ∗(B) > max
{

sup
0<t<1

2Nt − 4t2,
2N
e

}
=



2N
e N = 1, 2,

N2

4 N = 3, 4,

2(N − 2) N > 5.

We also improve the lower bound on the L∞-norm of u∗ given by Cowan-Ghoussoub [6]. For
example, and again in the case of f (u) = eu, they show that ‖u∗‖∞ > 1, while our result yields that

‖u∗‖∞ > − ln(1 − λ∗(Ω)ψΩ),

which in the case of the unit ball gives that ‖u∗‖∞ > ln N
2 , hence a better lower bound when 6 6 N 6

9.
We also note that Brezis-Vasquez in [3] and others established that the extremal parameter of

problem (Pλ,1) with f (u) = eu satisfies λ∗(B, 1) = 2(N − 2) for N > 10 by finding the exact singular
solution u∗. Then they concluded by comparison that λ∗(B, 1) > 2(N − 2) for 3 6 N 6 9 using the
fact that the extremal solution in this case must be regular. A similar reasoning is used for the case
when f (u) = (1 + u)p. Note that our approach yields similar results without knowing the explicit
formula for the extremal solution u∗ or its regularity. Also we obtained a better lower bound when
f (u) = eu when N = 2, 3, and also for f (u) = (1 + u)p when p 6 N

N−4 .
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In summary, we have the following estimates for the unit ball in RN , which contains essentially
all previously known results.

max
{

sup
0<t<‖F‖∞

2Nt − 4tβ(t), 2N sup
0<t<a f

t
f (t)

}
6 λ∗(B, 1),

and

λ∗(B, 1) 6 min
{
2N‖F‖∞, λ1(B) sup

0<t<a f

t
f (t)

}
.

Another problem that we treat in section 2 is the nonlinear eigenvalue problem (Pλ,ρ), when ρ can
vanish somewhere on the domain Ω. We establish the following estimate without assuming that
infx∈Ω ρ(x) > 0.

λ∗(Ω, ρ) 6
2N‖F‖∞

supx∈Ω

{
ρx(dΩ(x))d2

Ω
(x)

} , (1.9)

where dΩ(x) is the distance of x to the boundary ∂Ω and ρx(r) := inf
y∈Br(x)

ρ(y) defined for any r 6

dΩ(x). For example, if ρ(x) = |x|α and Ω is a ball of radius R, we obtain that

λ∗(BR, |x|α) 6
2N
αα

(α + 2
R

)(α+2)
∫ a f

0

dt
f (t)

.

In particular, we consider the problem

(Mλ,ρ,p)

 −∆u = λ
ρ(x)

(1 − u)p x ∈ Ω,

u = 0 x ∈ ∂Ω,

where p > 1, which has often been used to model Micro-Electro-Mechanical devices (MEMS).
Here λ > 0 is proportional to the applied voltage, 0 < u(x) < 1 denotes the deflection of an
underlying membrane and ρ(x) is the so-called permittivity profile [7, 11]. By λ∗(Ω, ρ, p) we mean
the extremal parameter of problem (Mλ,ρ,p). We improve on some of the recently obtained results
by Guo-Pan-Ward [11], Ghoussoub-Guo [10], Cowan-Ghoussoub [6], and others about upper and
lower L∞ estimates for the minimal solutions of nonlinear eigenvalue problem (Mλ,ρ,2). See also
[4, 5, 15] and the references cited therein.

Note for example that estimate (1.9) yields in this case that

λ∗(Ω, ρ, 2) 6
2N

3 supx∈Ω

{
ρx(dΩ(x))d2

Ω
(x)

} =: ¯̄λ(N), (1.10)

which is worth comparing to the following upper bound obtained in [10]:

λ∗(Ω, ρ, 2) 6 min
{ 4λ1(Ω)
27 infx∈Ω ρ(x)

,
λ1(Ω)∫
Ω
ρφdx

}
:= λ̄(N), (1.11)
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where φ is the normalized positive eigenfunction correspond to λ1(Ω) with
∫

Ω
φdx = 1. Again, one

can see that in the case of a unit ball B,
¯̄λ
N remains bounded as N → ∞, while λ̄

N → ∞. Actually, if
infx∈Ω ρ(x) > 0, then (1.10) yields for a general domain Ω, that

λ∗(Ω, ρ, 2) 6
2N

3r2
Ω

infx∈Ω ρ(x)
,

where rΩ := sup
x∈Ω

dΩ(x) is the Chebyshev radius of Ω. This means that (1.10) is better than (1.11)

whenever

λ1(Ω)
N
>

1
r2
Ω

max
{

9
2
,

2 supx∈Ω ρ(x)
3 infx∈Ω ρ(x)

}
.

In section 5, we collect corresponding explicit estimates for the standard nonlinearities f (u) = eu,
f (u) = (1 + u)p and f (u) = (1 − u)−p with p > 1.

2 Pointwise lower bound for the supersolutions of problem (1.1)

In this section, first we obtain a pointwise lower bound for the supersolutions of problem (1.1) i.e.,{
−∆u > f (x, u) x ∈ Ω,

u > 0 x ∈ ∂Ω,
(2.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω and f : Ω × [0, a f )→ R+ (0 < a f 6
+∞) is a function such that m f ,Ω (defined below) is an increasing C1-function with m f ,Ω(0) > 0.
Here we have denoted

m f ,Ω(t) := inf
x∈Ω

f (x, t) and M f ,Ω(t) := sup
x∈Ω

f (x, t) f or all t ∈ [0, a f ). (2.2)

Proposition 2.1 Let u ∈ C2(Ω) be a solution of (2.1), then

F(u(x)) > ψ(x) for all x ∈ Ω,

where ψ is the torsion function and F(t) =
∫ t

0
ds

m f ,Ω(s) for t ∈ [0, a f ).

Proof. By a simple computation we have

∆F(u) = F′′(u)|∇u|2 + F′(u)∆u

=
−m′f ,Ω(u)

m2
f ,Ω(u)

|∇u|2 +
∆u

m f ,Ω(u)

6
−m′f ,Ω(u)

m2
f ,Ω(u)

|∇u|2 − 1 6 −1 = ∆ψ.
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Thus ∆(F(u(x)) − ψ(x)) 6 0 for all x ∈ Ω. On the other hand, F(u(x)) − ψ(x) > 0 for all x ∈ ∂Ω,
hence, by the maximum principle we must have F(u(x)) > ψ(x) for all x ∈ Ω, as claimed. � An
immediate application of the above is that every solution u ∈ C2(Ω) of (Pλ,1) satisfies the following

F−1(λψ(x)) 6 u(x) for all x ∈ Ω,

where F is defined by F(t) =
∫ t

0
ds
f (s) .

Now, consider the problem {
−∆u > ρ(x) f (u) x ∈ Ω,

u > 0 x ∈ ∂Ω.
(2.3)

where Ω is a bounded domain in Rn, ρ is a nonnegative function and f : [0, a f ) → [0,∞) (0 < a f 6
∞) is a nondecreasing C1 regular or singular function such that f (0) > 0. Here, if one would like
to apply Theorem 2.1, one would have to impose the condition infx∈Ω ρ(x) > 0. To get around this
assumption, which is not desirable in MEMS models, we consider the following notion. We define
for any r < dΩ(x) := dist(x, ∂Ω), the function

ρx(r) := inf
y∈Br(x)

ρ(y). (2.4)

The following theorem gives pointwise lower bounds for solutions of (2.3).

Theorem 2.1 Let u ∈ C2(Ω) be a solution of (2.3). Then

u(y) > F−1
(
ρx(dΩ(x)) dΩ(x)2−|y−x|2

2N

)
for all x, y ∈ Ω such that |y − x| < dΩ(x), (2.5)

where F(t) :=
∫ t

0
ds
f (s) . In particular, we have

u(x) > F−1
(
ρx(dΩ(x)) dΩ(x)2

2N

)
for all x ∈ Ω. (2.6)

If ρ(x) = |x|α, α > 0, we then have

u(x) > F−1
(
(|x| − dΩ(x))α

dΩ(x)2

2N

)
i f |x| > dΩ(x). (2.7)

Proof. Since BdΩ(x)(x) ⊆ Ω for all x ∈ Ω, it follows from (2.3) that for all y ∈ BdΩ(x)(x) we have

∆F(u(y)) =
− f ′(u(y))
f 2(u(y))

|∇u|2 +
∆u(y)
f (u(y))

6 −ρ(y)
6 −ρx(dΩ(x)). (2.8)

Now consider the auxiliary function w(y) =
dΩ(x)2−|y−x|2

2N , which satisfies ∆w = −1 in BdΩ(x)(x) and
w = 0 on ∂BdΩ(x)(x). From (2.8) we get that

∆
(
F(u(y)) − ρx(dΩ(x))w(y)

)
6 0 in BdΩ(x)(x),
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and

F(u(y)) − w(y) > 0 on ∂BdΩ(x)(x).

It follows from the maximum principle that F(u(y)) − ρx(dΩ(x))w(y) > 0 in BdΩ(x)(x), that is

F(u(y)) > ρx(dΩ(x))
dΩ(x)2 − |y − x|2

2N
for all y ∈ BdΩ(x)(x), (2.9)

which proves (2.5). Taking y = x in (2.9) gives (2.6).
Now if ρ(x) = |x|α, α > 0 then for x ∈ Ω such that |x| > dΩ(x) we have

ρx(r) := inf
y∈Br(x))

|y|α = (|x| − dΩ(x))α

By substituting it for ρx in (2.6), one gets (2.7)

Remark 2.1 Note that estimate (2.5) is (strictly) better than (2.6). For example let Ω = BR(0)
and for simplicity take ρ ≡ 1. Then (2.6) gives the estimate u(x) > F−1( (R−|x|)2

2N
)

for all x ∈ Ω.

However, by taking x = 0 in (2.5) gives u(y) > F−1(R2−|y|2

2N
)

for all y ∈ Ω. But it is easy to see that
(R − |x|)2 6 R2 − |x|2 for all |x| < R.

3 Improved upper bound for the extremal parameter
The following immediate corollary of Theorem 2.1 gives an upper bound for the extremal parameter
λ∗ of the nonlinear eigenvalue problem (1.2).

Corollary 3.1 Let u ∈ C2(Ω) be a solution of the non-linear eigenvalue problem (1.2) and x0 ∈ Ω

such that ψ(x0) = ψΩ. Then, we have

λ 6
1
ψΩ

∫ u(x0)

0

ds
m f ,Ω(s)

6
1
ψΩ

∫ a f

0

ds
m f ,Ω(s)

.

In particular, the extremal parameter of problem (Pλ,1) satisfies

1
ψΩ

sup
0<t<a f

t
f (t)
6 λ∗(Ω, 1) 6

1
ψΩ

∫ a f

0

ds
f (s)

. (2.1)

Proof. By Proposition 2.1 we have

F(u(x)) > λψ(x) for all x ∈ Ω, (2.2)

where F(t) =
∫ t

0
ds

m f ,Ω(s) . This implies that

λ 6
1
ψΩ

∫ u(x0)

0

ds
m f ,Ω(s)

6
1
ψΩ

∫ a f

0

ds
m f ,Ω(s)

,

as desired.
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Remark 3.1 The upper estimate in (2.1) can be much better, especially in high dimensions, than
the previously known one, namely that

λ∗(Ω, 1) 6 λ1(Ω) sup
06t6a f

t
f (t)

,

where λ1(Ω) is the first eigenvalue of the Laplacian on H1
0(Ω). Actually, if

¯̄λ(N) :=
1
ψΩ

∫ a f

0

ds
f (s)

and λ̄(N) := λ1(Ω) sup
06t6a f

t
f (t)

,

then λ̄(N)
N → ∞ goes to infinity as the dimension N → ∞, while

¯̄λ(N)
N remains bounded. This follows

immediately from the fact that for any bounded domain Ω in RN the first eigenvalue λ1(Ω) of the
Laplacian satisfies

λ1(Ω) >
4Nπ2

N + 2
( 1
ωN |Ω|

) 2
N . (2.3)

The next theorem illustrates the remarkable usefulness of (2.1).

Theorem 3.1 Let Ω ⊆ RN (N > 2) be a bounded smooth domain, and let f : R+ → R+ be an
increasing, convex and superlinear C2-function such that f (0) > 0. Then

lim
p→∞

λ∗p =
1

f (0)ψΩ

and lim
p→∞
‖u∗p‖∞ = +∞,

where λ∗p and u∗p are the extremal parameter and extremal solution of problem (1.5) respectively.

Proof. Take fp(t) := f (tp) for p > 1. It is easy to see that there exists a unique tp > 0 such that

tp

fp(tp)
= sup

t>0

t
fp(t)

for all p > 1. (2.4)

Indeed, the function gp(t) := t
fp(t) satisfies gp(0) = 0 and gp(t) → 0 as t → +∞ for p > 1, which

means that there exists tp > 0 such that gp(tp) = sup
t>0

gp(t). To prove uniqueness, note that

g′p(t) =
fp(t) − t f ′p(t)

f 2
p (t)

:=
hp(t)
f 2
p (t)

, (2.5)

and since h′p(t) = −t f ′′p (t) 6 0 for t > 0, then tp is unique. Now, we show that tp → 1 as p → +∞.
Since g′p(tp) = 0, by (2.5) we have

f (tp
p) − p tp

p f ′(tp
p) = 0 for all p > 1. (2.6)

From the convexity of f we have f (t) − f (0) 6 t f ′(t) for t > 0. So from (2.6) we get

0 6 1 −
f (0)
f (tp

p)
6

1
p

for all p > 1. (2.7)
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Taking the limit as p tends to infinity in (2.7) we have f (tp
p) → f (0) as p → ∞, it follows that

tp
p → 0 as p → ∞. Now, if lim

p→∞
tp , 1, then we can find a subsequence {tp j } such that for j ∈ N,

1 < α < tp j or tp j < β < 1 for some α, β ∈ R. The first case implies that tp j
p j → +∞ as j → ∞ which

is a contradiction, and the later case implies that 0 6 p jt
p j
p j 6 p jβ

p j → 0 as j → ∞. Then by (2.6)
we must have f (tp j

p j ) → 0 < f (0) as j → ∞ which contradicts the fact that f (tp
p) → f (0) as p → ∞.

Hence, we showed that tp → 1 as p→ +∞. Now from (2.4) we get

lim
p→∞

sup
t>0

t
fp(t)

= lim
p→∞

tp

f (tp
p)

=
1

f (0)
. (2.8)

On the other hand

lim
p→∞

1
fp(t)

=


1

f (0)
if 0 6 t < 1,

0 if t > 1.

Taking ζ : R+ → R+ with ζ(t) = 1/ f (0) for t ∈ [0, 1] and ζ(t) = 1/ f2(t) = 1/ f (t2) for t ∈ (1,+∞),
then ζ ∈ L1(R+) and 1/ fp(t) 6 ζ(t) for p > 2. Now, by the Lebesgue dominated convergence
theorem,

lim
p→∞

∫ ∞

0

ds
fp(s)

=
1

f (0)
. (2.9)

Now, estimate (2.1) guarantees that

1
ψΩ

sup
t>0

t
fp(t)
6 λ∗p 6

1
ψΩ

∫ u∗p(x0)

0

dt
fp(t)
6

1
ψΩ

∫ +∞

0

dt
fp(t)

. (2.10)

Taking the limit as p tends to infinity in (2.10) and using (2.8) and (2.9), it follows that

lim
p→∞

λ∗p =
1

f (0)ψΩ

and lim
p→∞

u∗p(x0) = +∞.

Next, we consider problem (Pλ,ρ) and establish some estimates on the extremal parameter λ∗(Ω, ρ)
using Theorem 2.1.

Theorem 3.2 (i) The extremal parameter λ∗(Ω, ρ) of problem (Pλ,ρ) satisfies the following

λ∗(Ω, ρ) 6
2NF(‖u∗‖∞)

sup
x∈Ω

{
ρx(dΩ(x))d2

Ω(x)
} 6 2N‖F‖∞

sup
x∈Ω

{
ρx(dΩ(x))d2

Ω(x)
} , (2.11)

where F(t) :=
∫ t

0
ds
f (s) , dΩ is the distance to the boundary ∂Ω, and ρx(r) := inf

y∈Bx(r)
ρ(y).

(ii) If α > 0, then

λ∗(Ω, |x|α) 6
2NF(‖u∗‖∞)

sup
|x|>dΩ(x)

{
(|x| − dΩ(x))αdΩ(x)2

} . (2.12)
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(iii) In particular,

λ∗(Ω, 1) 6
2NF(‖u∗‖∞)

r2
Ω

6
2N‖F‖∞

r2
Ω

, (2.13)

where rΩ := sup
x∈Ω

dΩ(x) is the Chebyshev radius of Ω, and in the case of a ball of radius R, we

have

λ∗(BR, |x|α) 6 2N
(α + 2)(α+2)

αα
F(‖u∗‖∞)R−(2+α). (2.14)

Proof. By Theorem 2.1 and the fact that F is increasing we have

‖F‖∞ > F(‖u∗‖∞) > F(u∗(x)) > λ∗(Ω, ρ)ρx(dΩ(x))
dΩ(x)2

2N
x ∈ Ω,

which proves (2.11). Taking ρ ≡ 1 in (2.11) gives (2.13). (ii) is straightforward. In the case Ω is
a ball of radius R, we have dΩ(x) = R − |x| for all x ∈ Ω. By elementary calculus it can be easily
checked that for all R > 0 and α > 0, the function g(t) = (2t − R)α(R − t)2 defined on [R/2,R] takes
its maximum in t = α+1

α+2 R. It then follows that

sup
|x|<dΩ(x)

(|x| − dΩ(x))αdΩ(x)2 =
ααR(α+2)

(α + 2)(α+2) .

Remark 3.2 Suppose f (u) = 1
(1−u)2 , then the estimate

λ∗(Ω, ρ, 2) 6
2N

3 supx∈Ω

{
ρx(dΩ(x))d2

Ω
(x)

} := ¯̄λ(N), (2.15)

is better than the following one obtained by Guo-Pan-Ward [11]

λ∗(Ω, ρ, 2) 6 min
{ 4λ1(Ω)
27 infx∈Ω ρ(x)

,
λ1(Ω)∫
Ω
ρφdx

}
:= λ̄(N), (2.16)

where φ is the normalized positive eigenfunction correspond to λ1(Ω) with
∫

Ω
φdx = 1. Again, this

is most obvious in higher dimensions, since
¯̄λ
N remains bounded as N → ∞, while λ̄

N goes to infinity.

Indeed, first note that λ̄ > min{ 4λ1(Ω)
27 infx∈Ω ρ(x) ,

λ1(Ω)
supx∈Ω ρ(x) }. From the fact that |Ω| 6 ( diam(Ω)

2 )NωN and

using the lower estimate (2.3) on λ1(Ω), we can deduce that λ̄N → ∞ as N → ∞. This proves that the
upper bound (2.15) considerably improves (2.16) for large N.

Remark 3.3 Note that, since F is increasing then for a regular nonlinearity f we have ‖F‖∞ =∫ ∞
0

ds
f (s) while for a singular nonlinearity ‖F‖∞ =

∫ 1
0

ds
f (s) . Also, By considering the smallest ball

containing Ω and the largest ball contained in Ω, it is not hard to see that

8N
diam(Ω)2 6

1
ψΩ

6
2N
r2
Ω

.
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The above then yields the following explicit bounds for λ∗(Ω, ρ), in terms of the size of the domain.
If D f = [0,∞), then

max
{ 8N
diam(Ω)2 ,

2
r2
Ω

}
sup
t>0

t
f (t)
6 λ∗(Ω, 1) 6

2N
r2
Ω

∫ ∞

0

ds
f (s)

.

In particular,
2N
R2 sup

t>0

t
f (t)
6 λ∗(BR(0), 1) 6

2N
R2

∫ ∞

0

ds
f (s)

.

4 Improved lower bounds for the extremal parameter
In this section we obtain two different lower bounds for the extremal parameter of problem (1.2),
which will improve (1.3). First, we show how the latter estimate can be obtained

Lemma 4.1 Let f : Ω×R+ → R+ be a β-Hölder continuous in its first variable and locally Lipschitz
continuous in the second variable. If M f ,Ω (defined in (2.2)) is increasing and M f ,Ω(0) > 0, then
problem (1.2) has a positive classical solution provided 0 6 λ 6 1

ψΩ
supt>0

t
M f ,Ω(t) . This means that

1
ψΩ

sup
t>0

t
M f ,Ω(t)

6 λ∗. (3.1)

Proof. Obviously, u ≡ 0 is an allowable subsolution and therefore it suffices to find a supersolution.
To this end, we consider u = αψ to be a supersolution for (1.1) where ψ is the torsion function and
α is a positive real number to be determined later. Clearly, u > 0 on ∂Ω. Since the function M f ,Ω is
increasing, then it is just sufficient to have

∆u + λM f ,Ω(αψΩ) = −α + λM f ,Ω(αψΩ) 6 0. (3.2)

Choose α > 0 such that αψΩ

M f ,Ω(αψΩ) = sup
t>0

t
M f ,Ω(t)

. For this α, (3.2) holds, provided

λ 6
1
ψΩ

αψΩ

M f ,Ω(αψΩ)
=

1
ψΩ

sup
t>0

t
M f ,Ω(t)

,

as desired. �
As an example, consider the problem{

−∆u = λ|x|αeu x ∈ B,
u = 0 x ∈ ∂B, (3.3)

where α > 0 is a real number. Here we have

f (x, t) = |x|αet, Ω = B1(0), M f ,Ω(t) = sup
x∈B1(0)

|x|αet = et, sup
t>0

t
et =

1
e

and
1
ψΩ

= 2N.

Then by Lemma 4.1 we have 2
e N 6 λ∗. �
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In the following we use again the sub- (super-) solution approach to give another lower bound for
the extremal parameter λ∗ associated to the nonlinear eigenvalue problem (Pλ,ρ). For any bounded
domain Γ in RN , we denote by λ1(Γ) the first eigenvalue of −∆ on H1

0(Γ) and by ϕΓ corresponding
positive eigenfunction normalized with supΓ ϕΓ = 1. We associate to a given domain Ω ⊆ RN and a
given nonlinearity f , the following parameter

νΩ, f = sup
{
λ1(Γ)J f (inf

Ω
ϕΓ); Γ domain o f RN , Γ ⊇ Ω

}
, (3.4)

where J f (t) = At
f (At)

, At being the unique solution of the below equation

f (tA) = t f (A), 0 < t < 1, 0 < A < a f .

Theorem 4.1 Consider the eigenvalue problem (Pλ,ρ). Then

λ∗(Ω, ρ) >
νΩ, f

supΩ ρ(x)
,

where νΩ, f is defined by (3.4).

Proof. To prove the theorem we need to construct a supersolution of (Pλ,ρ) for every λ < νΩ, f (supΩ ρ(x))−1.
For a bounded domain Γ ⊇ Ω with smooth boundary, let (λ1(Γ), ϕΓ) be the first eigenpair normalized
in such a way that

sup
Γ

ϕΓ = 1, and inf
Ω
ϕΓ := s1 > 0.

We construct a supersolution in the form ū = AϕΓ where 0 < A < a f is a scalar to be chosen later.
We require that

∆ū + λρ(x) f (ū) = −Aλ1(Γ)ϕΓ + λρ(x) f (AϕΓ) 6 0 in Ω,

which can be satisfied as long as

λ 6
1

supΩ ρ(x)
β(A,Γ, f ), where β(A,Γ, f ) := λ1(Γ) inf

{ As
f (As)

; s ∈ [s1(Γ), 1]
}
.

Hence we have

λ∗(Ω, ρ) >
1

supΩ ρ(x)
sup

{
β(A,Γ, f ); 0 < A < a f , Γ ⊇ Ω

}
.

Therefore, it remains to show that

νΩ, f = sup
{
β(A,Γ, f ); 0 < A < a f , Γ ⊇ Ω

}
.

First, define g(t) = t
f (t) for 0 6 t < a f . By the properties of f we have 0 = g(0) = limt→a f g(t), and

we claim that there is unique point 0 < t0 < a f such that g(t0) = max06t<a f g(t), g is increasing on
[0, t0] and decreasing on [t0, a f ). To see this note that we have

g′(t) =
h(t)
f 2(t)

, where h(t) := f (t) − t f ′(t),
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and since h(0) = f (0) > 0, h′(t) = −t f ′′(t) 6 0 and because of the convexity and superlinearity of f ,
limt→a f h(t) = −∞, thus we get the claim. This shows that inf s∈[s1,1] g(As) = min{g(s1A), g(A)}. For
a fixed s1 < 1 take T (A) = g(s1A) − g(A) on [0, a f ], then T is a continuous function that is negative
near zero and positive near a f so there is 0 < As1 < a f such that T (As1 ) = 0. It is obvious that As1 >
t0 > s1As1 and also is unique. Indeed T (A) = 0 if and only if g(A) = g(s1A) or s1 f (A) − f (s1A) = 0
which has a unique solution from the fact that (s1 f (A) − f (As1))′ = s1( f ′(A) − f ′(s1A)) > 0 on
(0, a f ). Thus we have

inf
s∈[s1,1]

g(As) =

{
g(As1) 0 < A 6 As1 ,
g(A) As1 6 A < a f .

From the fact that As1 > t0 > s1As1 and g(t) is increasing on [0, t0] and decreasing on [t0, a f ) it
follows that

sup
0<A<a f

inf
s∈[s1,1]

g(As) = g(As1 ) =
As1

f (As1 )
= J f (s1) = J f (inf

Ω
ϕΓ),

which completes the proof. �

Remark 4.1 If f (u) = 1
(1−u)p , then it is easy to see that J f (t) =

t(1− p√t)(1−t)p

(1−t p√t)p+1 for 0 < t < 1, which

yields that for p = 2, J f (t) =
t(1+t+2

√
t)

(t+1+
√

t)3 , hence Theorem 4.1 is a direct extension of a similar result
obtained by Ghoussoub-Guo in the case of a quadratic MEMS nonlinearity [10].

For f (u) = eu, we have J f (t) = t
1

1−t

1−t ln 1
t for 0 < t < 1, and thus the above proposition yields that:

λ∗(Ω, ρ) > (sup
Ω

ρ(x))−1 sup
{
λ1(Γ)s(Γ); Γ ⊃ Ω̄

}
,

where s(Γ) := Jeu (infΩ ϕΓ).

While the above estimate may have an interesting theoretical value, it is unfortunately not suitable
for explicit computations. We will therefore consider problem (Pλ,ρ) with ρ ≡ 1 and give a lower
bound for the extremal parameters in term of the torsion function ψ of Ω. It should be interesting to
find a relation between such a torsion function and the quantity sup

Γ⊃Ω̄

λ1(Γ)s(Γ) defined above.

Theorem 4.2 Consider the semilinear elliptic equation (Pλ,1), then

λ∗(Ω, 1) > max
{

sup
0<α< ||F||∞ψΩ

α − α2β(α) ,
1
ψΩ

sup
0<t<a f

t
f (t)

}
, (3.5)

where β(t) := supx∈Ω f ′(F−1(tψ(x)))|∇ψ(x)|2, and F(t) :=
∫ t

0
ds
f (s) , t > 0.

Proof. Take an α ∈ (0, ||F||∞
ψΩ

) and define u(x) = F−1(αψ(x)) for x ∈ Ω. It is evident that u ∈
C2(Ω) ∩ C1(∂Ω). We show that ū is a supersolution of (Pλ,1) for λ = α − α2β(α). To do this
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we compute ∆ū(x). Note that if we take y = F−1(αt) then it is easy to see that y′ = α f (y) and
y′′ = α2 f (y) f ′(y). So

∆ū(x) = [α2 f ′(ū)|∇ψ(x)|2 − α] f (ū)

6 (α2 sup
x∈Ω

f ′(F−1(αψ(x)))|∇ψ(x)|2 − α) f (ū)

= −(α − α2β(α)) f (ū).

In other words, ∆ū(x) + (α−α2β(α)) f (ū) 6 0, and since we have ū(x) = 0, x ∈ ∂Ω, this shows that ū
is a supersolution of (Pλ,1) for λ = α−α2β(α). On the other hand, u = 0 is an allowable subsolution,
thus problem (Pλ,1) with λ = α − α2β(α) has a classical solution and hence

λ∗(Ω, 1) > α − α2β(α).

Taking the supremum on α ∈ (0, ||F||∞
ψΩ

) and combining it with (1.3), we obtain (3.5). Now, we
consider some special cases of Theorem 4.2 and give some explicit lower bounds for the extremal
parameter of problem (Pλ,1).

Corollary 4.1 Consider the semilinear elliptic equation (Pλ,1) on the unit ball B, In particular if
and assume the function f ′(t)(α − F(t)) is decreasing on (0, a f ). Then, we have

λ∗(B, 1) > max
{

sup
0<α<||F||∞

2Nα − 4α2 f ′(0) , 2N sup
0<t<a f

t
f (t)

}
. (3.6)

Proof. When Ω = B we have ψ(x) =
1−|x|2

2N , then from (3.5) we get

λ∗(B, 1) > sup
0<α<2N ||F||∞

α − α2β(α), where β(α) := sup
x∈B

f ′(F−1(α
1 − |x|2

2N
))
|x|2

N2 . (3.7)

Taking t := F−1(α 1−|x|2

2N ), make the change α→ 2Nα in (3.7), and use that the function f ′(t)(α−F(t))
is decreasing on (0, F−1(α)), to obtain that β(α) = f ′(0)(α − F(0)) = f ′(0)α, which proves (3.6).

5 Some applications
In this section, we apply our results to the following eigenvalue problem{

−∆u = λ f (u) x ∈ Ω,
u = 0 x ∈ ∂Ω,

(3.1)

where Ω is a smooth bounded domain in RN and f (u) = (1 − u)−p, f (u) = eu or f (u) = (1 + u)p for
p > 1. Problem (3.1) has been extensively studied in the literature because of wide applications to
physical models (see for example [3, 8, 9]).

Consider the singular nonlinearity f (u) = (1 − u)−p for 0 6 u < 1, with p > 1. In this case, we
have

F(t) =
1 − (1 − t)p+1

p + 1
and F−1(t) = 1 − (1 − (p + 1)t)

1
p+1 .

Also, sup
0<t<1

t
f (t) =

pp

(p+1)(p+1) . We can therefore deduce the following result
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Corollary 5.1 The extremal parameter and extremal solution of (3.1) with f (u) = (1 − u)−p satisfy:

max
{

sup
0<t< 1

(p+1)ψΩ

t − t2β(t) ,
pp

(p + 1)(p+1)

1
ψΩ

}
6 λ∗(Ω),

λ∗(Ω) 6 min
{ λ1(Ω)pp

(p + 1)(p+1) ,
1

(p + 1)ψΩ

}
,

and

1 − p+1
√

1 − (p + 1)λ∗(Ω)ψ(x) 6 u∗(x) for all x ∈ Ω, (3.2)

where ψ is the torsion function, and β is as defined in (1.7). In particular, if Ω is the unit ball, then

τ(N, p) 6 λ∗(B) 6
2N

p + 1
, (3.3)

and

1 −
p+1

√
1 −

(p + 1)τ(N, p)
2N

6 u∗(x) for all x ∈ Ω, (3.4)

where τ(N, p) is defined in (3.5) below.

Proof. It suffices to note that

τ(N, p) = max
{

sup
0<α< 1

p+1

2Nα − 4pα2,
2N pp

(p + 1)p+1

}

=



2N pp

(p+1)p+1 N 6 8( p
p+1 )p+1,

N2

4p 8( p
p+1 )p+1 < N 6 4p

p+1 ,

2
p+1 (N − 2p

p+1 ) N > 4p
p+1 .

(3.5)

For the regular case f (u) = eu and f (u) = (1 + u)p by a similar argument as above we can prove that

Corollary 5.2 The extremal parameter and extremal solution of (3.1) with f (u) = eu satisfy

max
{

sup
0<t< 1

ψΩ

t − t2β(t) ,
1

eψΩ

}
6 λ∗(Ω) 6 min

{λ1(Ω)
e

,
1
ψΩ

}
,

and

− ln
(
1 − λ∗(Ω)ψ(x)

)
6 u∗(x) for all x ∈ Ω. (3.6)

In particular, in the case of the unit ball, we have

τ(N) 6 λ∗(B) 6 2N. (3.7)
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and

− ln
(
1 −

τ(N)
2N

)
6 u∗(x) for all x ∈ Ω, (3.8)

where τ(N) is defined in (3.9) below.

Proof. Note that

λ∗(B) > τ(N) = max
{

sup
0<α<1

2Nα − 4α2,
2N
e

}
=



2N
e N = 1, 2,

N2

4 N = 3, 4,

2(N − 2) N > 5.

(3.9)

Corollary 5.3 The extremal parameter and extremal solution of (3.1) with f (u) = (1 + u)p, (p > 1)
satisfy:

max
{

sup
0<t< 1

(p+1)ψΩ

t − t2β(t) ,
pp

(p − 1)(p−1)

1
ψΩ

}
6 λ∗(Ω),

λ∗(Ω) 6 min
{ ppλ1(Ω)
(p − 1)(p−1) ,

1
(p − 1)ψΩ

}
,

and

1
p−1
√

1 − (p − 1)λ∗(Ω)ψ(x)
− 1 6 u∗(x) for all x ∈ Ω. (3.10)

In particular

τ(N, p) 6 λ∗(B) 6
2N

p − 1
,

where τ(N, p) is defined in (3.11) below.

Proof. Note that λ∗(B) is larger than

τ(N, p) = max
{

sup
0<t< 1

p−1

2Nt − 4pt2,
2N(p − 1)p−1

pp

}

=



2N(p−1)p−1

pp N 6 8(1 − 1
p )p−1,

N2

4p 8(1 − 1
p )p−1 < N 6 4p

p−1 ,

2
p−1 (N − 2p

p−1 ) N > 4p
p−1 .

(3.11)
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Remark 5.1 The above three corollaries improve on existing results in many ways. We have seen
this in the upper and lower bounds for λ∗. One can also note the improvements in the lower L∞

bounds for u∗. For example, Ghoussoub-Cowan had proved in [6] the following:

(i) If f (u) = (1 − u)−p, then 1
p+1 6 ‖u

∗‖∞.

(ii) If f (u) = eu, then 1 6 ‖u∗‖∞.

(iii) If f (u) = (1 + u)p, then 1
p−1 6 ‖u

∗‖∞.

Note that (3.2), (3.6) and (3.10) give better estimates, at least in certain dimensions. For example, if
Ω is the unit ball, our results above yield:

(a) If f (u) = (1 − u)−2, then 1 − 3
√

4
3N 6 ‖u

∗‖∞, which gives a better lower bound than (i) when
5 6 N 6 7.

(b) If f (u) = eu, and 3 6 N 6 9, then ln N
2 6 ‖u

∗‖∞, which gives a better lower bound than (ii)
when 6 6 N 6 9.

(c) If f (u) = (1 + u)p, and p > N
N−2 , then 1−p

√
2p

(p−1)N −1 6 ‖u∗‖∞, which gives a better lower bound

than (iii) when N > 2
( p

p−1
)p.

Remark 5.2 By combining our results with those of Cowan-Ghoussoub [6], one can obtain stronger
upper bound for λ∗. Namely,

• If f (u) = 1
(1−u)2 and 3 6 N 6 7, then there exists δN > 0 such that

2(3N − 4)
9

6 λ∗(B) 6
2N(1 − e−3δN )

3
.

Note that if N > 8, then λ∗(B) =
2(3N−4)

9 and u∗(x) = 1 − |x|
2
3 .

• If f (u) = eu and 3 6 N 6 9, then there exists θN > 0 such that

2(N − 2) 6 λ∗(B) 6 2N(1 − e−θN ).

Note that for N > 10, we have λ∗ = 2(N − 2) and u∗(x) = −2 ln |x|.

• If f (u) = (1 + u)p and 3 6 N 6 4, then there exists κN > 0 such that

2
p − 1

(N −
2p

p − 1
) 6 λ∗(B) 6

2N
p − 1

(1 −
1

(1 + κN)p−1 ).
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