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Abstract. We investigate the Hardy-Schrödinger operator Lγ = −∆ − γ
|x|2

on smooth domains Ω ⊂ Rn, whose boundary contain the singularity 0. The
situation is quite different from the well-studied case when 0 is in the interior

of Ω. For one, if 0 ∈ Ω, then Lγ is positive if and only if γ <
(n−2)2

4
, while

if 0 ∈ ∂Ω the operator Lγ could be positive for larger value of γ, potentially

reaching the maximal constant n2

4
on convex domains.

We prove optimal regularity and a Hopf-type Lemma for variational solu-

tions of corresponding linear Dirichlet boundary value problems of the form

Lγu = a(x)u, but also for non-linear equations including Lγu =
|u|2

?(s)−2u
|x|s ,

where γ < n2

4
, s ∈ [0, 2) and 2?(s) :=

2(n−s)
n−2

is the critical Hardy-Sobolev

exponent. We also provide a Harnack inequality and a complete description

of the profile of all positive solutions –variational or not– of the corresponding

linear equation on the punctured domain. The value γ = n2−1
4

turned out

to be another critical threshold for the operator Lγ , and our analysis yields a
corresponding notion of “Hardy singular boundary-mass” mγ(Ω) of a domain

Ω having 0 ∈ ∂Ω, which could be defined whenever n2−1
4

< γ < n2

4
.

As a byproduct, we give a complete answer to problems of existence of

extremals for Hardy-Sobolev inequalities of the form

C

(∫
Ω
u2?(s)

|x|s dx

) 2
2?(s)

≤
∫
Ω |∇u|

2dx− γ
∫
Ω

u2

|x|2 dx for all u ∈ D1,2(Ω),

whenever γ < n2

4
, and in particular, for those of Caffarelli-Kohn-Nirenberg.

These results extend previous contributions by the authors in the case γ = 0,

and by Chern-Lin for the case γ <
(n−2)2

4
. Namely, if 0 ≤ γ ≤ n2−1

4
, then

the negativity of the mean curvature of ∂Ω at 0 is sufficient for the existence

of extremals. This is however not sufficient for n2−1
4

< γ < n2

4
, which then

requires the positivity of the Hardy singular boundary-mass of the domain

under consideration.
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Unité Mixte Internationale of the French Centre National de la Recherche Scientifique (CNRS).

He thanks the CNRS (INSMI) and UBC (PIMS) for this support. N. Ghoussoub was partially
supported by a research grant from the Natural Science and Engineering Research Council of
Canada (NSERC).

1



2 NASSIF GHOUSSOUB AND FRÉDÉRIC ROBERT
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1. Introduction

Let Ω be a smooth domain of Rn (i.e. a C∞ connected open set), define the best
constant in the corresponding Hardy inequality by,

(1.1) γH(Ω) := inf

{∫
Ω
|∇u|2 dx∫

Ω
u2

|x|2 dx
; u ∈ D1,2(Ω) \ {0}

}
,

where D1,2(Ω) is the completion of C∞c (Ω) with respect to the norm given by

||u||2 =
∫

Ω
|∇u|2dx. It is well known that γH(Ω) = (n−2)2

4 for any domain Ω having

0 in its interior, including Rn, and that it is never attained by a function in D1,2(Ω).
On the other hand, it has been noted by several authors (See for example Pinchover-
Tintarev [44] Fall-Musina [19] or the book of Ghoussoub-Moradifam [22]) that the
situation is quite different for the half-space Rn+ := {x ∈ Rn/ x1 > 0}, in which

case, γH(Rn+) = n2

4 . More generally, if 0 ∈ ∂Ω the boundary of Ω, then γH(Ω) can

be anywhere in the interval
(

(n−2)2

4 , n
2

4

]
(see Proposition 3.1). Moreover, γH(Ω)

is attained whenever γH(Ω) < n2

4 (See Section 3). This already points to the fact
that the Hardy-Schrödinger operator Lγ = −∆− γ

|x|2 behaves differently when the

singularity 0 is on the boundary of a domain Ω, than when 0 is in the interior. The
latter case has already been extensively covered in the literature. Without being
exhaustive, we refer to Ghoussoub-Yuan [26], Guerch-Véron [30], Jaber [34], Kang-
Peng [35], Pucci-Servadei [45], Ruiz-Willem [47], Smets [50], and the references
therein.

The study of nonlinear singular variational problems when 0 ∈ ∂Ω was initiated
by Ghoussoub-Kang [21] and was studied extensively by Ghoussoub-Robert [23–25].
For more recent contributions, we refer to Attar-Merchán-Peral [1], Dávila-Peral
[12], and Gmira-Véron [29]. We also learned recently –after a first version of this
paper was posted on arxiv– about a paper of Pinchover [43], and a more recent one
by Devyver-Fraas-Pinchover [13] that also treat the Hardy potential when 0 ∈ ∂Ω.
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Our main goal in this paper is to show that the above noted discrepancy –
between the case when the singularity 0 belongs to the interior of the domain and
when it is on the boundary– is only the tip of the iceberg. The differences manifest
themselves in both linear problems of the form{

−∆u− γ u
|x|2 = a(x)u on Ω

u = 0 on ∂Ω,
(1.2)

and in nonlinear Dirichlet boundary value problems associated to Lγ , such as:
−∆u− γ u

|x|2 = u2?(s)−1

|x|s on Ω

u > 0 on Ω
u = 0 on ∂Ω,

(1.3)

where 0 ≤ s < 2 and 2?(s) := 2(n−s)
n−2 . Actually, Ghoussoub-Kang noted in [21] that

even when γ = 0, the situation can already be quite different whenever 0 belongs to
the boundary of a bounded C2-smooth domain Ω as long as s > 0. Ghoussoub and
Robert [23, 24] eventually proved that if the mean curvature at 0 of such domains
is negative, and provided s > 0, then minimizers for the functional

(1.4) JΩ
s (u) :=

∫
Ω
|∇u|2dx

(
∫

Ω
u2?

|x|s dx)
2
2?

exist in D1,2(Ω) \ {0} = H1
0 (Ω) \ {0} and are solutions to equation (1.3) in the

case when γ = 0. While this new phenomenon occured because of the presence of
the singularity |x|−s in the nonlinear term, we shall show in this paper, that the
differences also appear on the linear level, as soon as γ > 0, but also as one varies

γ between 0 and n2

4 .

Another motivation for this work came from the recent work of C.S. Lin and his
co-authors [9, 10] on the existence of extremals for the Caffarelli-Kohn-Nirenberg
(CKN) inequalities [4]. These inequalities state that in dimension n ≥ 3, there is a
constant C := C(a, b, n) > 0 such that for all u ∈ C∞c (Rn), the following inequality
holds:

(1.5)

(∫
Rn
|x|−bq|u|q

) 2
q

≤ C
∫
Rn
|x|−2a|∇u|2dx,

where

(1.6) −∞ < a <
n− 2

2
, 0 ≤ b− a ≤ 1 and q =

2n

n− 2 + 2(b− a)
.

A proof and various extensions of (1.5) will be given in section 2.

For a domain Ω in Rn, we let D1,2
a (Ω) be the completion of C∞c (Ω) with respect to

the norm ||u||2a =
∫

Ω
|x|−2a|∇u|2dx. Consider the best constant defined as:

(1.7) S(a, b,Ω) = inf


∫

Ω
|x|−2a|∇u|2dx(∫

Ω
|x|−bq|u|q

) 2
q dx

;u ∈ D1,2
a (Ω)\{0}

 .
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The extremal functions for S(a, b,Ω) are then the least-energy solutions of the
corresponding Euler-Lagrange equations: −div(|x|−2a∇u) = |x|−bquq−1 on Ω

u > 0 on Ω
u = 0 on ∂Ω.

(1.8)

The existence or nonexistence of minimizers for (1.7), when the domain Ω is the
whole space Rn, have been extensively studied for the past twenty years, see
Catrina-Wang [5], Chou-Chu [6], Dolbeault-Esteban-Loss-Tarantello [14], Lin-Wang
[38] and references therein. The result can be briefly summarized in the following:

Theorem A: Suppose n ≥ 3 and that a, b and q satisfy condition (1.6). Then
minimizers exist for the best constant S(a; b;Rn) if and only if a, b satisfy

(1.9) either a < b < a+ 1 or b = a ≥ 0.

If now Ω is any domain in Rn that contains 0 in its interior, one can easily see
that scale invariance yields for any λ > 0, that S(a; b;λΩ) = S(a; b; Ω) where
λΩ = {λx;x ∈ Ω}. It follows that if 0 ∈ Ω, then S(a; b; Ω) = S(a; b;Rn), which
means that S(a; b; Ω) can never be achieved unless Ω = Rn (up to a set of capacity
zero). However, as mentioned above, if 0 belongs to the boundary of a smooth
bounded domain Ω and if the mean curvature at 0 of such domains is negative, then
minimizers for the best constant S(0; b; Ω) were shown to be attained [21,23,24].
This result was later extended by Chern and Lin [10], who eventually established
existence of minimizers under the same negative mean curvature condition at 0
provided a, b satisfy one of the following conditions:{

(i) a < b < a+ 1 and n ≥ 3
(ii) a = b and n ≥ 4.

(1.10)

They left open the case when n = 3 and 0 < a = b < n−2
2 , a problem that we

address in Theorem 1.9 (see also Section 11).

To make the connection, we note that by making the substitution w(x) = |x|−au(x)
for x ∈ Ω, one can see that if a < n−2

2 , then u ∈ D1,2
a (Ω) if and only if w ∈ D1,2(Ω)

by the Hardy inequality, and∫
Ω
|x|−2a|∇u|2dx(∫
Ω
|x|−bq|u|q

) 2
q

=

∫
Ω
|∇w|2 − γ

∫
Ω

w2

|x|2 dx

(
∫

Ω
w2?

|x|s dx)
2
2?

,

where γ = a(n− 2− a), s = (b− a)q and 2? = 2n
n−2+2(b−a) . This means that u is a

solution of (1.8) if and only if w(x) is a solution of equation (1.3) where 0 ≤ s < 2

and 2? := 2?(s) = 2(n−s)
n−2 . Therefore, instead of looking for solutions of (1.8) one

can study equation (1.3). To state the result of Chern-Lin in this context, we define
the functional

(1.11) JΩ
γ,s(u) :=

∫
Ω
|∇u|2 − γ

∫
Ω

u2

|x|2 dx

(
∫

Ω
u2?

|x|s dx)
2
2?

,

and its infimum on D1,2(Ω) \ {0}, that is

(1.12) µγ,s(Ω) := inf
{
JΩ
γ,s(u);u ∈ D1,2(Ω) \ {0}

}
.
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Theorem 1.1 (Chern-Lin [10]). Let Ω be a smooth bounded domain in Rn (n ≥ 3).

Assume γ < (n−2)2

4 and 0 ≤ s < 2. If either {s > 0} or {n ≥ 4 and γ > 0}, then
there are extremals for µγ,s(Ω), provided the mean curvature of ∂Ω at 0 is negative.

The case when n = 3, s = 0 and γ > 0 was left open. As we shall see in section

4, the infimum µγ,s(Ω) is finite for all γ < n2

4 , whenever 0 ∈ ∂Ω. This means that

equation (1.3) may have positive solutions for γ beyond (n−2)2

4 and all the way to
n2

4 . This turned out to be the case as we shall establish in this paper.

We first note that standard compactness arguments [10, 21, 22] –also described in
section 4– yield that for µγ,s(Ω) to be attained it is sufficient to have that

(1.13) µγ,s(Ω) < µγ,s(Rn+),

where the latter is the corresponding best constant on Rn+. In order to prove the
existence of such a gap, one tries to construct test functions for µγ,s(Ω) that are
based on the extremals of µγ,s(Rn+) provided the latter exist. The cases where this
is known are given by the following standard proposition (see for instance Bartsch-
Peng-Zhang [3] and Chern-Lin [10]). See Corollary 12.2 in the appendix for a proof.

Proposition 1.2. Assume γ < n2

4 , n ≥ 3 and 0 ≤ s < 2. Then, there are extremals
for µγ,s(Rn+) provided either {s > 0} or {n ≥ 4 and γ > 0}.
On the other hand,

(1) If {s = 0 and γ ≤ 0}, then there are no extremals for µγ,0(Rn+) for any
n ≥ 3.

(2) Furthermore, whenever µγ,0(Rn+) has no extremals, then necessarily

(1.14) µγ,0(Rn+) = inf
u∈D1,2(Rn)\{0}

∫
Rn |∇u|

2 dx(∫
Rn |u|2

? dx
) 2

2?
=

1

K(n, 2)2
,

where the latter is the best constant in the Sobolev inequality and 2? :=
2?(0) = 2n

n−2 .

The only unknown situation is again when s = 0, n = 3 and γ > 0, which we
address below (see Theorem 1.9) and in full detail in Section 11. For now, we shall
discuss the new ingredients that we bring to the discussion.

Assuming first that an extremal for µγ,s(Rn+) exists and that one knows its profile
at infinity and at 0, then this information can be used to construct test functions for
µγ,s(Ω). This classical method has been used by Kang-Ghoussoub [21], Ghoussoub-

Robert [23, 24] when γ = 0, and by Chern-Lin [10] for 0 < γ < (n−2)2

4 in order to
establish (1.13) under the assumption that ∂Ω has a negative mean curvature at 0.
Actually, the estimates of Chern-Lin [10] extend directly to establish an analogue of

Theorem 1.1 for all γ < n2−1
4 under the same local geometric condition. However,

the case where γ = n2−1
4 already requires a much more refined analysis of the

Hardy-Schrödinger operator Lγ := −∆− γ
|x|2 on the half-space Rn+.

The remaining range (n
2−1
4 , n

2

4 ) for γ turned out to be even more interesting for
the operator Lγ . Indeed, the curvature condition at 0 is not sufficient anymore to
insure existence, as more global test functions are required. We therefore proceed
to isolate a notion of “Hardy boundary-mass” mγ(Ω) for any bounded domain Ω
(with 0 ∈ ∂Ω) that is associated to the operator Lγ . This is stated in Theorem 8.1
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below and is reminiscent of the positive mass theorem of Schoen-Yau [49] that was
used to complete the solution of the Yamabe problem.

In order to explain the new critical threshold that is n2−1
4 , we need first to consider

the Hardy-Schrödinger operator Lγ := −∆− γ
|x|2 on Rn+. The most basic solutions

for Lγu = 0, with u = 0 on ∂Rn+ are of the form u(x) = x1|x|−α, and a straight-

forward computation yields −∆(x1|x|−α) = α(n−α)
|x|2 x1|x|−α on Rn+, which means

that (
−∆− γ

|x|2

)
(x1|x|−α) = 0 on Rn+,

for α ∈ {α−(γ), α+(γ)} where α±(γ) := n
2 ±

√
n2

4 − γ. Actually, any non-negative

solution of Lγu = 0 on Rn+ with u = 0 on ∂Rn+ is a (positive) linear combination of
these two solutions ( Proposition 7.4 below).

Note that α−(γ) < n
2 < α+(γ), which points to the difference around 0 between the

“small” solution, namely x 7→ x1|x|−α−(γ), and the “large one” x 7→ x1|x|−α+(γ).
Indeed, the “small” solution is “variational”, i.e. is locally in D1,2(Rn+), while the
large one is not. This turned out to be a general fact since we shall show that
x 7→ d(x, ∂Ω)|x|−α−(γ) is essentially the profile at 0 of any variational solution –
positive or not– of equations of the form Lγu = f(x, u) on a domain Ω, as long as

the nonlinearity f is dominated by C(|v| + |v|2
?(s)−1

|x|s ). Here d(x, ∂Ω) denotes the

distance function to ∂Ω. To state the theorem, we use the following terminology.
We say that u ∈ D1,2(Ω)loc,0 if there exists η ∈ C∞c (Rn) such that η ≡ 1 around 0
and ηu ∈ D1,2(Ω). Say that u ∈ D1,2(Ω)loc,0 is a weak solution to the equation

−∆u = F ∈
(
D1,2(Ω)loc,0

)′
,

if for any ϕ ∈ D1,2(Ω) and η ∈ C∞c (Rn), we have
∫

Ω
(∇u,∇(ηϕ)) dx = 〈F, ηϕ〉 .

The following theorem will be established in section 6.

Theorem 1.3 (Optimal regularity and Generalized Hopf’s Lemma). Let Ω be a
smooth domain in Rn such that 0 ∈ ∂Ω, and let f : Ω× R→ R be a Caratheodory
function such that

|f(x, v)| ≤ C|v|
(

1 +
|v|2?(s)−2

|x|s

)
for all x ∈ Ω and v ∈ R.

Assume γ < n2

4 and let u ∈ D1,2(Ω)loc,0 be such that for some τ > 0,

(1.15) −∆u− γ +O(|x|τ )

|x|2
u = f(x, u) weakly in D1,2(Ω)loc,0.

Then, there exists K ∈ R such that

(1.16) lim
x→0

u(x)

d(x, ∂Ω)|x|−α−(γ)
= K.

Moreover, if u ≥ 0 and u 6≡ 0, then K > 0.

This theorem can be seen as an extension of Hopf’s Lemma [28] in the following
sense: when γ = 0 (and therefore α−(γ) = 0), the classical Nash-Moser regularity
scheme then yields that u ∈ C1

loc, and when u ≥ 0, u 6≡ 0, Hopf’s comparison
principle yields ∂νu(0) < 0, which is really a reformulation of (1.16) in the case
where α−(γ) = 0.
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The proof of this theorem is quite interesting since, unlike the regular case (i.e.,
when Lγ = L0 = −∆) or the classical situation when the singularity 0 is in the
interior of the domain Ω (see Smets [50]), a direct application of the standard Nash-
Moser iterative scheme is not sufficient to obtain the required regularity. Indeed,
the scheme only yields the existence of p0, with 1 < p0 <

n
α−(γ)−1 such that u ∈ Lp

for all p < p0. Unfortunately, p0 does not reach n
α−(γ)−1 , which is the optimal rate

of integration needed to obtain the profile (1.16) for u. However, the improved
order p0 is enough to allow for the inclusion of the nonlinearity f(x, u) in the linear
term of (1.15). We are then reduced to the analysis of the linear equation, that
is (1.15) with f(x, u) ≡ 0, in which case we get the conclusion by constructing
suitable super- and sub- solutions to the linear equation that have the same profile
at 0 as (1.16). For details, see Section 6.
As a corollary, one obtains the following description of the profile of variational so-
lutions of (1.3) on Rn+, which improves on a result of Chern-Lin [10], hence allowing
us to construct sharper test functions and to prove existence of solutions for (1.3)

when γ = n2−1
4 .

Theorem 1.4. Assume γ < n2

4 and let u ∈ D1,2(Rn+), u ≥ 0, u 6≡ 0 be a weak
solution to

(1.17) −∆u− γ

|x|2
u =

u2?(s)−1

|x|s
in Rn+.

Then, there exist K1,K2 > 0 such that

u(x) ∼x→0 K1
x1

|x|α−(γ)
and u(x) ∼|x|→+∞ K2

x1

|x|α+(γ)
.

The above theorem yields in particular, the existence of a solution u for (1.17)
which satisfies for some C > 0, the estimates

(1.18) u(x) ≤ Cx1|x|−α+(γ) and |∇u(x)| ≤ C|x|−α+(γ) for all x ∈ Rn+.

Noting that

γ <
n2 − 1

4
⇔ α+(γ)− α−(γ) > 1,

it follows from (1.18), that whenever γ < n2−1
4 , then |x′|2|∂1u|2 = O(|x′|2−2α+(γ)) as

|x′| → +∞ on ∂Rn+ = Rn−1, from which we could deduce that x′ 7→ |x′|2|∂1u(x′)|2

is in L1(∂Rn+). This estimate –which does not hold when γ ≥ n2−1
4 – is key for the

construction of test functions for µγ,s(Ω) based on the solution u of (1.17), in the

case when γ ≤ n2−1
4 .

In order to deal with the remaining cases for γ, that is when γ ∈ (n
2−1
4 , n

2

4 ), we
prove the following result which describes the general profile of any positive solution
of Lγu = a(x)u, albeit variational or not.

Theorem 1.5 (Classification of singular solutions). Assume γ < n2

4 and let u ∈
C2(Bδ(0) ∩ (Ω \ {0})) be such that

(1.19)

 −∆u− γ+O(|x|τ )
|x|2 u = 0 in Ω ∩Bδ(0)

u > 0 in Ω ∩Bδ(0)
u = 0 on (∂Ω ∩Bδ(0)) \ {0}.
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Then, there exists K > 0 such that

(1.20) either u(x) ∼x→0 K
d(x, ∂Ω)

|x|α−(γ)
or u(x) ∼x→0 K

d(x, ∂Ω)

|x|α+(γ)
.

In the first case, the solution u is variational; in the second case, it is not.

This result then allows us to completely classify all positive solutions to Lγu = 0
on Rn+, a fact alluded to in Pinchover-Tintarev ([44], Example 1.5).

Proposition 1.6. Assume γ < n2

4 and let u ∈ C2(Rn+ \ {0}) be such that

(1.21)


−∆u− γ

|x|2u = 0 in Rn+
u > 0 in Rn+
u = 0 on ∂Rn+.

Then, there exists λ−, λ+ ≥ 0 such that

(1.22) u(x) = λ−x1|x|−α−(γ) + λ+x1|x|−α+(γ) for all x ∈ Rn+.

As mentioned above, the case when γ > n2−1
4 is more intricate and requires isolating

a new notion of singular boundary mass associated to the operator Lγ for domains
of Rn having 0 on their boundary. The following result will be proved in section 8.

Theorem 1.7. Let Ω be a smooth bounded domain of Rn. Assume that n2−1
4 <

γ < γH(Ω). Then, up to multiplication by a positive constant, there exists a unique
function H ∈ C2(Ω \ {0}) such that

(1.23) −∆H − γ

|x|2
H = 0 in Ω , H > 0 in Ω , H = 0 on ∂Ω \ {0}.

Moreover, there exists c1 > 0 and c2 ∈ R such that

H(x) = c1
d(x,∂Ω)

|x|α+(γ) + c2
d(x,∂Ω)

|x|α−(γ) + o
(
d(x,∂Ω)

|x|α−(γ)

)
as x→ 0.

The quantity mγ(Ω) := c2
c1
∈ R, which is independent of the choice of H satisfying

(1.23), will be referred to as the Hardy singular b-mass of Ω.

Indeed, another interpretation of the threshold is the following. The case γ >
n2−1

4 is the only situation in which one can write a solution H to (1.23) as the
sum of the two profiles given in (1.20) (plus lower-order terms) for any bounded

domain Ω. When γ ≤ n2−1
4 , there might be some intermediate terms between the

two profiles.

We show that the map Ω→ mγ(Ω) is a monotone increasing function on the class
of domains having zero on their boundary, once ordered by inclusion. We shall also
see below that it is possible to define the mass of some unbounded domains, and

that mγ(Rn+) = 0 for any n2−1
4 < γ < n2

4 , from which follows that the mass of any
one of its smooth subsets having zero on its boundary is non-positive. In particular,
mγ(Ω) < 0 whenever Ω is convex bounded and 0 ∈ ∂Ω.

We shall however exhibit in section 10 examples of bounded domains Ω in Rn with
0 ∈ ∂Ω and with positive mass. Among other things, we provide examples of
domains with either positive or negative boundary mass, while satisfying any local
behavior at 0 one wishes. In other words, the sign of the Hardy b-mass is totally
independent of the local properties of ∂Ω around 0.
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This notion and the preceeding results allow us to establish the following extension
of the results of Chern-Lin.

Theorem 1.8. Let Ω be a bounded smooth domain of Rn (n ≥ 3) such that 0 ∈ ∂Ω,

hence (n−2)2

4 < γH(Ω) ≤ n2

4 . Let 0 ≤ s < 2.

(1) If γH(Ω) ≤ γ < n2

4 , then there are extremals for µγ,s(Ω) for all n ≥ 3.
(2) If γ < γH(Ω) and either s > 0 or {s = 0, n ≥ 4 and γ > 0}, then there are

extremals for µγ,s(Ω), under either one of the following conditions:

• γ ≤ n2−1
4 and the mean curvature of ∂Ω at 0 is negative.

• γ > n2−1
4 and the Hardy b-mass mγ(Ω) is positive.

(3) If {s = 0 and γ ≤ 0}, then there are no extremals for µγ,0(Ω) for any n ≥ 3.

Still when Ω is a smooth bounded domain, we shall also address in section 11 the
remaining case, i.e., n = 3 and s = 0 and γ ∈ (0, 9

4 ) (note that n2/4 = 9/4). In

this situation, there may or may not be extremals for µγ,0(R3
+). If they do exist,

we can then argue as before –using the same test functions– to conclude existence

of extremals under the same conditions, that is either γ ≤ 2 = 32−1
4 and the mean

curvature of ∂Ω at 0 is negative, or γ > 2 and the mass mγ(Ω) is positive. However,
if no extremal exist for µγ,0(R3

+), then as noted in (1.14), we have that

µγ,0(R3
+) = inf

u∈D1,2(R3)\{0}

∫
R3 |∇u|2 dx(∫
R3 |u|2? dx

) 2
2?

=
1

K(3, 2)2
,

and we are back to the case of the Yamabe problem with no boundary singularity.
This means that one needs to resort to a more standard notion of mass Rγ(Ω, x0)
associated to Lγ and an interior point x0 ∈ Ω. One can then construct suitable
test-functions in the spirit of Schoen [48]. In order to define the “internal mass”, we
show (see Proposition 11.1) that for a given γ ∈ (0, γH(Ω)), there exists a solution
G ∈ C2(Ω \ {0, x0}) ∩D2

1(Ω \ {x0})loc,0 of
−∆G− γ

|x|2G = 0 in Ω \ {x0}
G > 0 in Ω \ {x0}
G = 0 on ∂Ω \ {0},

is unique up to multiplication by a constant, and that for any x0 ∈ Ω, there exists
Rγ(Ω, x0) ∈ R (independent of the choice of G) and cG > 0 such that

G(x) = cG

(
1

|x− x0|
+Rγ(Ω, x0)

)
+ o(1) as x→ x0.

Withe the uniqueness of Proposition 11.1, the quantity Rγ(Ω, x0) is well defined,
and we prove the following.

Theorem 1.9. Let Ω be a bounded smooth domain of R3 such that 0 ∈ ∂Ω. In
particular 1

4 < γH(Ω) ≤ 9
4 .

(1) If γH(Ω) ≤ γ < 9
4 , then there are extremals for µγ,0(Ω).

(2) If 0 < γ < γH(Ω), and if there exists x0 ∈ Ω such that Rγ(Ω, x0) > 0, then
there are extremals for µγ,0(Ω), under either one of the following conditions:
(a) γ ≤ 2 and the mean curvature of ∂Ω at 0 is negative.
(b) γ > 2 and the mass mγ(Ω) is positive.
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More precisely, if there are extremals for µγ,0(R3), then conditions (a) and (b)
are sufficient to get extremals for µγ,0(Ω). If there are no extremals for µγ,0(R3),
then the positivity of the internal mass Rγ(Ω, x0) is sufficient to get extremals for
µγ,0(Ω). We refer to Theorem 11.3 for a precise statement. The following table
summarizes our findings.

Table 1. Singular Sobolev-Critical term: s > 0

Hardy term Dimension Geometric condition Extremal

−∞ < γ ≤ n2−1
4 n ≥ 3 Negative mean curvature at 0 Yes

n2−1
4 < γ < n2

4 n ≥ 3 Positive boundary-mass Yes

Table 2. Non-singular Sobolev-Critical term: s = 0

Hardy term Dim. Geometric condition Extr.

0 < γ ≤ n2−1
4 n = 3 Negative mean curvature at 0 & Positive internal mass Yes

n ≥ 4 Negative mean curvature at 0 Yes
n2−1

4 < γ < n2

4 n = 3 Positive boundary-mass & Positive internal mass Yes
n ≥ 4 Positive boundary mass Yes

γ ≤ 0 n ≥ 3 – No

Notations: in the sequel, Ci(a, b, ...) (i = 1, 2, ...) will denote constants depending
on a, b, .... The same notation can be used for different constants, even in the same
line. We will always refer to the monograph [28] by Gilbarg and Trudinger for
standard elliptic pdes results.

2. Old and new inequalities involving singular weights

The following general form of the Hardy inequality is well known. See for example
Cowan [11] or the book of Ghoussoub-Moradifam [22]. We include here a proof for
completeness.

Theorem 2.1. Let Ω be a connected open subset of Rn and consider ρ ∈ C∞(Ω)

such that ρ > 0 and −∆ρ > 0. Then for any u ∈ D1,2(Ω) we have that
√
ρ−1(−∆)ρu ∈

L2(Ω) and

(2.1)

∫
Ω

−∆ρ

ρ
u2 dx ≤

∫
Ω

|∇u|2 dx.

Moreover, the case of equality is achieved exactly on Rρ ∩D1,2(Ω). In particular,
if ρ 6∈ D1,2(Ω), there are no nontrival extremals for (2.1).

Proof of Theorem 2.1: The proof relies of the following integral identity:

(2.2)

∫
Ω

|∇(ρv)|2 dx−
∫

Ω

−∆ρ

ρ
(ρv)2 dx =

∫
Ω

ρ2|∇v|2 dx ≥ 0
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for all v ∈ C∞c (Ω). This identity is a straightforward integration by parts. Since
ρ,−∆ρ > 0 in Ω, it follows from density arguments that for any u ∈ D1,2(Ω), then√
ρ−1(−∆)ρu ∈ L2(Ω) and (2.1) holds.

Assume now that there exists u0 ∈ D1,2(Ω) \ {0} that is an extremal for (2.1). In
other words, we have that∫

Ω

−∆ρ

ρ
u2

0 dx =

∫
Ω

|∇u0|2 dx.

Let (ui)i ∈ C∞c (Ω) be such that limi→+∞ ui = u0 in D1,2(Ω) and define vi(x) :=
ui(x)
ρ(x) for all x ∈ Ω and all i. This is well defined since ui has compact support in

Ω: therefore vi ∈ C∞c (Ω) for all i. Since D1,2(Ω) ⊂ D1,2(Rn), Sobolev’s embedding
theorem yields convergence of ui to u0 in L2n/(n−2)(Ω). Since ρ > 0 in Ω, we then
get that (vi)i is uniformly bounded in H2

1,loc(Ω). It then follows from reflexivity

and a diagonal argument that there exists v ∈ H2
1,loc(Ω) such that

lim
i→+∞

vi = v in H2
1,loc(Ω).

Applying (2.2) to vi = ρ−1ui yields limi→+∞
∫
ω
ρ2|∇vi|2 dx = 0. Therefore, for any

ω ⊂⊂ Ω, we have that∫
ω

|∇v|2 dx ≤ lim inf
i→+∞

∫
ω

|∇vi|2 dx = 0.

Therefore
∫
ω
|∇v|2 dx = 0 for all ω ⊂⊂ Ω, and then there exists c ∈ R such that

v ≡ c. Up to extracting additional subsequence, we can assume that ui(x) and vi(x)
converge to u0(x) and v(x) respectively when i → +∞ for a.e. x ∈ Ω. Therefore,
u0(x) = c · ρ(x) for a.e. x ∈ Ω. Since u0 6≡ 0, we have that c 6= 0 and then
ρ ∈ D1,2(Ω). For dimensional reasons, the equality is then achieved exactly on
Rρ∩D1,2(Rn). This ends the case of equality in case there is a nontrivial extremal.

Assume now that ρ ∈ D1,2(Ω). We let (ρi) ∈ C∞c (Ω) such that limi→+∞ ρi = ρ in
D1,2(Ω). Without loss of generality, we can assume that ρi(x)→ ρ(x) as i→ +∞
for a.e. x ∈ Ω. We define vi := ρi

ρ ∈ C
∞
c (Ω). We have that vi(x) → 1 as i → +∞

for a.e. x ∈ Ω. For any i, j, (2.2) yields∫
Ω

|∇(ρi − ρj)|2 dx−
∫

Ω

−∆ρ

ρ
(ρi − ρj)2 dx =

∫
Ω

ρ2|∇(vi − vj)|2 dx.

Therefore (ρ∇vi)i is a Cauchy sequence in L2(Ω,Rn), and therefore, there exists
~X ∈ L2(Ω,Rn) such that

(2.3) lim
i→+∞

ρ∇vi = ~X in L2(Ω,Rn).

Arguing as in the first part of the proof of Theorem 2.1, we get that there exists
v ∈ H2

1,loc(Ω) such that limi→+∞ vi = v in H2
1,loc(Ω). Since vi(x) → 1 as i → +∞

for a.e. x ∈ Ω, we get that v ≡ 1 and therefore ∇v = 0, which yields ~X = 0. It then
follows from (2.3) that (ρ∇vi)i goes to 0 in L2(Ω,Rn). Using again (2.2) yields

(2.4)

∫
Ω

|∇ρi|2 dx−
∫

Ω

−∆ρ

ρ
ρ2
i dx =

∫
Ω

ρ2|∇vi|2 dx.

Therefore, letting i → +∞ yields
∫

Ω
|∇ρ|2 dx =

∫
Ω
−∆ρ
ρ ρ2 dx, and then ρ is an

extremal for (2.1).
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Theorem 2.1 follows from the case of the existence of an extremal and the case
ρ ∈ D1,2(Ω). �

The above theorem applies to various weight functions ρ. See for example the
paper of Cowan [11] or the book [22]. For this paper, we need it for the following
inequality.

Corollary 2.2. Fix 1 ≤ k ≤ n, we then have the following inequality.(
n+ 2k − 2

2

)2

= inf
u

∫
Rk+×Rn−k

|∇u|2 dx∫
Rk+×Rn−k

u2

|x|2 dx
,

where the infimum is taken over all u in D1,2(Rk+ × Rn−k) \ {0}. Moreover, the
infimum is never achieved.

Proof of Corollary 2.2: Take ρ(x) := x1...xk|x|−α for all x ∈ Ω := Rk+×Rn−k \{0}.
Then −∆ρ

ρ = α(n+2k−2−α)
|x|2 . We then maximize the constant by taking α := (n +

2k − 2)/2. Since ρ 6∈ D1,2(Rk+ × Rn−k), Theorem 2.1 applies and we obtain that

(2.5)

(
n+ 2k − 2

2

)2 ∫
Rk+×Rn−k

u2

|x|2
dx ≤

∫
Rk+×Rn−k

|∇u|2 dx

for all u ∈ D1,2(Rk+ × Rn−k), and that the extremals are trivial.

It remains to prove that the constant in (2.5) is optimal. This will be achieved via
the following test-function estimates. Construct a sequence (ρε)ε>0 ∈ D1,2(Rk+ ×
Rn−k) as follows. Starting with ρ(x) = x1...xk|x|−α, we fix β > 0 and define

(2.6) ρε(x) :=



∣∣x
ε

∣∣β ρ(x) if |x| < ε

ρ(x) if ε ≤ |x| ≤ 1
ε

|ε · x|−βρ(x) if |x| > 1
ε

with α := (n+ 2k − 2)/2. As one checks, ρε ∈ D1,2(Rk+ × Rn−k) for all ε > 0. The
changes of variables x = εy and x = ε−1z yield

(2.7)

∫
Bε(0)

ρ2ε
|x|2 dx = O(1),

∫
Bε(0)

|∇ρε|2 dx = O(1),∫
Rn\Bε−1 (0)

ρ2ε
|x|2 dx = O(1),

∫
Rn\Bε−1 (0)

|∇ρε|2 dx = O(1)

when ε→ 0. Integrating by parts yields∫
Bε−1 (0)\Bε(0)

|∇ρε|2 dx =

∫
Bε−1 (0)\Bε(0)

−∆ρ

ρ
ρ2 dx+O(1)

=

(
n+ 2k − 2

2

)2 ∫
Bε−1 (0)\Bε(0)

ρ2

|x|2
dx+O(1),(2.8)

when ε→ 0. Using polar coordinates yields

(2.9)

∫
Bε−1 (0)\Bε(0)

ρ2

|x|2
dx = C(2) ln

1

ε
where C(2) := 2

∫
Sn−1

∣∣∣∣∣
k∏
i=1

xi

∣∣∣∣∣
2

dσ.
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Therefore, (2.7), (2.8) and (2.9) yield∫
Rk+×Rn−k

|∇ρε|2 dx∫
Rk+×Rn−k

ρ2ε
|x|2 dx

=

(
n+ 2k − 2

2

)2

+ o(1)

as ε → 0, and we are done. Note that the infimum is never achieved since ρ 6∈
D1,2(Rk+ × Rn−k). This ends the proof of Corollary 2.2. �

Another approach to prove Corollary 2.2 is to see Rk+ × Rn−k as a cone generated
by a domain of the unit sphere. Then the Hardy constant is given by the Hardy
constant of Rn plus the first eigenvalue of the Laplacian of the Dirichlet of the above
domain of the unit sphere endowed with its canonical metric. This point of view
is developed in Pinchover-Tintarev [44] (see also Fall-Musina [19] and Ghoussoub-
Moradifam [22] for an exposition in book form).

We get the following generalized Caffarelli-Kohn-Nirenberg inequality.

Proposition 2.3. Let Ω be an open subset of Rn. Let ρ, ρ′ ∈ C∞(Ω) be such that
ρ, ρ′ > 0 and −∆ρ,−∆ρ′ > 0. Fix s ∈ [0, 2] and assume that there exists ε ∈ (0, 1)
and ρε ∈ C∞(Ω) such that

−∆ρ

ρ
≤ (1− ε)−∆ρε

ρε
in Ω with ρε,−∆ρε > 0.

Then we have that

(2.10)

(∫
Ω

(
−∆ρ′

ρ′

)s/2
ρ2?(s)|u|2

?(s) dx

) 2
2?(s)

≤ C
∫

Ω

ρ2|∇u|2 dx

for all u ∈ C∞c (Ω).

Proof of Proposition 2.3: The Sobolev inequality yields the existence of C(n) > 0
such that (∫

Ω

|u|2
?

dx

) 2
2?

≤ C(n)

∫
Ω

|∇u|2 dx

for all u ∈ C∞c (Ω), where 2? = 2?(0) = 2n
n−2 . A Hölder inequality interpolating

between this Sobolev inequality and the Hardy inequality (2.1) for ρ′ yields the
existence of C > 0 such that

(2.11)

(∫
Ω

(
−∆ρ′

ρ′

)s/2
|u|2

?(s) dx

) 2
2?(s)

≤ C
∫

Ω

|∇u|2 dx

for all u ∈ C∞c (Ω). The identity (2.2) for ρ and (2.1) for ρε yield for v ∈ C∞c (Ω),∫
Ω

ρ2|∇v|2 dx =

∫
Ω

|∇(ρv)|2 dx−
∫

Ω

−∆ρ

ρ
(ρv)2 dx

≥
∫

Ω

|∇(ρv)|2 dx− (1− ε)
∫

Ω

−∆ρε
ρε

(ρv)2 dx

≥ ε

∫
Ω

|∇(ρv)|2

Taking u := ρv in (2.11) and using this latest inequality yield (2.10). This ends the
proof of Proposition 2.3. �

Here is an immediate consequence.
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Corollary 2.4. Fix k ∈ {1, . . . , n − 1}. There exists then a constant C :=
C(a, b, n) > 0 such that for all u ∈ C∞c (Rk+×Rn−k), the following inequality holds:
(2.12)(∫

Rk+×Rn−k
|x|−bq

(
Πk
i=1xi

)q |u|q) 2
q

≤ C
∫
Rk+×Rn−k

(
Πk
i=1xi

)2 |x|−2a|∇u|2dx,

where

(2.13) −∞ < a <
n− 2 + 2k

2
, 0 ≤ b− a ≤ 1, q =

2n

n− 2 + 2(b− a)
.

Proof of Corollary 2.4: Define ρ(x) = ρ′(x) =
(
Πk
i=1xi

)
|x|−a and ρε(x) =

(
Πk
i=1xi

)
|x|−n−2+2k

2

for all x ∈ Rk+ × Rn−k. Here, we have that

∆ρ′

ρ′
=
a(n− 2 + 2k − a)

|x|2
and

−∆ρε
ρε

=
(n− 2 + 2k)2

4|x|2
.

Apply Proposition 2.3 with this data, with suitable a, b, q to get Corollary 2.4. �

Remark: Observe that by taking k = 0, we recover the classical Caffarelli-Kohn-
Nirenberg inequalities (1.5). However, one does not see any improvement in the
integrability of the weight functions since

(
Πk
i=1xi

)
|x|−a is of order k− a > −(n−

2)/2, hence as close as we wish to (n−2)/2 with the right choice of a. The relevance
here appears when one considers the Hardy inequality of Corollary 2.2.

3. Estimates for the best constant in the Hardy inequality

As mentioned in the introduction, the best constant in the Hardy inequality

γH(Ω) := inf

{∫
Ω
|∇u|2 dx∫

Ω
u2

|x|2 dx
/ u ∈ D1,2(Ω) \ {0}

}
does not depend on the domain Ω ⊂ Rn if the singularity 0 belongs to the interior

of Ω. It is always equal to (n−2)2

4 . We have seen, however, in the last section that

the situation changes whenever 0 ∈ ∂Ω, since γH(Rn+) = n2

4 . Some properties of
the best Hardy constants have been studied by Fall-Musina [19] and Fall [18]. In
this section, we shall collect whatever information we shall need later on about γH .

Proposition 3.1. Let Ω be a smooth domain of Rn. Then γH satisfies the following
properties:

(1) For any smooth domain Ω such that 0 ∈ Ω, we have γH(Ω) = (n−2)2

4 .

(2) If 0 ∈ ∂Ω, then (n−2)2

4 < γH(Ω) ≤ n2

4 .

(3) γH(Ω) = n2

4 for every Ω such that 0 ∈ ∂Ω and Ω ⊂ Rn+.

(4) If γH(Ω) < n2

4 , then it is attained in D1,2(Ω).

(5) We have inf{γH(Ω); 0 ∈ ∂Ω} = (n−2)2

4 for n ≥ 3.
(6) For every ε > 0, there exists a smooth domain Rn+ ( Ωε ( Rn such that

0 ∈ ∂Ωε and n2

4 − ε ≤ γH(Ωε) <
n2

4 .

Proof of Proposition 3.1: Properties (1)-(2)-(3)-(4) are well known (See Fall-Musina
[19] and Fall [18]). However, we sketch proofs since we will make frequent use
of the test functions involved. Note first that Corollary 2.2 already yields that

γH(Rn+) = n2

4 .
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Proof of (2): Since Ω ⊂ Rn, we have that γH(Ω) ≥ γH(Rn) = (n−2)2

4 . Assume

by contradiction that γH(Ω) = (n−2)2

4 . It then follows from Theorem 4.4 below

(applied with s = 2) that γH(Ω) is achieved by a function in u0 ∈ D1,2(Ω) \ {0}
(note that µ0,γ(Ω) = γH(Ω) − γ). Therefore, γH(Rn) is achieved in D1,2(Rn).
Up to taking |u0|, we can assume that u0 ≥ 0. Therefore, the Euler-Lagrange
equation and the maximum principle yield u0 > 0 in Rn: this is impossible since

u0 ∈ D1,2(Ω). Therefore γH(Ω) > (n−2)2

4 .

For the other inequality, the standard proof normally uses the fact that the domain
contains an interior sphere that is tangent to the boundary at 0. We choose here to
perform another proof based on test-functions, which will be used again to prove
Proposition 4.1. It goes as follows: since Ω is a smooth bounded domain of Rn such
that 0 ∈ ∂Ω, there exist U, V open subsets of Rn such that 0 ∈ U , 0 ∈ V and there
exists ϕ ∈ C∞(U, V ) a diffeomophism such that ϕ(0) = 0 and

ϕ(U ∩ {x1 > 0}) = ϕ(U) ∩ Ω and ϕ(U ∩ {x1 = 0}) = ϕ(U) ∩ ∂Ω.

Moreover, we can and shall assume that dϕ0 is an isometry. Let η ∈ C∞c (U)
such that η(x) = 1 for x ∈ Bδ(0) for some δ > 0 small enough, and consider
(αε)ε>0 ∈ (0,+∞) such that αε = o(ε) as ε→ 0. For ε > 0, define

(3.1) uε(x) :=

{
η(y)α

−n−2
2

ε ρε

(
y
αε

)
for all x ∈ ϕ(U) ∩ Ω, x = ϕ(y),

0 elsewhere.

Here ρε is constructed as in (2.6) with k = 1. Now fix σ ∈ [0, 2], and note that only
the case σ = 2 is needed for the above proposition. We then have as ε→ 0,∫

Ω

|uε(y)|2?(σ)

|y|σ
dy =

∫
Rn+

uε ◦ ϕ(x)2?(σ)

|ϕ(x)|σ
|Jac(ϕ)(x)| dx

=

∫
Rn+

uε ◦ ϕ(x)2?(σ)

|x|σ
|(1 +O(|x|)) dx

=

∫
Bδ(0)∩Rn+

uε ◦ ϕ(x)2?(σ)

|x|σ
(1 +O(|x|)) dx+O(1).

Dividing Bδ(0) = (Bδ(0) \Bε−1αε(0))∪(Bε−1αε(0) \Bεαε(0))∪Bεαε(0) and arguing
as in (2.7) to (2.9), we get as ε→ 0,∫

Ω

|uε(y)|2?(σ)

|y|σ
dy =

∫
[Bε−1αε

(0)\Bεαε (0)]∩Rn+

uε ◦ ϕ(x)2?(σ)

|x|σ
(1 +O(|x|)) dx+O(1)

=

∫
[Bε−1αε

(0)\Bεαε (0)]∩Rn+

uε ◦ ϕ(x)2?(σ)

|x|σ
dx+O(1)

=

∫
[Bε−1αε

(0)\Bεαε (0)]∩Rn+

ρ(x)2?(σ)

|x|σ
dx+O(1).

Passing to polar coordinates yields

(3.2)

∫
Ω

|uε(y)|2?(σ)

|y|σ
dy = C(σ) ln

1

ε
+O(1) as ε→ 0,

where C(σ) := 2
∫
Sn−1

∣∣∣∏k
i=1 xi

∣∣∣2?(σ)

dσ.
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Similar arguments yield∫
Ω

|∇uε|2 dy =

∫
Bε−1αε

(0)\Bεαε (0)∩Rn+
|∇uε ◦ ϕ(x)|2(1 +O(|x|) dx+O(1)

=

∫
Bε−1αε

(0)\Bεαε (0)∩Rn+
|∇uε ◦ ϕ(x)|2 dx+O(1)

=

∫
Bε−1 (0)\Bε(0)∩Rn+

|∇ρ(x)|2 dx+O(1)

as ε→ 0. Using (2.8) and (2.9) yield

(3.3)

∫
Ω

|∇uε|2 dy =
n2

4
C(2) ln

1

ε
+O(1) as ε→ 0.

As a consequence, we get that∫
Ω
|∇uε|2 dx∫
Ω

u2
ε

|x|2 dx
=
n2

4
+ o(1) as ε→ 0.

In particular, we get that γH(Ω) ≤ n2

4 , which proves the upper bound in point (2)
of the proposition.

Proof of (3). Assume that Ω ⊂ Rn+, then D1,2(Ω) ⊂ D1,2(Rn+), and therefore
γH(Ω) ≥ γH(Rn+) = n2/4. With the reverse inequality already given by (2), we get
that γH(Ω) = n2/4 for all Ω ⊂ Rn+ such that 0 ∈ ∂Ω.

Proof of (4). This will be a particular case of Theorem 4.4 when s = 2.

Proof of (5). Let Ω0 be a bounded domain of Rn such that 0 ∈ Ω0 (i.e., it is
not on the boundary). Given δ > 0, we chop out a ball of radius δ/4 with 0 on its
boundary to define

Ωδ := Ω0 \B δ
4

(
(
−δ
4
, 0, . . . , 0)

)
Note that for δ > 0 small enough, Ω is smooth and 0 ∈ ∂Ω. We now prove that

(3.4) lim
δ→0

γH(Ωδ) =
(n− 2)2

4
.

Define η1 ∈ C∞(Rn) such that

η1(x) =

{
0 if |x| < 1
1 if |x| > 2,

and let ηδ(x) := η1(δ−1x) for all δ > 0 and x ∈ Rn. Fix U ∈ C∞c (Rn) and consider
for any δ > 0, an εδ > 0 such that

lim
δ→0

δ

εδ
= lim
δ→0

εδ = 0.

For δ > 0, we define

uδ(x) := ηδ(x)ε
−n−2

2

δ U(ε−1
δ x) for all x ∈ Ωδ.

For δ > 0 small enough, we have that uδ ∈ C∞c (Ωδ). A change of variable yields∫
Ωδ

u2
δ

|x|2
dx =

∫
Rn

U2

|x|2
η2

1

(εδx
δ

)
dx
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for all δ > 0 small enough. Since δ = o(εδ) as δ → 0, the dominated convergence
theorem yields

lim
δ→0

∫
Ωδ

u2
δ

|x|2
dx =

∫
Rn

U2

|x|2
dx.

For δ > 0 small enough, we have that∫
Ωδ

|∇uδ|2 dx =

∫
Rn
|∇uδ|2 dx =

∫
Rn
|∇
(
U · η δ

εδ

)
|2 dx

=

∫
Rn
|∇U |2η2

δ
εδ

dx+

∫
Rn
η δ
εδ

(
−∆η δ

εδ

)
U2 dx.(3.5)

Let R > 0 be such that U has support in BR(0). We then have that∫
Rn
η δ
εδ

(
−∆η δ

εδ

)
U2 dx = O

((εδ
δ

)2

Vol(BR(0) ∩ Supp
(
−∆η δ

εδ

)
)

)
= O

((
δ

εδ

)n−2
)

= o(1)

as δ → 0 since n ≥ 3. This latest identity, (3.5) and the dominated convergence
theorem yield

lim
δ→0

∫
Ωδ

|∇uδ|2 dx =

∫
Rn
|∇U |2 dx.

Therefore, for U ∈ C∞c (Rn), we have

lim sup
δ→0

γH(Ωδ) ≤ lim
δ→0

∫
Ωδ
|∇uδ|2 dx∫

Ωδ

u2
δ

|x|2 dx
=

∫
Rn |∇U |

2 dx∫
Rn

U2

|x|2 dx
.

Taking the infimum over all U ∈ C∞c (Rn), we get that

lim sup
δ→0

γH(Ωδ) ≤ inf
U∈D1,2(Rn)\{0}

∫
Rn |∇U |

2 dx∫
Rn

U2

|x|2 dx
= γH(Rn) =

(n− 2)2

4
.

Since γH(Ωδ) ≥ (n−2)2

4 for all δ > 0, this completes the proof of (3.4), yielding (5).

Proof of (6). The proof uses the following observation.

Lemma 3.2. Let (Φk)k∈N ∈ C1(Rn,Rn) be such that

(3.6) lim
k→+∞

(‖Φk − IdRn‖∞ + ‖∇(Φk − IdRn)‖∞) = 0 and Φk(0) = 0.

Let D ⊂ Rn be an open domain such that 0 ∈ ∂D (the domain is not necessarily
bounded nor regular), and set Dk := Φk(D) for all k ∈ N. Then 0 ∈ ∂Dk for all
k ∈ N and

(3.7) lim
k→+∞

γH(Dk) = γH(D).

Proof of Lemma 3.2: If u ∈ C∞c (Dk), then u ◦ Φk ∈ C∞c (D) and∫
Dk

|∇u|2 dx =

∫
Rn+
|∇(u ◦ Φk)|2

Φ?kEucl|Jac(Φk)| dx,∫
Dk

u2

|x|2
dx =

∫
Rn+

(u ◦ Φk(x))2

|Φk(x)|2
|Jac(Φk)| dx,
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where here and in the sequel Φ?kEucl is the pull-back of the Euclidean metric via
the diffeomorphisme Φk. Assumption (3.6) yields

lim
k→+∞

sup
x∈D

(∣∣∣∣ |Φk(x)|
|x|

− 1

∣∣∣∣+ sup
i,j
|(∂iΦk(x), ∂jΦk(x))− δij)|+ |Jac(Φk)− 1|

)
= 0,

where δij = 1 if i = j and 0 otherwise. Therefore, for any ε > 0, there exists k0

such that for all u ∈ C∞c (Dk) and k ≥ k0,

(1 + ε)

∫
D

|∇(u ◦ Φk)|2 dx ≥
∫
Dk

|∇u|2 dx ≥ (1− ε)
∫
D

|∇(u ◦ Φk)|2 dx,

and

(1 + ε)

∫
D

(u ◦ Φk(x))2

|x|2
dx ≥

∫
Dk

u2

|x|2
dx ≥ (1− ε)

∫
D

(u ◦ Φk(x))2

|x|2
dx.

We can now deduce (3.7) by using a standard density argument. This completes
the proof of Lemma 3.2. �

We now prove (6) of Proposition 3.1. Let ϕ ∈ C∞(Rn−1) such that 0 ≤ ϕ ≤ 1,
ϕ(0) = 0, and ϕ(x′) = 1 for all x′ ∈ Rn−1 such that |x′| ≥ 1. For t ≥ 0, define

Φt(x1, x
′) := (x1 − tϕ(x′), x′) for all (x1, x

′) ∈ Rn. Set Ω̃t := Φt(Rn+) and apply

Lemma 3.2 to note that limε→0 γH(Ω̃t) = γH(Rn+) = n2

4 . Since ϕ ≥ 0, ϕ 6≡ 0, we

have that Rn+ ( Ω̃t for all t > 0. To get (6) it suffices to take Ωε := Ω̃t for t > 0
small enough.

4. Estimates on the best constants in the Hardy-Sobolev
inequalities

As in the case of γH(Ω), the best Hardy-Sobolev constant

µγ,s(Ω) := inf


∫

Ω
|∇u|2 dx− γ

∫
Ω

u2

|x|2 dx

(
∫

Ω
u2?(s)

|x|s dx)
2

2?(s)

; u ∈ D1,2(Ω) \ {0}


will depend on the geometry of Ω whenever 0 ∈ ∂Ω. In this section, we collect
general facts that will be used throughout the paper.

Proposition 4.1. Let Ω be a bounded smooth domain such that 0 ∈ ∂Ω.

(1) If γ < n2

4 , then µγ,s(Ω) > −∞.
(2) If γ > n2

4 , then µγ,s(Ω) = −∞.
Moreover,

(3) If γ < γH(Ω), then µγ,s(Ω) > 0.

(4) If γH(Ω) < γ < n2

4 , then 0 > µγ,s(Ω) > −∞.

(5) If γ = γH(Ω) < n2

4 , then µγ,s(Ω) = 0.

Proof of Proposition 4.1: We first assume that γ < n2

4 . Let ε > 0 be such that

(1 + ε)γ ≤ n2

4 . It follows from Proposition 4.3 that there exists Cε > 0 such that

for all u ∈ D1,2(Ω),

n2

4

∫
Ω

u2

|x|2
dx ≤ (1 + ε)

∫
Ω

|∇u|2 dx+ Cε

∫
Ω

u2 dx.
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For any u ∈ D1,2(Ω) \ {0}, we have

JΩ
γ,s(u) ≥

(
1− 4γ

n2 (1 + ε)
) ∫

Ω
|∇u|2 dx− 4γ

n2Cε
∫

Ω
u2 dx(∫

Ω
|u|2?(s)
|x|s dx

) 2
2?(s)

≥ −4γ

n2
Cε

∫
Ω
u2 dx(∫

Ω
|u|2?(s)
|x|s dx

) 2
2?(s)

.

It follows from Hölder’s inequality that there exists C > 0 independent of u such

that
∫

Ω
u2 dx ≤ C

(∫
Ω
|u|2

?(s)

|x|s dx
) 2

2?(s)

. It then follows that JΩ
γ,s(u) ≥ − 4γ

n2CεC for

all u ∈ D1,2(Ω) \ {0}. Therefore µγ,s(Ω) > −∞ whenever γ < n2

4 .

Assume now that γ > n2

4 and define for every ε > 0 a function uε ∈ D1,2(Ω) as in
(3.1). It then follows from (3.2) and (3.3) that as ε→ 0,

JΩ
γ,s(uε) =

(
n2

4 − γ
)
C(2) ln 1

ε +O(1)(
C(s) ln 1

ε +O(1)
) 2

2?(s)

=

((
n2

4
− γ
)

C(2)

C(s)
2

2?(s)

+ o(1)

)(
ln

1

ε

) 2−s
n−s

.

Since s < 2 and γ > n2

4 , we then get that limε→0 J
Ω
γ,s(uε) = −∞, and therefore

µγ,s(Ω) = −∞.

Now assume that γ < γH(Ω). Sobolev’s embedding theorem yields that µ0,s(Ω) > 0,
hence the result is clear for all γ ≤ 0 since then µγ,s(Ω) ≥ µ0,s(Ω). If now 0 ≤ γ <
γH(Ω), it follows from the definition of γH(Ω) that for all u ∈ D1,2(Ω) \ {0},

JΩ
γ,s(u) =

∫
Ω
|∇u|2 − γ

∫
Ω

u2

|x|2 dx

(
∫

Ω
u2?(s)

|x|s dx)
2

2?(s)

≥
(

1− γ

γH(Ω)

) ∫
Ω
|∇u|2 dx(∫

Ω
|u|2?(s)
|x|s dx

) 2
2?(s)

≥
(

1− γ

γH(Ω)

)
µ0,s(Ω).

Therefore µγ,s(Ω) ≥
(

1− γ
γH(Ω)

)
µ0,s(Ω) > 0 when γ < γH(Ω).

We now assume that γH(Ω) < γ < n2

4 . It follows from Proposition 3.1 (4), that

γH(Ω) is attained. We let u0 be such an extremal. In particular JΩ
γH(Ω),s(u) ≥ 0 =

JΩ
γH(Ω),s(u0), and therefore µγH(Ω),s(Ω) = 0. Since γH(Ω) < γ < n2

4 , we have that

JΩ
γ,s(u0) < 0, and therefore µγ,s(Ω) < 0 when γH(Ω) < γ < n2

4 . This ends the
proof of Proposition 4.1. �

Remark 4.2. The case γ = n2

4 is unclear and anything can happen at that value

of γ. For example, if γH(Ω) < n2

4 then µn2

4 ,s
(Ω) < 0, while if γH(Ω) = n2

4 then

µn2

4 ,s
(Ω) ≥ 0. It is our guess that many examples reflecting different regimes can

be constructed.
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Proposition 4.3. Assume γ < n2

4 and s ∈ [0, 2]. Then, for any ε > 0, there exists

Cε > 0 such that for all u ∈ D1,2(Ω),
(4.1)(∫

Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

≤
(

1

µγ,s(Rn+)
+ ε

)∫
Ω

(
|∇u|2 − γ u

2

|x|2

)
dx+ Cε

∫
Ω

u2 dx.

Proof of Proposition 4.3: Fix ε > 0. We first claim that there exists δε > 0 such
that for all u ∈ C1

c (Ω ∩Bδε(0)),

(4.2)

(∫
Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

≤ (µγ,s(Rn+)−1 + ε)

∫
Ω

(
|∇u|2 − γ u

2

|x|2

)
dx.

Indeed, for two open subsets of Rn containing 0, we may define a diffeomorphism
ϕ : U → V such that ϕ(0) = 0, ϕ(U∩Rn+) = ϕ(U)∩Ω and ϕ(U∩∂Rn+) = ϕ(U)∩∂Ω.
Moreover, we can also assume that dϕ0 is a linear isometry. In particular

(4.3) |ϕ?Eucl− Eucl|(x) ≤ C|x| and |ϕ(x)| = |x| · (1 +O(|x|))

for x ∈ U . If now u ∈ C1
c (ϕ(Bδ(0)) ∩ Ω), then v := u ◦ ϕ ∈ C1

c (Bδ(0) ∩ Rn+). If
g := ϕ−1?Eucl denotes the metric induced by ϕ, then we get from (4.3),(∫

Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

≤

(∫
Bδ(0)∩Rn+

|v|2?(s)

|ϕ(x)|s
|Jac ϕ(x)| dx

) 2
2?(s)

≤ (1 + Cδ)

(∫
Bδ(0)∩Rn+

|v|2?(s)

|x|s
dx

) 2
2?(s)

≤ (1 + Cδ)µγ,s(Rn+)−1

∫
Bδ(0)∩Rn+

(
|∇v|2 − γ v2

|x|2

)
dx

≤ 1 + Cδ

µγ,s(Rn+)

∫
ϕ(Bδ(0))∩Ω

(
|∇u|2g −

γu2

|ϕ−1(x)|2

)
|Jac ϕ−1(x)| dx

≤ (1 + C1δ)µγ,s(Rn+)−1

∫
Ω

(
|∇u|2 − γ u

2

|x|2

)
dx

+C2δ

∫
Ω

(
|∇u|2 +

u2

|x|2

)
dx.(4.4)

We also have that∫
Ω

u2

|x|2
dx =

∫
ϕ(Bδ(0)∩Rn+)

u2

|x|2
dx =

∫
Bδ(0)∩Rn+

v2

|ϕ(x)|2
|Jac(ϕ)(x)| dx

=

∫
Bδ(0)∩Rn+

v2

|x|2
(1 +O(|x|)) dx ≤ (1 + C1δ)

∫
Rn+

v2

|x|2
dx

and∫
Ω

|∇u|2 dx =

∫
ϕ(Bδ(0)∩Rn+)

|∇u|2 dx =

∫
Bδ(0)∩Rn+

|∇v|2
ϕ?Eucl|Jac(ϕ)(x)| dx

=

∫
Bδ(0)∩Rn+

|∇v|2(1 +O(|x|) dx ≥ (1− C2δ)

∫
Rn+
|∇v|2 dx,
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where C1, C2 > 0 are independent of δ and v. Hardy’s inequality (2.5) then yields
for all u ∈ C1

c (ϕ(Bδ(0) ∩ Rn+)),

(4.5)
n2

4

∫
Ω

u2

|x|2
dx ≤ 1 + C1δ

1− C2δ

∫
Ω

|∇u|2 dx ≤ (1 + C3δ)

∫
Ω

|∇u|2 dx.

Since γ < n2

4 , there exists c > 0 such that for δ > 0 small enough,

c−1

∫
Ω

|∇u|2 dx ≤
∫

Ω

(
|∇u|2 − γ u

2

|x|2

)
dx ≤ c

∫
Ω

|∇u|2 dx

for all u ∈ C1
c (ϕ(Bδ(0))∩Ω). Plugging these latest inequalities in (4.4) yields (4.2)

by taking δε small enough.

Consider now η ∈ C∞(Rn) such that
√
η,
√

1− η ∈ C2(Rn), such that η(x) = 1 for
x ∈ Bδε/2(0) and η(x) = 0 for x 6∈ Bδε(0), where δε is chosen such that (4.2) holds.
We shall use the notation

‖w‖p,|x|−s =

(∫
Ω

|w|p

|x|s
dx

)1/p

.

For u ∈ C∞c (Ω), use Hölder’s inequality to write(∫
Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

= ‖u2‖ 2?(s)
2 ,|x|−s = ‖ηu2 + (1− η)u2‖ 2?(s)

2 ,|x|−s

≤ ‖ηu2‖ 2?(s)
2 ,|x|−s + ‖(1− η)u2‖ 2?(s)

2 ,|x|−s

≤ ‖√ηu‖22?(s),|x|−s + ‖
√

1− ηu‖22?(s),|x|−s .

Since
√
ηu ∈ C2

c (Bδε(0) ∩ Ω), it follows from inequality (4.2) and integrations by
parts that(∫

Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

≤ (µγ,s(Rn+)−1 + ε)

∫
Ω

(
|∇(
√
ηu)|2 − γ ηu

2

|x|2

)
dx

+‖
√

1− ηu‖22?(s),|x|−s

≤ (µγ,s(Rn+)−1 + ε)

∫
Ω

η

(
|∇u|2 − γ u

2

|x|2

)
dx+ C

∫
Ω

u2 dx

+‖
√

1− ηu‖22?(s),|x|−s(4.6)

Case 1: s = 0. Then 2?(s) = 2? and it follows from Sobolev’s inequality that

‖
√

1− ηu‖22?(s),|x|−s ≤ K(n, 2)2

∫
Ω

|∇(
√

1− ηu)|2 dx

≤ K(n, 2)2

∫
Ω

(1− η)|∇u|2 dx+ C

∫
Ω

u2 dx,(4.7)

where K(n, 2) is the optimal Sobolev constant defined in (1.14). Since s = 0, it
follows from the proof of Proposition 9.1 that K(n, 2)2 ≤ µγ,s(Rn+)−1. It then
follows from (4.7) that

‖
√

1− ηu‖22?(s),|x|−s ≤ (µγ,s(Rn+)−1 + ε)

∫
Ω

(1− η)

(
|∇u|2 − γ u

2

|x|2

)
dx

+C

∫
Ω

u2 dx.(4.8)
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Plugging together (4.6) and (4.8) yields (4.1) when s = 0.

Case 2: 0 < s < 2. We let ν > 0 be a positive number to be fixed later. Since
2 < 2?(s) < 2?, the interpolation inequality yields the existence of Cν > 0 such
that

‖
√

1− ηu‖22?(s),|x|−s ≤ C‖
√

1− ηu‖22?(s)

≤ C
(
ν‖
√

1− ηu‖22? + Cν‖
√

1− ηu‖22
)

≤ C
(
νK(n, 2)2‖∇(

√
1− ηu)‖22 + Cν‖

√
1− ηu‖22

)
.

We choose ν > 0 such that νK(n, 2)2 < µγ,s(Rn+)−1 + ε. Then we get (4.8) and we
conclude (4.1) in the case when 2 > s > 0 by combining it with (4.6).

Case 3: s = 2. This is the easiest case, since then

‖
√

1− ηu‖22?(s),|x|−s =

∫
Ω

((1− η)u)2

|x|2
dx ≤ Cδ

∫
Ω

u2 dx.

This completes the proof of (4.1) for all s ∈ [0, 2], and therefore of Proposition 4.3.
�.

Now we prove the following result, which will be central for the sequel. The proof
is standard.

Theorem 4.4. Assume that γ < n2

4 , 0 ≤ s ≤ 2 and that µγ,s(Ω) < µγ,s(Rn+).
Then there are extremals for µγ,s(Ω). In particular, there exists a minimizer u in
D1,2(Ω) \ {0} that is a positive solution to the equation

−∆u− γ u
|x|2 = µγ,s(Ω)u

2?(s)−1

|x|s in Ω

u > 0 in ∂Ω
u = 0 on ∂Ω.

(4.9)

Proof of Theorem 4.4: Let (ui) ∈ D1,2(Ω) \ {0} be a minimizing sequence for
µγ,s(Ω), that is JΩ

γ,s(ui) = µγ,s(Ω) + o(1) as i → +∞. Up to multiplying by a
constant, we can assume that∫

Ω

|ui|2
?(s)

|x|s
dx = 1 for all i,(4.10) ∫

Ω

(
|∇ui|2 − γ

u2
i

|x|2

)
dx = µγ,s(Ω) + o(1) as i→ +∞.(4.11)

We show that (ui)i is bounded in D1,2(Ω). Indeed, (4.10) yields that

(4.12)
∫

Ω
u2
i dx ≤ C < +∞ for all i.

Fix ε0 > 0 and use Proposition 4.3 and (4.12) to get that

(4.13) n2

4

∫
Ω

u2
i

|x|2 dx ≤ (1 + ε0)
∫

Ω
|∇ui|2 dx+ C for all i.

Since γ < n2

4 , up to taking ε0 > 0 small enough, this latest inequality combined

with (4.11) yield the boundedness of (ui)i in D1,2(Ω). It follows that there exists
u ∈ D1,2(Ω) such that, up to a subsequence, (ui) goes to u weakly in D1,2(Ω) and
strongly in L2(Ω) as i→ +∞.
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We now show that
∫

Ω
|u|2

?(s)

|x|s dx = 1. For that, define θi := ui − u ∈ D1,2(Ω)

for all i. In particular, θi goes to 0 weakly in D1,2(Ω) and strongly in L2(Ω) as
i→ +∞. In particular, we have as i→ +∞,

(4.14) 1 =

∫
Ω

|ui|2
?(s)

|x|s
dx =

∫
Ω

|u|2?(s)

|x|s
dx+

∫
Ω

|θi|2
?(s)

|x|s
dx+ o(1)

and

(4.15) µγ,s(Ω) =

∫
Ω

(
|∇u|2 − γ u

2

|x|2

)
dx+

∫
Ω

(
|∇θi|2 − γ

θ2
i

|x|2

)
dx+ o(1),

For ε > 0, it follows from the definition of µγ,s(Ω) and from (4.1) that, as i→ +∞

(4.16) µγ,s(Ω)

(∫
Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

≤
∫

Ω

(
|∇u|2 − γ u

2

|x|2

)
dx

and

(4.17) (µγ,s(Rn+)− ε)
(∫

Ω

|θi|2
?(s)

|x|s
dx

) 2
2?(s)

≤
∫

Ω

(
|∇θi|2 − γ

θ2
i

|x|2

)
dx+ o(1).

Summing these two inequalities and using (4.14) and (4.15) and passing to the
limit, as i→ +∞, yields

µγ,s(Ω)

1−
(∫

Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

 ≥ (µγ,s(Rn+)− ε)
(

1−
∫

Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

≥ (µγ,s(Rn+)− ε)

1−
(∫

Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

 .

Since µγ,s(Ω) < µγ,s(Rn+), then by taking ε > 0 small enough, we finally conclude

that
∫

Ω
|u|2

?(s)

|x|s dx = 1.

It remains to show that u is an extremal for µγ,s(Ω). For that, note that since∫
Ω
|u|2

?(s)

|x|s dx = 1, the definition of µγ,s(Ω) yields
∫

Ω

(
|∇u|2 − γ u2

|x|2

)
dx ≥ µγ,s(Ω).

The second term in the right-hand-side of (4.15) is nonnegative due to (4.17).

Therefore, we get that
∫

Ω

(
|∇u|2 − γ u2

|x|2

)
dx = µγ,s(Ω). This proves the claim and

ends the proof of Theorem 4.4. �

5. Sub- and super-solutions for the equation Lγu = a(x)u

Here and in the sequel, we shall assume that 0 ∈ ∂Ω, where Ω is a smooth
domain. In this section, we shall construct basic sub- and super-solutions for the
equation Lγu = a(x)u, where a(x) = O(|x|τ−2) for some τ > 0.

First recall from the introduction that two solutions for Lγu = 0, with u = 0 on
∂Rn+ are of the form uα(x) = x1|x|−α, where α ∈ {α−(γ), α+(γ)} with

(5.1) α−(γ) := n
2 −

√
n2

4 − γ and α+(γ) := n
2 +

√
n2

4 − γ.

These solutions will be the building blocks for sub- and super-solutions of more
general linear equations involving Lγ .
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Proposition 5.1. Let γ < n2

4 and α ∈ {α−(γ), α+(γ)}. Let 0 < τ ≤ 1 and β ∈ R
such that α − τ < β < α and β 6∈ {α−(γ), α+(γ)}. Then, there exist r > 0,
uα,+, uα,− ∈ C∞(Ω \ {0}) such that

(5.2)


uα,+, uα,− > 0 in Ω ∩Br(0)
uα,+, uα,− = 0 on ∂Ω ∩Br(0)

−∆uα,+ − γ+O(|x|τ )
|x|2 uα,+ > 0 in Ω ∩Br(0)

−∆uα,− − γ+O(|x|τ )
|x|2 uα,− < 0 in Ω ∩Br(0).

Moreover, we have as x→ 0, x ∈ Ω, that
(5.3)

uα,+(x) =
d(x, ∂Ω)

|x|α
(1 +O(|x|α−β)) and uα,−(x) =

d(x, ∂Ω)

|x|α
(1 +O(|x|α−β)).

Proof of Proposition 5.1: We first choose an adapted chart to lift the basic solutions
from Rn+. Since 0 ∈ ∂Ω and Ω is smooth, there exists Ũ , Ṽ two bounded domains of

Rn such that 0 ∈ Ũ , 0 ∈ Ṽ , and there exists c ∈ C∞(Ũ , Ṽ ) a C∞−diffeomorphism
such that c(0) = 0,

c(Ũ ∩ {x1 > 0}) = c(Ũ) ∩ Ω and c(Ũ ∩ {x1 = 0}) = c(Ũ) ∩ ∂Ω.

The orientation of ∂Ω is chosen in such a way that for any x′ ∈ Ũ ∩ {x1 = 0},

{∂1c(0, x
′), ∂2c(0, x

′), . . . , ∂nc(0, x
′)}

is a direct basis of Rn (canonically oriented). For x′ ∈ Ũ ∩{x1 = 0}, we define ν(x′)
as the unique orthonormal inner vector at the tangent space Tc(0,x′)∂Ω (it is chosen
such that {ν(x′), ∂2c(0, x

′), . . . , ∂nc(0, x
′)} is a direct basis of Rn). In particular,

on Rn+ := {x1 > 0}, ν(x′) := (1, 0, . . . , 0).

Here and in the sequel, we write for any r > 0

(5.4) B̃r := (−r, r)×B(n−1)
r (0)

where B
(n−1)
r (0) denotes the ball of center 0 and radius r in Rn−1. It is standard

that there exists δ > 0 such that

(5.5)
ϕ : B̃2δ → Rn

(x1, x
′) ∈ R× Rn−1 7→ c(0, x′) + x1ν(x′)

is a C∞−diffeomorphism onto its open image ϕ(B̃2δ), and

(5.6) ϕ(B̃2δ ∩ {x1 > 0}) = ϕ(B̃2δ) ∩ Ω and ϕ(B̃2δ ∩ {x1 = 0}) = ϕ(B̃2δ) ∩ ∂Ω.

We also have for all x′ ∈ Bδ(0)(n−1),

(5.7) ν(x′) is the inner orthonormal unit vector at the tangent space Tϕ(0,x′)∂Ω.

An important remark is that

(5.8) d(ϕ(x1, x
′), ∂Ω) = |x1| for all (x1, x

′) ∈ B̃2δ close to 0.

Consider the metric g := ϕ?Eucl on B̃2δ, that is the pull-back of the Euclidean
metric Eucl via the diffeomorphism ϕ. Following classical notations, we define

(5.9) gij(x) := (∂iϕ(x), ∂jϕ(x))Eucl for all x ∈ B̃2δ and i, j = 1, ..., n.
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Up to a change of coordinates, we can assume that (∂2ϕ(0), ..., ∂nϕ(0)) is an or-
thogonal basis of T0∂Ω. In other words, we then have that

(5.10) gij(0) = δij for all i, j = 1, ..., n.

We claim that

(5.11) gi1(x) = δi1 for all x ∈ B̃2δ and i = 1, ..., n.

Indeed, for any x = (x1, x
′) ∈ B̃2δ, we have that ∂1ϕ(x) = ν(x′), which is a unitary

vector. Therefore g11(x) = 1. For i ≥ 2, we have

g1i(x) = (ν(x′), ∂iϕ(0, x′) + x1∂iν(x′))Eucl = (ν(x′), ∂iϕ(0, x′))Eucl+x1∂i
(
|ν(x′)|2

)
/2.

Since ν(x′) is orthogonal to the tangent space spanned by (∂2ϕ(0, x′), ..., ∂nϕ(0, x′))
and |ν(x′)| = 1, we get that g1i(x) = 0, which proves (5.11).

Fix now α ∈ R and consider Θ ∈ C∞(B̃2δ) such that Θ(0) = 0 and which will
be constructed later (independently of α) with additional needed properties. Fix

η ∈ C∞c (B̃2δ) such that η(x) = 1 for all x ∈ B̃δ. Define uα ∈ C∞(Ω \ {0}) as

(5.12) uα ◦ ϕ(x1, x
′) := η(x)x1|x|−α(1 + Θ(x)) for all (x1, x

′) ∈ B̃2δ \ {0}.

In particular, uα(x) > 0 for all x ∈ ϕ(B̃2δ) ∩ Ω and uα(x) = 0 on Ω \ ϕ(B̃2δ).

We claim that with a good choice of Θ, we have that

(5.13) −∆uα = α(n−α)
|x|2 uα +O

(
uα(x)
|x|

)
as x→ 0.

Indeed, using the chart ϕ, we have that

(−∆uα) ◦ ϕ(x1, x
′) = −∆g(uα ◦ ϕ)(x1, x

′)

for all (x1, x
′) ∈ B̃δ \ {0}. Here, −∆g is the Laplace operator associated to the

metric g, that is

−∆g := −gij
(
∂ij − Γkij∂k

)
,

where

Γkij :=
1

2
gkm (∂igjm + ∂jgim − ∂mgij) ,

and (gij) is the inverse of the matrix (gij). Here and in the sequel, we have adopted
Einstein’s convention of summation. It follows from (5.11) that

(−∆uα) ◦ ϕ = −∆Eucl(uα ◦ ϕ)−
∑
i,j≥2

(
gij − δij

)
∂ij(uα ◦ ϕ)

+gijΓ1
ij∂1(uα ◦ ϕ) +

∑
k≥2

gijΓkij∂k(uα ◦ ϕ).(5.14)

It follows from the definition (5.12) that there exists C > 0 such that for any
i, j, k ≥ 2, we have that

|∂ij(uα ◦ ϕ)(x1, x
′)| ≤ C|x1| · |x|−α−2 and |∂k(uα ◦ ϕ)(x1, x

′)| ≤ C|x1| · |x|−α−1,

for all (x1, x
′) ∈ B̃δ \ {0}. It follows from (5.10) that gij − δij = O(|x|) as x → 0.

Therefore, (5.14) yields that as x→ 0,

(−∆uα) ◦ ϕ = −∆Eucl(uα ◦ ϕ) + gijΓ1
ij∂1(uα ◦ ϕ) +O(x1|x|−α−1)(5.15)
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The definition of gij and the expression of ϕ(x1, x
′) then yield that as x→ 0,

gijΓ1
ij = −1

2

∑
i,j≥2

gij∂1gij

= −
∑
i,j≥2

gij(x1, x
′) ((∂iϕ(0, x′), ∂jν(x′)) + x1(∂i(x

′), ∂jν(x′)))

= −
∑
i,j≥2

gij(0, x′) (∂iϕ(0, x′), ∂jν(x′)) +O(|x1|)

= H(x′) +O(|x1|),

where H(x′) is the mean curvature of the (n− 1)−manifold ∂Ω at ϕ(0, x′) oriented
by the outer normal vector −ν(x′). Using the expression (5.12) and using the
smoothness of Θ, (5.15) yields

(−∆uα) ◦ ϕ =
(
−∆Eucl(x1|x|−α)

)
· (1 + Θ) + |x|−α (H(x′)(1 + Θ)− 2∂1Θ)

+O(x1|x|−α−1) as x→ 0.

We now define

Θ(x1, x
′) := e−

1
2x1H(x′) − 1 for all x = (x1, x

′) ∈ B̃2δ.

Clearly Θ(0) = 0 and Θ ∈ C∞(B̃2δ). Noting that

−∆Eucl
(
x1|x|−α

)
=
α(n− α)

|x|2
x1|x|−α,

we then get that as x→ 0,

(−∆uα) ◦ ϕ =
α(n− α)

|x|2
x1|x|−α · (1 + Θ) +O(x1|x|−α−1)(5.16)

With the choice that gij(0) = δij , we have that (∂iϕ(0))i=1,...,n is an orthonormal
basis of Rn, and therefore |ϕ(x)| = |x|(1 + O(|x|)) as x → 0. It then follows from
(5.16) and (5.12) that

(5.17) −∆uα =
α(n− α)

|x|2
uα +O(|x|−1uα) as x→ 0.

This proves (5.13). We now proceed with the construction of the sub- and super-
solutions. Let α ∈ {α−(γ), α+(γ)} in such a way that α(n − α) = γ and consider
β, λ ∈ R to be chosen later. It follows from (5.13) that(
−∆− γ +O(|x|τ )

|x|2

)
(uα + λuβ) =

λ(β(n− β)− γ)

|x|2
uβ

+
O(|x|τ )

|x|2
uα +O(|x|−1uα) +O(|x|τ−2uβ)

=
uβ
|x|2

(
λ(β(n− β)− γ)

+O(|x|τ ) +O(|x|τ+β−α) +O(|x|1+β−α)
)

as x → 0. Choose β such that α − τ < β < α in such a way that β 6= α−(γ) and
β 6= α+(γ). In particular, β > α− 1 and β(n− β)− γ 6= 0. We then have

(5.18)

(
−∆− γ +O(|x|τ )

|x|2

)
(uα+λuβ) =

uβ
|x|2

(
λ(β(n− β)− γ) +O(|x|τ+β−α))

)
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as x→ 0. Choose λ ∈ R such that λ(β(n−β)−γ) > 0. Finally, let uα,+ := uα+λuβ
and uα,− := uα − λuβ . They clearly satisfy (5.2) and (5.3), which completes the
proof of Proposition 5.1. �

6. Regularity and Hopf-type result for the operator Lγ

This section is devoted to the proof of the following key result.

Theorem 6.1 (Optimal regularity and Generalized Hopf’s Lemma). Fix γ < n2

4
and let f : Ω× R→ R be a Caratheodory function such that

|f(x, v)| ≤ C|v|
(

1 +
|v|2?(s)−2

|x|s

)
for all x ∈ Ω and v ∈ R.

Let u ∈ D1,2(Ω)loc,0 be a weak solution of

(6.1) −∆u− γ +O(|x|τ )

|x|2
u = f(x, u) in D1,2(Ω)loc,0

for some τ > 0. Then there exists K ∈ R such that

(6.2) lim
x→0

u(x)

d(x, ∂Ω)|x|−α−(γ)
= K.

Moreover, if u ≥ 0 and u 6≡ 0, we have that K > 0.

As mentioned in the introduction, this can be viewed as a generalization of Hopf’s
Lemma in the following sense: when γ = 0 (and then α−(γ) = 0), the classical
Nash-Moser regularity scheme yields u ∈ C1

loc, and when u ≥ 0, u 6≡ 0, Hopf’s
comparison principle yields ∂νu(0) < 0, which is a reformulation of (6.2) when
α−(γ) = 0.

The remainder of this section is devoted to the proof of Theorem 6.1. In this whole

section, by a slight abuse of notation, u 7→ −∆u− γ+O(|x|τ )
|x|2 u will denote an operator

u 7→ −∆u− γ+a(x)
|x|2 u where a ∈ C0(Ω \ {0}) such that a(x) = O(|x|τ ) as τ → 0.

We shall need the following two lemmas, which will be used frequently throughout
the paper.

Lemma 6.2. (Rigidity of solutions) Let u ∈ C2(Rn+\{0}) be a nonnegative function
such that

(6.3) −∆u− γ

|x|2
u = 0 in Rn+ ; u = 0 on ∂Rn+.

Suppose there exists α ∈ {α−(γ), α+(γ)} such that u(x) ≤ C|x|1−α, then there
exists λ ≥ 0 such that

u(x) = λx1|x|−α for all x ∈ Rn+.

We note that this lemma is only a first step in proving rigidity for solutions of
Lγu = 0 on Rn+. Indeed, the pointwise assumption above is not necessary as it
will be removed in Proposition 7.4, which will be a consequence of the classification
Theorem 7.1.

Proof of Lemma 6.2: We first assume that α := α−(γ) and prove that

(6.4) either u ≡ 0 or lim inf
|x|→+∞

u(x)

x1|x|−α−(γ)
> 0.
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Indeed suppose that the second situation does not hold, that is there exists (xi)i ∈
Rn+ such that

lim
i→+∞

|xi| = +∞ and lim
i→+∞

u(xi)

(xi)1|xi|−α−(γ)
= 0.

Define ri := |xi|, θi := xi
|xi| and ui(x) := r

α−(γ)−1
i u(rix) for all i and all x ∈ Rn+. It

follows from the hypothesis of the lemma that for all i,

−∆ui −
γ

|x|2
ui = 0 in Rn+ ; ui = 0 on ∂Rn+,

and 0 ≤ ui(x) ≤ C|x|1−α−(γ) for all x ∈ Rn+. It follows from elliptic theory that

there exists û ∈ C2(Rn+) such that ui → û in C2
loc(Rn+ \ {0}). In particular, we have

that

−∆û− γ

|x|2
û = 0 in Rn+ ; û ≥ 0 in Rn+, ; û = 0 on ∂Rn+.

Let θ := limi→+∞ θi. It follows from the convergence that û(θ) = 0 if θ ∈ Rn+, and
∂1û(θ) = 0 if θ ∈ ∂Rn+. Hopf’s maximum principle yields that û ≡ 0. In particular,
we get that

lim
i→+∞

sup
x∈∂Bri (0)

u(x)

x1|x|−α−(γ)
= 0.

For ε > 0, there exists i0 such that u(x) ≤ εx1|x|−α−(γ) for all x ∈ ∂Bri(0) and i ≥
i0. Since u− εx1|x|−α−(γ) is locally in D1,2 and (−∆− γ

|x|2 )(u− εx1|x|−α−(γ)) = 0,

it follows from the maximum principle (and coercivity) that u(x) ≤ εx1|x|−α−(γ)

for x ∈ Bri(0) with i ≥ i0. Letting i → +∞ yields u(x) ≤ εx1|x|−α−(γ) for all
x ∈ Rn+ and all ε > 0. Letting ε→ 0 yields u ≤ 0, and therefore u ≡ 0. This proves
the claim (6.4).

We now assume that u 6≡ 0. It then follows from (6.4) that there exists ε0 > 0
and R0 > 0 such that u(x) ≥ ε0x1|x|−α−(γ) for all |x| ≥ BR0(0). Applying again
the maximum principle on BR0

(0), we get that u(x) ≥ ε0x1|x|−α−(γ) for all x ∈ Rn+.
We have so far proved that

(6.5) u ≡ 0 or there exists ε0 > 0 such that u(x) ≥ ε0x1|x|−α−(γ) for all x ∈ Rn+.

Let now λ := max{k ≥ 0 such that u(x) ≥ kx1|x|−α−(γ) for all x ∈ Rn+}. Then

ū(x) := u(x) − λx1|x|−α−(γ) ≥ 0 satisfies (6.3). It then follows from (6.5) that
ū ≡ 0 or ū(x) ≥ ε0x1|x|−α−(γ) for all x ∈ Rn+ for some ε0 > 0. This second

case cannot happen since it would imply that u ≥ (λ + ε0)x1|x|−α−(γ), which is a
contradiction. Therefore ū ≡ 0 and the Proposition is proved when α = α−(γ).

To finish, it remains to consider the case where α = α+(γ). Here we define
ũ(x) := |x|2−nu(x/|x|2) to be the Kelvin transform of u. The function ũ then
satisfies (6.3) with α−(γ). It then follows from the first part of this proof that
ũ = λx1|x|−α−(γ). Coming back to the initial function u yields u = λx1|x|−α+(γ).
This completes the proof of Lemma 6.2. �

Lemma 6.3. Assume that u ∈ D1,2(Ω)loc,0 is a weak solution of

(6.6)

{
−∆u− γ+O(|x|τ )

|x|2 u = 0 in D1,2(Ω)loc,0
u = 0 on B2δ(0) ∩ ∂Ω,
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for some τ > 0. We fix δ > 0. Then there exists C1 > 0 such that

(6.7) |u(x)| ≤ C1d(x, ∂Ω)|x|−α−(γ) for x ∈ Ω ∩Bδ(0).

Moreover, if u > 0 in Ω, then there exists C2 > 0 such that

(6.8) u(x) ≥ C2d(x, ∂Ω)|x|−α−(γ) for x ∈ Ω ∩Bδ(0).

Proof of Lemma 6.3: First, we assume that u ∈ D1,2(Ω)loc,0, satisfies (6.27) and
u > 0 on Bδ(0) ∩ Ω. We claim that there exists C0 > 0 such that

(6.9)
1

C0

d(x, ∂Ω)

|x|α−(γ)
≤ u(x) ≤ C0

d(x, ∂Ω)

|x|α−(γ)
for all x ∈ Ω ∩Bδ(0).

Indeed, since u is smooth outside 0, it follows from Hopf’s Maximum principle that
there exists C1, C2 > 0 such that

(6.10) C1d(x, ∂Ω) ≤ u(x) ≤ C2d(x, ∂Ω) for all x ∈ Ω ∩ ∂Bδ(0).

Let uα−(γ),+ be the super-solution constructed in Proposition 5.1. It follows from
(6.10) and the asymptotics (5.3) of uα−(γ),+ that there exists C3 > 0 such that

u(x) ≤ C3uα−(γ),+(x) for all x ∈ ∂(Bδ(0) ∩ Ω).

Since u is a solution and uα−(γ),+ is a supersolution, both being in D1,2(Ω)loc,0,
it follows from the maximum principle (by choosing δ > 0 small enough so that
−∆ − (γ + O(|x|τ ))|x|−2 is coercive on Bδ(0) ∩ Ω) that u(x) ≤ C3uα−(γ),+(x) for
all x ∈ Bδ(0) ∩ Ω. In particular, it follows from the asymptotics (5.3) of uα−(γ),+

that there exists C4 > 0 such that

u(x) ≤ C4d(x, ∂Ω)|x|−α−(γ) for all x ∈ Ω ∩Bδ(0).

Arguing similarly with the lower-bound in (6.10) and the subsolution uα−(γ),−, we
get the existence of C0 > 0 such that (6.9) holds. This yields Lemma 6.3 for u > 0.

Now we deal with the case when u is a sign-changing solution for (6.6). We then
define u1, u2 : Bδ(0) ∩ Ω→ R be such that{

−∆u1 − γ+O(|x|τ )
|x|2 u1 = 0 in Bδ(0) ∩ Ω

u1(x) = max{u(x), 0} on ∂(Bδ(0) ∩ Ω).{
−∆u2 − γ+O(|x|τ )

|x|2 u2 = 0 in Bδ(0) ∩ Ω

u2(x) = max{−u(x), 0} on ∂(Bδ(0) ∩ Ω).

The existence of such solutions is ensured by choosing δ > 0 small enough so that
the operator −∆ − (γ + O(|x|τ ))|x|−2 is coercive on Bδ(0) ∩ Ω. In particular,
u1, u2 ∈ D1,2(Ω)loc,0, u1, u2 ≥ 0 and u = u1 − u2. It follows from the maximum
principle that for all i, either ui ≡ 0 or ui > 0. The first part of the proof yields
the upper bound for u1, u2. Since u = u1 − u2, we then get (6.7). This ends the
proof of Lemma 6.3. �

This lemma allows to construct sub- and super solutions with Dirichlet boundary
conditions on any small smooth domain.



30 NASSIF GHOUSSOUB AND FRÉDÉRIC ROBERT

Proposition 6.4. Let Ω be a smooth bounded domain of Rn, and let W be a smooth
domain of Rn such that for some r > 0 small enough, we have

(6.11) Br(0) ∩ Ω ⊂W ⊂ B2r(0) ∩ Ω and Br(0) ∩ ∂W = Br(0) ∩ ∂Ω.

Fix γ < n2

4 , 0 < τ ≤ 1 and β ∈ R such that α+(γ)−τ < β < α+(γ) and β 6= α−(γ).

Then, up to choosing r small enough, there exists u
(d)
α+(γ),+, u

(d)
α+(γ),− ∈ C

∞(W \{0})
such that

(6.12)


u

(d)
α+(γ),+, u

(d)
α+(γ),+ = 0 in ∂W \ {0}

−∆u
(d)
α+(γ),+ −

γ+O(|x|τ )
|x|2 u

(d)
α+(γ),+ > 0 in W

−∆u
(d)
α+(γ),− −

γ+O(|x|τ )
|x|2 u

(d)
α+(γ),− < 0 in W.

Moreover, we have as x→ 0, x ∈ Ω that

(6.13) u
(d)
α+(γ),+(x) =

d(x, ∂Ω)

|x|α+(γ)
(1 +O(|x|α−β))

and

(6.14) u
(d)
α+(γ),−(x) =

d(x, ∂Ω)

|x|α+(γ)
(1 +O(|x|α−β)).

Proof of Proposition 6.4: Take η ∈ C∞(Rn) such that η(x) = 0 for x ∈ Bδ/4(0) and
η(x) = 1 for x ∈ Rn \Bδ/3(0). Define on W the function

f(x) :=

(
−∆− γ +O(|x|τ )

|x|2

)
(ηuα+(γ),+),

where uα+(γ),+ is given by Proposition 5.1. Note that f vanishes around 0 and that

it is in C∞(W ). Let v ∈ D1,2(W ) be such that{
−∆v − γ+O(|x|τ )

|x|2 v = f in W

v = 0 on ∂W.

Note that for r > 0 small enough, −∆− (γ + O(|x|τ ))|x|−2 is coercive on W , and
therefore, the existence of v is ensured for small r. Define

u
(d)
α+(γ),+ := uα+(γ),+ − ηuα+(γ),+ + v.

The properties of W and the definition of η and v yield{
u

(d)
α+(γ),+ = 0 in ∂W \ {0}

−∆u
(d)
α+(γ),+ −

γ+O(|x|τ )
|x|2 u

(d)
α+(γ),+ > 0 in W.

Moreover, since −∆v − (γ +O(|x|τ ))|x|−2v = 0 around 0 and v ∈ D1,2(W ), it fol-
lows from Lemma 6.3 that there exists C > 0 such that |v(x)| ≤ Cd(x,W )|x|−α−(γ)

for all x ∈ W . Then (6.13) follows from the asymptotics (5.3) of uα+(γ),+ and the

fact that α−(γ) < α+(γ). We argue similarly for u
(d)
α+(γ),−. This proves Proposition

6.4. �

Lemma 6.5. Let f : Ω × R → R be as in the statement of Theorem 6.1, and
consider u ∈ D1,2(Ω)loc,0 such that (6.1) holds. Assume there exists C > 0 and
α ∈ {α+(γ), α−(γ)} such that

(6.15) |u(x)| ≤ C|x|1−α for x→ 0, x ∈ Ω.
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If f 6≡ 0, we assume that α = α−(γ).

(1) Then, there exists C1 > 0 such that

(6.16) |∇u(x)| ≤ C1|x|−α as x→ 0, x ∈ Ω.

(2) If limx→0 |x|α−1u(x) = 0, then limx→0 |x|α|∇u(x)| = 0. Moreover, if u > 0,
then there exists l ≥ 0 such that

(6.17) lim
x→0

|x|αu(x)

d(x, ∂Ω)
= l and lim

x→0, x∈∂Ω
|x|α|∇u(x)| = l

Proof of Lemma 6.5: Assume that (6.15) holds. As a first remark, we claim that
we can assume that for some τ > 0,

(6.18) −∆u− γ +O(|x|τ )

|x|2
u = 0 in D1,2(Ω)loc,0.

Indeed, this is clear if f ≡ 0. If f 6≡ 0, since α = α−(γ), we have as x→ 0,

|f(x, u)| ≤ C|u|
(

1 + |x|−s|x|−(2?(s)−2)(α−(γ)−1)
)

≤ C |u|
|x|2

(
|x|2 + |x|(2

?(s)−2)(n2−α−(γ))
)

= O

(
|x|τ

′ u

|x|2

)
for some τ ′ > 0. Plugging this inequality into (6.1) and replacing τ by min{τ, τ ′}
yields (6.18).

In the sequel, we shall write ω(x) := |x|αu(x)
d(x,∂Ω) for x ∈ Ω. Let (xi)i ∈ Ω be such that

(6.19) lim
i→+∞

xi = 0

Choose a chart ϕ as in (5.5) such that dϕ0 = IdRn . For any i, define Xi ∈ Rn+
such that xi = ϕ(Xi), ri := |Xi| and θi := Xi

|Xi| . In particular, limi→+∞ ri = 0 and

|θi|=1 for all i. Set

ũi(x) := rα−1
i u(ϕ(rix)) for all i and x ∈ BR(0) ∩ Rn+ ; x 6= 0.

Equation (6.18) then rewrites

(6.20)

{
−∆gi ũi −

γ+o(1)
|x|2 ũi = 0 in BR(0) ∩ Rn+

ũi = 0 in BR(0) ∩ ∂Rn+,

where gi(x) := (ϕ?Eucl)(rix) is a metric that goes to Eucl on every compact subset
of Rn as i→∞. Here, o(1)→ 0 in C0

loc(Rn+ \{0}). It follows from (6.15) and (6.19)
that

(6.21) |ũi(x)| ≤ C|x|1−α for all i and all x ∈ BR(0) ∩ Rn+,

It follows from elliptic theory, that there exists ũ ∈ C2(Rn+ \ {0}) such that ũi → ũ

in C1
loc(Rn+ \ {0}). By letting θ := limi→+∞ θi (|θ| = 1), we then have that for any

j = 1, ..., n, ∂j ũi(θi)→ ∂j ũ(θ) as i→ +∞, which rewrites

(6.22) lim
i→+∞

|xi|α∂ju(xi) = ∂j ũ(θ) for all j = 1, ..., n.

We now prove (6.16). For that, we argue by contradiction and assume that there
exists a sequence (xi)i ∈ Ω that goes to 0 as i→ +∞ and such that |xi|α|∇u(xi)| →
+∞ as i→ +∞. It then follows from (6.22) that |xi|α|∇u(xi)| = O(1) as i→ +∞.
A contradiction to our assumption, which proves (6.16). The case when |x|αu(x)→
0 as x→ 0 goes similarly.
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Now we consider the case when u > 0, which implies that ũi ≥ 0 and ũ ≥ 0. We
let l ∈ [0,+∞] and (xi)i ∈ Ω be such that

(6.23) lim
i→+∞

xi = 0 and lim
i→+∞

ω(xi) = l.

We claim that

(6.24) 0 ≤ l < +∞ and lim
x→0

ω(x) = l ∈ [0,+∞).

Indeed, using the notations above, we get that

lim
i→+∞

ũi(θi)

(θi)1
= l.

The convergence of ũi in C1
loc(Rn+ \ {0}) then yields l < +∞. Passing to the limit

as i→ +∞ in (6.20), we get
−∆Euclũ−

γ
|x|2 ũ = 0 in Rn+

ũ ≥ 0 in Rn+
ũ = 0 in ∂Rn+.

The limit (6.23) can be rewritten as ũ(θ) = lθ1 if θ ∈ Rn+ and ∂1ũ(θ) = l if θ ∈ ∂Rn+.
The rigidity Lemma 6.2 then yields

ũ(x) = lx1|x|−α for all x ∈ Rn+.
In particular, since the differential of ϕ at 0 is the identity map, it follows from the
convergence of ũi to ũ locally in C1 that

(6.25) lim
i→+∞

sup
x∈Ω∩∂Bri (0)

u(x)

d(x, ∂Ω)|x|−α
= sup
x∈Rn+∩∂B1(0)

ũ(x)

x1|x|−α
= l

and

(6.26) lim
i→+∞

inf
x∈Ω∩∂Bri (0)

u(x)

d(x, ∂Ω)|x|−α
= inf
x∈Rn+∩∂B1(0)

ũ(x)

x1|x|−α
= l.

We distinguish two cases:

Case 1: α = α+(γ). Let W and u
(d)
α+(γ),− be as in Proposition 6.4, and fix ε > 0.

Note that the existence and properties of u
(d)
α+(γ),− do not use the Lemma that is

currently proved. It follows from (6.26) that there exists i0 such that for i ≥ i0, we
have that

u(x) ≥ (l − ε)u(d)
α+(γ),−(x) for all x ∈W ∩ ∂Bri(0).

Since (−∆ − (γ + O(|x|τ ))|x|−2)(u − (l − ε)u(d)
α+(γ),−) ≥ 0 in W \ Bri(0) and since

uα+(γ),− vanishes on ∂W \ {0}, it follows from the comparison principle that

u(x) ≥ (l − ε)u(d)
α+(γ),−(x) for all x ∈W \ ∂Bri(0).

Letting i→ +∞ yields

u(x) ≥ (l − ε)u(d)
α+(γ),−(x) for all x ∈W \ {0}.

It follows from this inequality and the asymptotics for u
(d)
α+(γ),− that

lim inf
x→0

ω(x) ≥ l.

Note that this is valid for any l ∈ R satisfying (6.23). By taking l := lim supx→0 ω(x),
we then get that limx→0 ω(x) = l.
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Case 2: α = α−(γ). Consider the super- and sub-solutions uα−(γ),+, uα−(γ),−
constructed in Proposition 5.1. It follows from (6.25) and (6.26) that for ε > 0,
there exists i0 such that for i ≥ i0, we have

(l − ε)uα−(γ),−(x) ≤ u(x) ≤ (l + ε)uα−(γ),+(x) for all x ∈ Ω ∩ ∂Bri(0).

Since the operator −∆− (γ +O(|x|τ ))|x|−2 is coercive on Ω ∩Bri(0) and that the

functions we consider are in D1,2
loc,0(Ω∩Bri(0)) (i.e., they are variational), it follows

from the maximum principle that

(l − ε)uα−(γ),−(x) ≤ u(x) ≤ (l + ε)uα−(γ),+(x) for all x ∈ Ω ∩Bri(0).

Using the asymptotics (5.3) of the sub- and super-solution, we get that

(l − ε) ≤ lim inf
x→0

u(x)

d(x, ∂Ω)|x|−α−(γ)
≤ lim sup

x→0

u(x)

d(x, ∂Ω)|x|−α−(γ)
≤ (l + ε).

Letting ε → 0 yields limx→0 ω(x) = l ≥ 0. This ends Case 2 and completes the
proof of (6.24).

The case u > 0 is a consequence of (6.24) and (6.22) (note that for the second
limit, xi ∈ ∂Ω rewrites as θi ∈ ∂Rn+ and therefore (θi)1 = 0). This ends the proof
of Lemma 6.5. �

The following lemma is essentially Theorem 6.1 in the case of linear equations of
the form Lγu = a(x)u.

Lemma 6.6. Assume that u ∈ D1,2(Ω)loc,0 is a weak solution of

(6.27)

{
−∆u− γ+O(|x|τ )

|x|2 u = 0 in D1,2(Ω)loc,0
u = 0 on B2δ(0) ∩ ∂Ω,

for some τ > 0 with γ < n2

4 . Then, there exists ` ∈ R such that

lim
x→0

u(x)

d(x, ∂Ω)|x|−α−(γ)
= `.

Proof of Lemma 6.6: First, we assume that u ∈ D1,2(Ω)loc,0, satisfies (6.27) and
u > 0 on Bδ(0) ∩Ω. It then follows from Lemma 6.3 that there exists C0 > 0 such
that

1

C0

d(x, ∂Ω)

|x|α−(γ)
≤ u(x) ≤ C0

d(x, ∂Ω)

|x|α−(γ)
for all x ∈ Ω ∩Bδ(0).

Since u > 0, this estimate coupled with Lemma 6.5 yields Lemma 6.6 for u > 0.

Now we deal with the case when u is a sign-changing solution for (6.27). We define
u1, u2 : Bδ(0)∩Ω→ R≥0 as in the proof of Lemma 6.3. The first part of the proof
yields that there exist l1, l2 ≥ 0 such that

lim
x→0

u1(x)

d(x, ∂Ω)|x|−α−(γ)
= l1 and lim

x→0

u2(x)

d(x, ∂Ω)|x|−α−(γ)
= l2.

Therefore, we get that

lim
x→0

u(x)

d(x, ∂Ω)|x|−α−(γ)
= l1 − l2 ∈ R.

This completes the proof of Lemma 6.6. �
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Proof of Theorem 6.1: We let here u ∈ D1,2(Ω)loc,0 be a solution to (6.1), that is

(6.28) −∆u− γ +O(|x|τ )

|x|2
u = f(x, u) weakly in D1,2(Ω)loc,0

for some τ > 0. We shall first use the classical DeGiorgi-Nash-Moser iterative
scheme (see Gilbarg-Trudinger [28], and Hebey [32] for expositions in book form).
We skip most of the computations and refer to Ghoussoub-Robert (Proposition A.1
of [24]) for the details. We fix δ0 > 0 such that (i) there exists η̃ ∈ C∞(B4δ0(0))
such that η̃(x) = 1 for x ∈ B2δ0(0), (ii) η̃u ∈ D1,2(Ω) and (iii) u is a weak solution
to (6.28) when tested on η̃ϕ with ϕ ∈ D1,2(Ω) (see the definition of weak solution
given in the introduction).

The proof goes through four steps.

Step 1: Let β ≥ 1 be such that 4β
(β+1)2 >

4
n2 γ. Assume that u ∈ Lβ+1(Ω∩Bδ0(0)).

We claim that

(6.29) u ∈ L
n
n−2 (β+1)(Ω ∩Bδ0(0)).

Indeed, fix β ≥ 1, L > 0, and define GL, HL : R→ R as

(6.30) GL(t) :=

 |t|
β−1t if |t| ≤ L

βLβ−1(t− L) + Lβ if t ≥ L
βLβ−1(t+ L)− Lβ if t ≤ −L

and

(6.31) HL(t) :=


|t|

β−1
2 t if |t| ≤ L

β+1
2 L

β−1
2 (t− L) + L

β+1
2 if t ≥ L

β+1
2 L

β−1
2 (t+ L)− L

β+1
2 if t ≤ −L

As easily checked,

(6.32) 0 ≤ tGL(t) ≤ HL(t)2 and G′L(t) =
4β

(β + 1)2
(H ′L(t))2

for all t ∈ R and all L > 0. We fix δ > 0 small that will be chosen later. We let
η ∈ C∞c (Rn) be such that η(x) = 1 for x ∈ Bδ/2(0) and η(x) = 0 for x ∈ Rn \Bδ(0).

Multiplying equation (6.28) with η2GL(u) ∈ D1,2(Ω), we get that∫
Ω

(∇u,∇(η2GL(u))) dx −
∫

Ω

γ +O(|x|τ )

|x|2
η2uGL(u) dx

=

∫
Ω

f(x, u)η2GL(u) dx.(6.33)

Integrating by parts, and using formulae (6.30) to (6.32) above (see [24] for details)
yield∫

Ω

(∇u,∇(η2GL(u))) dx =
4β

(β + 1)2

∫
Ω

(
|∇(ηHL(u))|2 − η(−∆)ηHL(u)2

)
dx

+

∫
Ω

−∆(η2)JL(u) dx(6.34)
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where JL(t) :=
∫ t

0
GL(τ) dτ . This identity and (6.33) yield

4β

(β + 1)2

∫
Ω

|∇(ηHL(u))|2 dx −
∫

Ω

γ +O(|x|τ )

|x|2
η2uGL(u) dx

≤
∫

Ω

| −∆(η2)| · |JL(u)| dx

+C(β, δ)

∫
Ω∩Bδ(0)

|HL(u)|2 dx

+C

∫
Ω

|u|2?(s)−2

|x|s
(ηHL(u))2 dx.(6.35)

Hölder’s inequality and the Sobolev constant given in (1.12) yield∫
Ω

|u|2?(s)−2

|x|s
(ηHL(u))2 dx

≤

(∫
Ω∩Bδ(0)

|u|2?(s)

|x|s
dx

) 2?(s)−2
2?(s) (∫

Ω

|ηHL(u)|2?(s)

|x|s
dx

) 2
2?(s)

≤

(∫
Ω∩Bδ(0)

|u|2?(s)

|x|s
dx

) 2?(s)−2
2?(s)

· 1

µ0,s(Ω)

∫
Ω

|∇(ηHL(u))|2 dx.

Plugging this estimate into (6.35) and defining γ+ := max{γ, 0} yields

4β

(β + 1)2

∫
Ω

|∇(ηHL(u))|2 dx − (γ+ + Cδτ )

∫
Ω

(ηHL(u))2

|x|2
dx

≤ C(β, δ)

∫
Ω∩Bδ(0)

(
|HL(u)|2 + |JL(u)|

)
dx

+α(δ)

∫
Ω

|∇(ηHL(u))|2 dx,

where

α(δ) := C

(∫
Ω∩Bδ(0)

|u|2?(s)

|x|s
dx

) 2?(s)−2
2?(s)

· 1

µ0,s(Ω)
,

so that
lim
δ→0

α(δ) = 0.

It follows from (4.5) that

n2

4

∫
Ω

(ηHL(u))2

|x|2
dx ≤ (1 + ε(δ))

∫
Ω

|∇(ηHL(u))|2 dx,

where limδ→0 ε(δ) = 0. Therefore, we get that(
4β

(β + 1)2
− α(δ)− (γ+ + Cδτ )

4

n2
(1 + ε(δ))

)∫
Ω

|∇(ηHL(u))|2 dx

≤ C(β, δ)

∫
Ω∩Bδ(0)

(
|HL(u)|2 + |JL(u)|

)
dx ≤ C(β, δ)

∫
Bδ(0)∩Ω

|u|β+1 dx.

Let δ ∈ (0, δ0) be such that

4β

(β + 1)2
− α(δ)− (γ+ + Cδτ )

4

n2
(1 + ε(δ)) > 0.
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This is possible since 4β
(β+1)2 >

4
n2 γ. Using Sobolev’s embedding, we then get that(∫

Bδ/2(0)∩Ω

|HL(u)|2
?

dx

) 2
2?

≤
(∫

Rn
|ηHL(u)|2

?

dx

) 2
2?

≤ µ0,0(Ω)−1

∫
Ω

|∇(ηHL(u))|2 dx

≤ C(β, δ, γ)

∫
Bδ(0)∩Ω

|u|β+1 dx.

Since u ∈ Lβ+1(Bδ0(0) ∩ Ω), let L → +∞ and use Fatou’s Lemma to obtain

that u ∈ L 2?

2 (β+1)(Bδ/2(0) ∩ Ω). The standard iterative scheme then yields that

u ∈ C1(Ω∩Bδ0(0) \ {0}). Therefore u ∈ L 2?

2 (β+1)(Bδ0(0) ∩Ω), which proves claim
(6.29).

Step 2: We now show that

if γ ≤ 0, then u ∈ Lp(Ω ∩Bδ(0)) for all p ≥ 1,(6.36)

if γ > 0, then u ∈ Lp(Ω ∩Bδ(0)) for all p ∈
(

1,
n

n− 2

n

α−(γ)

)
.(6.37)

The case γ ≤ 0 is standard, so we only consider the case where γ > 0. Fix p ≥ 2
and set β := p− 1. we have

4β

(β + 1)2
>

4

n2
γ ⇔ n

α+(γ)
< p <

n

α−(γ)
.

Since α+(γ) > n/2 and p ≥ 2, then

4β

(β + 1)2
>

4

n2
γ ⇔ p <

n

α−(γ)
.

Therefore, it follows from Step 1 that if u ∈ Lp(Ω ∩ Bδ0), with p < n/α−(γ), then

u ∈ L
n
n−2p(Ω ∩Bδ0). Since u ∈ L2(Ω ∩Bδ0), (6.37) follows.

Step 3: We claim that for any λ > 0, then

(6.38) |x|n−2
2 |u(x)| = O(|x|

n−2
n (n2−max{α−(γ),0}−λ) as x→ 0.

Take p ∈
(

2?, n2

(n−2)α−(γ)

)
if γ > 0, and p > 2? if γ ≤ 0. This is possible since

2? = 2n/(n − 2) and α−(γ) < n/2. We fix a sequence (εi)i ∈ (0,+∞) such that
limi→+∞ εi = 0 and we fix a chart ϕ as in (5.5) to (5.10). For any i ∈ N, we define

ui(x) := ε
n
p

i u(ϕ(εix)) for all x ∈ B̃δ/εi .
Equation (6.28) then rewrites

(6.39) −∆giui −
ε2i (γ +O(ετi |x|τ ))

|ϕ(εix)|2
ui = fi(x, ui) ; ui = 0 on ∂Rn+ ∩ B̃δ/εi

where gi(x) := ϕ?Eucl(εix) and

|fi(x, ui)| ≤ Cε2i |ui|+ Cε
(2?(s)−2)(n−2

2 −
n
p )

i |x|−s|ui|2
?(s)−1

in B̃δ/εi . We fix R > 0 and we define ωR :=
(
B̃R \ B̃R−1

)
∩ Rn+. With our choice

of p above and using (6.37), we get that

(6.40) ‖ui‖Lp(ωR) ≤ C,
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and

(6.41) |fi(x, ui)| ≤ CR|ui|+ CR|ui|2
?(s)−1 for all x ∈ ωR.

Fix q ≥ p > 2?. It follows from elliptic regularity that

‖ui‖Lq(ωR) ≤ C ⇒


‖ui‖Lq′ (ωR/2) ≤ C ′ if q < n

2 (2?(s)− 1)

‖ui‖Lr(ωR/2) ≤ C ′ for all r ≥ 1 if q = n
2 (2?(s)− 1)

‖ui‖L∞(ωR/2) ≤ C ′ if q > n
2 (2?(s)− 1)

where 1
q′ = 2?(s)−1

q − 2
n and the constants C,C ′ are uniform with respect to i. It

then follows from the standard bootstrap iterative argument and the initial bound
(6.40) that ‖ui‖L∞(ωR/4) ≤ C ′. Taking R > 0 large enough and going back to the
definition of ui, we get that for all i ∈ N,

|x|
n
p |u(x)| ≤ C for all x ∈ Ω ∩B2εi(0) \Bεi/2(0)

Since this holds for any sequence (εi)i, we get that |x|
n
p |u(x)| ≤ C around 0 for any

2? < p < n2

(n−2)α−(γ) when γ > 0. Letting p go to n2

(n−2)α−(γ) yields (6.38) when

γ > 0. For γ ≤ 0, we let p→ +∞. This ends Step 3.

To finish the proof of Theorem 6.1, we rewrite equation (6.28) as

−∆u− a(x)

|x|2
u = 0

where

a(x) = γ +O(|x|τ ) +O(|x|2) +O
(
|x|2−s|u|2

?(s)−2
)

= γ +O(|x|τ ) +O(|x|2) +O
(
|x|

n−2
2 |u(x)|

)2?(s)−2

for all x ∈ Ω. Since α−(γ) < n
2 , it then follows from (6.38) that there exists τ ′ > 0

such that a(x) = γ + O(|x|τ ′) as x → 0. Therefore we are back to the linear case
in Lemma 6.6 and we are done. �

Here are a few consequences of Theorem 6.1.

Corollary 6.7. Suppose γ < γH(Ω) and consider the first eigenvalue of the oper-
ator Lγ , that is

λ1(Ω, γ) := inf
u∈D1,2(Ω)\{0}

∫
Ω

(
|∇u|2 − γ

|x|2u
2
)
dx∫

Ω
u2 dx

> 0,

and let u0 ∈ D1,2(Ω) \ {0} be a minimizer. Then, there exists A 6= 0 such that

u0(x) ∼x→0 A
d(x, ∂Ω)

|x|α−(γ)
.

Proof of Corollary 6.7: The existence of a u0 that doesn’t change sign is standard.
The Euler-Lagrange equation is −∆u− γ

|x|2u = ku for some k ∈ R. We then apply

Theorem 6.1. �

Corollary 6.8. Suppose u ∈ D1,2(Rn+), u ≥ 0, u 6≡ 0 is a weak solution of

−∆u− γ

|x|2
u =

u2?−1

|x|s
in Rn+.
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Then, there exist K1,K2 > 0 such that

(6.42) u(x) ∼x→0 K1
x1

|x|α−(γ)
and u(x) ∼|x|→+∞ K2

x1

|x|α+(γ)
.

Proof of Corollary 6.8: Theorem 6.1 yields the behavior when x → 0. The Kelvin
transform û(x) := |x|2−nu(x/|x|2) is a solution to the same equation in D1,2(Rn+),
and its behavior at 0 is given by Theorem 6.1. Going back to u yields the behavior
at ∞. �

7. A classification of singular solutions of Lγu = a(x)u

In this section we describe the profile of any positive solution –variational or
not– of linear equations involving Lγ . Here is the main result of this section.

Theorem 7.1. Let u ∈ C2(Bδ(0) ∩ (Ω \ {0})) be such that

(7.1)

 −∆u− γ+O(|x|τ )
|x|2 u = 0 in Ω ∩Bδ(0)

u > 0 in Ω ∩Bδ(0)
u = 0 on (∂Ω ∩Bδ(0)) \ {0}.

Then, there exists K > 0 such that

either u(x) ∼x→0 K
d(x, ∂Ω)

|x|α−(γ)
or u(x) ∼x→0 K

d(x, ∂Ω)

|x|α+(γ)
.

In the first case, the solution u ∈ D1,2(Ω)loc,0 is a variational solution to (7.1).

It is worth noting that Pinchover [43] proved that the quotient of any two positive
solutions to (7.1) has a limit at 0.
The proof will require the following two lemmas. The first gives a Harnack-type
inequality.

Proposition 7.2. Let Ω be a smooth bounded domain of Rn, and let a ∈ L∞(Ω)
be such that ‖a‖∞ ≤ M for some M > 0. Assume U is an open subset of Rn and
consider u ∈ C2(U ∩ Ω) to be a solution of −∆gu+ au = 0 in U ∩ Ω

u ≥ 0 in U ∩ Ω
u = 0 on U ∩ ∂Ω.

Here g is a smooth metric on U . If U ′ ⊂⊂ U is such that U ′ ∩Ω is connected, then
there exists C > 0 depending only on Ω, U ′,M and g such that

(7.2)
u(x)

d(x, ∂Ω)
≤ C u(y)

d(y, ∂Ω)
for all x, y ∈ U ′ ∩ Ω.

Proof of Proposition 7.2: We first prove a local result. The global result will be the
consequence of a covering of U ′. Fix x0 ∈ ∂Ω. For δ > 0 small enough, there exists
a smooth open domain W such that

(7.3) Bδ(x0) ∩ Ω ⊂W ⊂ B2δ(x0) ∩ Ω and Bδ(x0) ∩ ∂W = Bδ(x0) ∩ ∂Ω.

Let G be the Green’s function of −∆g + a with Dirichlet boundary condition on
W , then its representation formula reads as

(7.4) u(x) =

∫
∂W

u(σ) (−∂ν,σG(x, σ)) dσ =

∫
∂W\∂Ω

u(σ) (−∂ν,σG(x, σ)) dσ
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for all x ∈W , where ∂ν,σG(x, σ) is the normal derivative of y 7→ G(x, y) at σ ∈ ∂W .
Estimates of the Green’s function (See Robert [46] and Ghoussoub-Robert [24])
yield the existence of C > 0 such that for all x ∈W and σ ∈ ∂W ,

1

C

d(x, ∂W )

|x− σ|n
≤ −∂ν,σG(x, σ) ≤ C d(x, ∂W )

|x− σ|n

It follows from (7.3) that there exists C(δ) > 0 such that for all x ∈ Bδ/2(x0)∩Ω ⊂
W and σ ∈ ∂W \ ∂Ω,

1

C(δ)
d(x, ∂W ) ≤ −∂ν,σG(x, σ) ≤ C(δ)d(x, ∂W )

Since u vanishes on ∂Ω, it then follows from (7.4) that for all x ∈ Bδ/2(x0) ∩ Ω,

1

C(δ)
d(x, ∂W )

∫
∂W

u(σ) dσ ≤ u(x) ≤ C(δ)d(x, ∂W )

∫
∂W

u(σ) dσ.

It is easy to check, that under the assumption (7.3), we have that d(x, ∂Ω) =
d(x, ∂W ). Therefore, we have for all x ∈ Bδ/2(x0) ∩ Ω,

1

C(δ)

∫
∂W

u(σ) dσ ≤ u(x)

d(x, ∂Ω)
≤ C(δ)

∫
∂W

u(σ) dσ

These lower and upper bounds being independent of x, we get inequality (7.2) for
any x, y ∈ Bδ/2(x0) ∩ Ω.

The general case is a consequence of a covering of U ′ ∩ Ω by finitely many balls.
Note that for balls intersecting ∂Ω, we apply the preceding result, while for balls
not intersecting ∂Ω, we apply the classical Harnack inequality. This completes the
proof of Proposition 7.2. �

Proof of Theorem 7.1: Let u be a solution of (7.1) as in the statement of Theorem
7.1. We claim that

(7.5) u(x) = O(d(x, ∂Ω)|x|−α+(γ)) for x→ 0, x ∈ Ω.

Indeed, otherwise we can assume that

(7.6) lim sup
x→0

u(x)

d(x, ∂Ω)|x|−α+(γ)
= +∞.

In particular, there exists (xk)k ∈ Ω such that for all k ∈ N,

(7.7) lim
k→+∞

xk = 0 and
u(xk)

d(xk, ∂Ω)|xk|−α+(γ)
≥ k,

We claim that there exists C > 0 such that

(7.8) u(x)

d(x,∂Ω)|x|−α+(γ) ≥ Ck for all x ∈ Ω ∩ ∂Brk(0), with rk := |xk| → 0.

We prove the claim by using the Harnack inequality (7.2): First take the chart ϕ
at 0 as in (5.5), and define

uk(x) := u ◦ ϕ(rkx) for x ∈ Rn+ ∩B3(0) \ {0}.

Equation (7.1) rewrites

(7.9) −∆gkuk + akuk = 0 in Rn+ ∩B3(0) \ {0},
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with ak(x) := −r2
k
γ+O(rτk |x|

τ )
|ϕ(rkx)|2 . In particular, there exists M > 0 such that |ak(x)| ≤

M for all x ∈ Rn+ ∩ B3(0) \ B1/3(0). Since uk ≥ 0, the Harnack inequality (7.2)
yields the existence of C > 0 such that

(7.10)
uk(y)

y1
≥ Cuk(x)

x1
for all x, y ∈ Rn+ ∩B2(0) \B1/2(0).

Let x̃k ∈ Rn+ be such that xk = ϕ(rkx̃k). In particular, |x̃k| = 1 + o(1) as k → +∞.
It then follows from (7.7), (7.9) and (7.10) that

u ◦ ϕ(rky)

d(ϕ(rky), ∂Ω)
≥ C · k for all y ∈ Rn+ ∩B2(0) \B1/2(0).

In particular, (7.8) holds.

We let now W be a smooth domain such that (6.11) holds for r > 0 small enough.

Take the super-solution u
(d)
α+(γ),− defined in Proposition 6.4. We have that

u(x) ≥ C · k
2

u
(d)
α+(γ),−(x) for all x ∈W ∩ ∂Brk(0).

Since u
(d)
α+(γ),− vanishes on ∂W , we have

u(x) ≥ C · k
2

u
(d)
α+(γ),−(x) for all x ∈ ∂(W ∩Brk(0)).

Moreover, we have that

−∆u
(d)
α+(γ),− −

γ+O(|x|τ )
|x|2 u

(d)
α+(γ),− < 0 = −∆u− γ+O(|x|τ )

|x|2 u on W .

Up to taking r even smaller, it follows from the coercivity of the operator and the
maximum principle that

(7.11) u(x) ≥ C · k
2

u
(d)
α+(γ),−(x) for all x ∈W ∩Brk(0).

For any x ∈ W , we let k0 ∈ N such that rk < |x| for all k ≥ k0. It then follows

from (7.11) that u(x) ≥ C·k
2 u

(d)
α+(γ),−(x) for all k ≥ k0. Letting k → +∞ yields that

u
(d)
α+(γ),−(x) goes to zero for all x ∈ W . This is a contradiction with (6.14). Hence

(7.6) does not hold, and therefore (7.5) holds.
A straightforward consequence of (7.5) and Lemma 6.5 is that there exists l ∈ R

such that

(7.12) lim
x→0

u(x)

d(x, ∂Ω)|x|−α+(γ)
= l.

We now show the following lemma:

Lemma 7.3. If limx→0
u(x)

d(x,∂Ω)|x|−α+(γ) = 0, then u ∈ D1,2(Ω)loc,0 and there exists

K > 0 such that u(x) ∼x→0 K
d(x,∂Ω)

|x|α−(γ) .

Proof of Lemma 7.3: We shall use Theorem 6.1. Take W as in (6.11) and let
η ∈ C∞(Rn) such that η(x) = 0 for x ∈ Bδ/4(0) and η(x) = 1 for x ∈ Rn \Bδ/3(0).
Define

f(x) :=
(
−∆− γ+O(|x|τ )

|x|2

)
(ηu) for x ∈W .
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The function f ∈ C∞(W ) and vanishes around 0. Let v ∈ D1,2(Ω) be such that{
−∆v − γ+O(|x|τ )

|x|2 v = f in W

v = 0 on ∂W.

Note again that for r > 0 small enough, −∆− (γ+O(|x|τ ))|x|−2 is coercive on W ,
and therefore, the existence of v is ensured for small r. Define

ũ := u− ηu+ v.

The properties of W and the definition of η and v yield{
−∆ũ− γ+O(|x|τ )

|x|2 ũ = 0 in W

ũ = 0 in ∂W \ {0}.

Moreover, since −∆v−(γ+O(|x|τ ))|x|−2v = 0 around 0 and v ∈ D1,2(W ), it follows
from Theorem 6.1 that there exists C > 0 such that |v(x)| ≤ Cd(x,W )|x|−α−(γ)

for all x ∈W . Therefore, we have that

(7.13) lim
x→0

ũ(x)

d(x, ∂Ω)|x|−α+(γ)
= 0.

It then follows from Lemma 6.5 that

(7.14) lim
x→0
|x|α+(γ)|∇ũ(x)| = 0.

Let ψ ∈ C∞c (W ) and w ∈ D1,2(W ) be such that{
−∆w − γ+O(|x|τ )

|x|2 w = ψ in W

w = 0 on ∂W.

Since ψ vanishes around 0, it follows from Theorem 6.1 and Lemma 6.5 that

(7.15) w(x) = O(d(x, ∂W )|x|−α−(γ)) and |∇w(x)| = O(|x|−α−(γ)) as x→ 0.

Fix ε > 0 small and integrate by parts using that both ũ and w vanish on ∂W , to
get

0 =

∫
W\Bε(0)

(
−∆ũ− γ +O(|x|τ )

|x|2
ũ

)
w dx

=

∫
W\Bε(0)

(
−∆w − γ +O(|x|τ )

|x|2
w

)
ũ dx+

∫
∂(W\Bε(0))

(−w∂ν ũ+ ũ∂νw) dσ

=

∫
W\Bε(0)

ψũ dx−
∫

Ω∩∂Bε(0)

(−w∂ν ũ+ ũ∂νw) dσ.

Using the limits and estimates (7.13), (7.14) and (7.15), and that ψ vanishes around
0, we get

0 =

∫
W\Bε(0)

ψũ dx+ o
(
εn−1(ε1−α−(γ)ε−α+(γ) + ε1−α+(γ)ε−α−(γ))

)
=

∫
W\Bε(0)

ψũ dx+ o(1), as ε→ 0.

Therefore, we have
∫
W
ψũ dx = 0 for all ψ ∈ C∞c (W ). Since ũ ∈ Lp is smooth

outside 0, we then get that ũ ≡ 0, and therefore u = ηu + v. In particular,

u ∈ D1,2(Ω)loc,0 is a distributional positive solution to −∆u − γ+O(|x|τ )
|x|2 u = 0 on
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W . It then follows from Theorem 6.1 that there exists K > 0 such that u(x) ∼x→0

K d(x,∂Ω)

|x|α−(γ) . This proves Lemma 7.3. �

Combining Lemma 7.3 with (7.12) completes the proof of Theorem 7.1. �

As a consequence of Theorem 7.1, we improve Lemma 6.2 as follows.

Proposition 7.4. Let u ∈ C2(Rn+ \ {0}) be a nonnegative function such that

(7.16) −∆u− γ

|x|2
u = 0 in Rn+ ; u = 0 on ∂Rn+.

Then there exist λ−, λ+ ≥ 0 such that

u(x) = λ−x1|x|−α−(γ) + λ+x1|x|−α+(γ) for all x ∈ Rn+.

Proof of Proposition 7.4: Without loss of generality, we assume that u 6≡ 0, so that
u > 0. We consider the Kelvin transform of u defined by û(x) := |x|2−nu(x/|x|2)
for all x ∈ Rn+. Both u and û are then nonnegative solutions of (7.16). It follows
from Theorem 7.1 that, after performing back the Kelvin transform, there exist
α1, α2 ∈ {α+(γ), α−(γ)} such that

lim
x→0

u(x)

x1|x|−α1
= l1 > 0 and lim

|x|→∞

u(x)

x1|x|−α2
= l2 > 0.

If α1 ≤ α2, then u(x) ≤ Cx1|x|−α1 for all x ∈ Rn+. The result then follows from
Lemma 6.2. If α1 > α2, then α1 = α+(γ) and α2 = α−(γ). We define

ũ(x) := u(x)− l1x1|x|−α+(γ) for all x ∈ Rn+.
to obtain that

−∆ũ− γ

|x|2
ũ = 0 in Rn+ ; ũ = 0 on ∂Rn+,

and ũ(x) = o(x1|x|−α+(γ)) as x→ 0. Arguing as in the proof of Lemma 7.3, we get
that ũ ∈ D1,2(Rn+)loc,0 and ũ(x) = O(x1|x|−α−(γ)) as x → 0. Moreover, we have

that ũ(x) = (l2 + o(1))x1|x|−α−(γ) as |x| → +∞, therefore ũ(x) > 0 for |x| >> 1.
Since ũ ∈ D1,2(Rn+)loc,0, the comparison principle then yields ũ > 0 everywhere.

We also have that ũ(x) ≤ Cx1|x|−α−(γ) for all x ∈ Rn+. It then follows from Lemma

6.2 that there exists λ− ≥ 0 such that ũ(x) = λ−x1|x|−α−(γ) for all x ∈ Rn+. We
then get the conclusion of Proposition 7.4. �

8. The Hardy singular b-mass of a domain in the case γ > n2−1
4

We shall proceed in the following theorem to define the mass of a smooth bounded
domain Ω of Rn such as 0 ∈ ∂Ω. It will involve the expansion of positive singular
solutions of the Dirichlet boundary problem Lγu = 0.

Theorem 8.1. Let Ω be a smooth bounded domain Ω of Rn such as 0 ∈ ∂Ω, and

assume that n2−1
4 < γ < γH(Ω). Then, up to multiplication by a positive constant,

there exists a unique function H ∈ C2(Ω \ {0}) such that

(8.1) −∆H − γ

|x|2
H = 0 in Ω , H > 0 in Ω , H = 0 on ∂Ω \ {0}.

Moreover, there exists c1 > 0 and c2 ∈ R such that

(8.2) H(x) = c1
d(x,∂Ω)

|x|α+(γ) + c2
d(x,∂Ω)

|x|α−(γ) + o
(
d(x,∂Ω)

|x|α−(γ)

)
as x→ 0.
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The quantity mγ(Ω) := c2
c1
∈ R, which is independent of the choice of H satisfying

(8.1), will be called the Hardy b-mass of Ω associated to Lγ .

Proof of Theorem 8.1. First, we start by constructing a singular solution H0 for
(8.1). For that, consider uα+(γ) as in (5.12) and let η ∈ C∞c (Rn) be such that
η(x) = 1 for x ∈ Bδ/2(0) and η(x) = 0 for x ∈ Rn \Bδ(0). Set

f := −∆(ηuα+(γ))−
γ

|x|2
(ηuα+(γ)) in Ω \ {0}.

It follows from (5.17) and (5.3) that f is smooth outside 0 and that

f(x) = O
(
d(x, ∂Ω)|x|−α+(γ)−1

)
= O

(
|x|−α+(γ)

)
in Ω ∩Bδ/2(0).

Since γ > n2−1
4 , we have that α+(γ) < n+1

2 , and therefore f ∈ L
2n
n+2 (Ω) =(

L2?(Ω)
)′ ⊂ (D1,2(Ω)

)′
. It then follows from the coercivity assumption γ < γH(Ω)

that there exists v ∈ D1,2(Ω) such that

−∆v − γ

|x|2
v = f in

(
D1,2(Ω)

)′
.

Let v1, v2 ∈ D1,2(Ω) be such that

(8.3) −∆v1 −
γ

|x|2
v1 = f+ and −∆v2 −

γ

|x|2
v2 = f− in

(
D1,2(Ω)

)′
.

In particular, v = v1 − v2 and v1, v2 ∈ C1(Ω \ {0}), and they vanish on ∂Ω \ {0}.
Assume that f+ 6≡ 0. Since f+ ≥ 0, the comparison principle yields v1 > 0 on

Ω \ {0} and ∂νv1 < 0 on ∂Ω \ {0}. Therefore, for any δ > 0 small enough, there
exists C(δ) > 0 such that

v1(x) ≥ C(δ)d(x, ∂Ω) for all x ∈ ∂Bδ(0) ∩ Ω.

Let uα−(γ),− be the sub-solution defined in (5.2). It follows from the asymptotic
(5.3) that there exists C ′(δ) > 0 such that

v1 ≥ C ′(δ)uα−(γ),− in ∂Bδ(0) ∩ Ω.

Since this inequality also holds on ∂(Bδ(0) ∩ Ω) and that

(−∆− γ
|x|2 )(v1 − C ′(δ)uα−(γ),−) ≥ 0 in Bδ(0) ∩ Ω,

coercivity and the maximum principle yield v1 ≥ C ′(δ)uα−(γ),− in Bδ(0) ∩ Ω. It
then follows from (5.3) that there exists c > 0 such that

v1(x) ≥ c · d(x, ∂Ω)|x|−α−(γ) in Bδ(0) ∩ Ω.

Therefore, we have that

f+(x) ≤ Cd(x, ∂Ω)|x|−α+(γ)−1 ≤ C

c
|x|α−(γ)−α+(γ)−1v1(x) ≤ C

c
|x|α−(γ)−α+(γ)+1 v1(x)

|x|2

in Bδ(0) ∩ Ω. Therefore, (8.3) yields

−∆v1 +
γ +O(|x|α−(γ)−α+(γ)+1)

|x|2
v1 = 0 in Bδ(0) ∩ Ω.

Since γ > n2−1
4 , we have that α−(γ)− α+(γ) + 1 > 0. Since v1 ∈ D1,2(Ω), v1 ≥ 0

and v1 6≡ 0, it follows from Theorem 6.1 that there exists K1 > 0 such that

(8.4) v1(x) = K1
d(x,∂Ω)

|x|α−(γ) + o
(
d(x,∂Ω)

|x|α−(γ)

)
as x→ 0.
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If f+ ≡ 0, then v1 ≡ 0 and (8.4) holds with K1 = 0. Arguing similarly for f−, we
then get that there exists K1,K2 ≥ 0 such that for any i = 1, 2, we have that

vi(x) = Ki
d(x,∂Ω)

|x|α−(γ) + o
(
d(x,∂Ω)

|x|α−(γ)

)
when x→ 0.

Since v = v1 − v2, we then get that there exists K ∈ R such that

(8.5) v(x) = −K d(x,∂Ω)

|x|α−(γ) + o
(
d(x,∂Ω)

|x|α−(γ)

)
as x→ 0.

Set

(8.6) H0(x) := η(x)uα+(γ)(x)− v(x) for all x ∈ Ω \ {0}.

It follows from the definition of v and the regularity outside 0 that

−∆H0 −
γ

|x|2
H0 = 0 in Ω ; H0(x) = 0 in ∂Ω \ {0}.

Moreover, the asymptotics (5.3) and (8.5) yield H0(x) > 0 on Ω ∩Bδ′(0) for some
δ′ > 0 small enough. It follows from the comparison principle that H0 > 0 in Ω.
We now perform an expansion of H0. First note that from the definition (5.12) of
uα+(γ), the asymptotic (8.5) of v and the fact that α+(γ)− α−(γ) < 1, we have

H0(x) =
d(x, ∂Ω)

|x|α+(γ)
(1 +O(|x|)) +K

d(x, ∂Ω)

|x|α−(γ)
+ o

(
d(x, ∂Ω)

|x|α−(γ)

)
=

d(x, ∂Ω)

|x|α+(γ)
+K

d(x, ∂Ω)

|x|α−(γ)
+ o

(
d(x, ∂Ω)

|x|α−(γ)

)
as x→ 0. In particular, since in addition H0 > 0 in Ω, there exists c > 1 such that

(8.7) 1
c
d(x,∂Ω)

|x|α+(γ) ≤ H0(x) ≤ c d(x,∂Ω)

|x|α+(γ) for all x ∈ Ω.

Finally, we establish the uniqueness. For that, we let H ∈ C2(Ω \ {0}) be as in
(8.1) and set

λ0 := max{λ ≥ 0/ H ≥ λH0}.
The number λ0 is clearly defined, and so we set H̃ := H − λ0H0 ≥ 0. Assume that
H̃ 6≡ 0. Since −∆H̃ − γ|x|−2H̃ = 0, it follows from Theorem 7.1 that there exists
α ∈ {α+(γ), α−(γ)} and K > 0 such that

(8.8) H(x) ∼x→0 K
d(x, ∂Ω)

|x|α
.

If α = α−(γ), then H̃ ∈ D1,2(Ω) is a variational solution to −∆H̃ − γ
|x|2 H̃ = 0 in

Ω. Then coercivity then yields that H̃ ≡ 0, contradicting the initial hypothesis.

Therefore α = α+(γ). Since H̃ > 0 vanishes on ∂Ω \ {0}, then for any δ > 0, there
exists c(δ) > 0 such that

(8.9) H̃(x) ≥ c(δ)d(x, ∂Ω) for x ∈ Ω \Bδ(0).

Therefore, (8.8), (8.9) and (8.7) yield the existence of c > 0 such that H̃ ≥ cH0, and

thenH ≥ (λ0+c)H0, contradicting the definition of λ0. It follows that H̃ ≡ 0, which
means that H = λ0H0 for some λ0 > 0. This proves uniqueness and completes the
proof of Theorem 8.1. �

Now we establish the monotonicity of the mass with respect to set inclusion.
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Proposition 8.2. The Hardy b-mass is strictly increasing in the following sense:
Assume Ω1,Ω2 are two smooth bounded domains such that 0 ∈ ∂Ω1 ∩ ∂Ω2, and
n2−1

4 < γ < min{γH(Ω1), γH(Ω2)}, then

(8.10) Ω1 ( Ω2 ⇒ mγ(Ω1) < mγ(Ω2).

Moreover, if Ω ( Rn+ and n2−1
4 < γ < n2

4 , then mγ(Ω) < 0.

Proof of Proposition 8.2: It follows from the definition of the mass that for i = 1, 2,
there exists Hi ∈ C2(Ωi \ {0}) such that

(8.11) −∆Hi −
γ

|x|2
Hi = 0 in Ωi , Hi > 0 in Ωi , Hi = 0 on ∂Ωi,

with

(8.12) Hi(x) =
d(x, ∂Ωi)

|x|α+(γ)
+mγ(Ωi)

d(x, ∂Ωi)

|x|α−(γ)
+ o

(
d(x, ∂Ωi)

|x|α−(γ)

)
as x→ 0, x ∈ Ωi. Set h := H2 −H1 on Ω1. Since Ω1 ( Ω2, we have that

(8.13)


−∆h− γ

|x|2h = 0 in Ω1

h ≥ 0 on ∂Ω1

h 6≡ 0 in ∂Ω1.

First, we claim that h ∈ H1,2(Ω1). Indeed, it follows from the construction of the
singular function (see (8.6)), that there exists w ∈ H1,2(Ω1) such that

(8.14) h(x) =
d(x, ∂Ω2)− d(x, ∂Ω1)

|x|α+(γ)
+ w(x) for all x ∈ Ω1.

Since Ω1 ⊂ Ω2 and 0 is on the boundary of both domains, then the tangent spaces
at 0 of Ω1 and Ω2 are equal, and one gets that

d(x, ∂Ω1)− d(x, ∂Ω2) = O(|x|2) as x→ 0.

Since α+(γ)− α−(γ) < 1, we then get that

h̃(x) :=
d(x, ∂Ω2)− d(x, ∂Ω1)

|x|α+(γ)
= O(|x|1−α−(γ)) as x→ 0.

Similarly, |∇h̃(x)| = O(|x|−α−(γ)) as x → 0. Therefore, we deduce that h̃ ∈
H1,2(Ω1). It then follows from (8.14) that h ∈ H1,2(Ω1).
To prove the monotonicity, note first that since γ < γH(Ω1) and h ∈ H1,2(Ω1),
it follows from (8.13) and the comparison principle that h ≥ 0 in Ω1 (indeed,
this is obtained by multiplying (8.13) by h− ∈ D2

1(Ω) and integrating: therefore,
coercivity yields h− ≡ 0). Since h 6≡ 0, it follows from Hopf’s maximum principle
that for any δ > 0 small, there exists C(δ) > 0 such that

h(x) ≥ C(δ)d(x, ∂Ω1) for all x ∈ ∂Bδ(0) ∩ Ω1.

We define the sub-solution uα−(γ),− as in Proposition 5.1. It then follows from the
inequality above and the asymptotics in (5.3) that there exists ε0 > 0 such that

h(x) ≥ 2ε0uα−(γ),−(x) for all x ∈ ∂Bδ(0) ∩ Ω1.

This inequality also holds on Bδ(0) ∩ ∂Ω1 since uα−(γ),− vanishes on ∂Ω1. It
then follows from the maximum principle that h(x) ≥ 2ε0uα−(γ),−(x) for all x ∈
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Bδ(0) ∩ Ω1. With the definition of h and the asymptotic (5.3), we then have that
for δ′ > 0 small enough

(8.15) H2(x)−H1(x) ≥ ε0
d(x, ∂Ω1)

|x|α−(γ)
for all x ∈ Bδ′(0) ∩ Ω1.

We let ~ν be the inner unit normal vector of ∂Ω1 at 0. This is also the inner unit
normal vector of ∂Ω2 at 0. Therefore, for any t > 0 small enough, we have that
d(t~ν, ∂Ωi) = t for i = 1, 2. It then follows from the expressions (8.12) and (8.15)
that

(mγ(Ω2)−mγ(Ω1)) t

tα−(γ) + o
(

t

tα−(γ)

)
≥ ε0 t

tα−(γ) as t ↓ 0.

We then get that mγ(Ω2) −mγ(Ω1) ≥ ε0, and therefore mγ(Ω2) > mγ(Ω1). This
proves (8.10) and ends the first part of Proposition 8.2.

The proof of the second part is similar. Indeed, we take Ω2 := Rn+ and we define
H2(x) := x1

|x|α+(γ) . Arguing as above, we get that 0 > mγ(Ω), which completes the

proof of Proposition 8.2. �

In Section 10, we will prove that one can define the mass mγ(Rn+) of Rn+, and that
mγ(Rn+) = 0.

9. Test functions and the existence of extremals

Let Ω be a domain of Rn such that 0 ∈ ∂Ω. For γ ∈ R and s ∈ [0, 2), recall that

(9.1) µγ,s(Ω) := inf
u∈D1,2(Ω)\{0}

JΩ
γ,s(u),

where

JΩ
γ,s(u) :=

∫
Ω

(
|∇u|2 − γ

|x|2u
2
)
dx(∫

Ω
|u|2?
|x|s dx

) 2
2?

.

Note that critical points u ∈ D1,2(Ω) of JΩ
γ,s are weak solutions to the pde

(9.2) −∆u− γ

|x|2
= λ
|u|2?−2u

|x|s
,

for some λ ∈ R, which can be rescaled to be equal to 1 if λ > 0 and to be −1 if
λ < 0. In this section, we investigate the existence of minimizers for JΩ

γ,s. We start
with the following easy case, where we don’t have extremals.

Proposition 9.1. Let Ω ⊂ Rn be a smooth domain such that 0 ∈ ∂Ω (No bound-
edness is assumed). When s = 0 and γ ≤ 0, we have that µγ,0(Ω) = 1

K(n,2)2 (where

K(n, 2)−2 = µ0,0(Rn) is the best constant in the Sobolev inequality (1.14)) and there
is no extremal.

Proof of Proposition 9.1: Note that 2?(s) = 2?(0) = 2?. Since γ ≤ 0, we have for
any u ∈ C∞c (Ω) \ {0},

(9.3)

∫
Ω

(
|∇u|2 − γ u2

|x|2

)
dx(∫

Ω
|u|2? dx

) 2
2?

≥
∫

Ω
|∇u|2 dx(∫

Ω
|u|2? dx

) 2
2?
≥ 1

K(n, 2)2
,

and therefore µγ,0(Ω) ≥ 1
K(n,2)2 . Fix now x0 ∈ Ω and let η ∈ C∞c (Ω) be such that

η(x) = 1 around x0. Set uε(x) := η(x)
(

ε
ε2+|x−x0|2

)n−2
2

for all x ∈ Ω and ε > 0.
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Since x0 6= 0, it is easy to check that limε→0

∫
Ω

u2
ε

|x|2 dx = 0. It is also classical (see

for example Aubin [2]) that

lim
ε→0

∫
Ω
|∇uε|2 dx(∫

Ω
|uε|2? dx

) 2
2?

=
1

K(n, 2)2
.

It follows that µγ,0(Ω) ≤ 1
K(n,2)2 . This proves that µγ,0(Ω) = 1

K(n,2)2 .

Assume now that there exists an extremal u0 for µγ,0(Ω) in D1,2(Ω) \ {0}. The
inequalities in (9.3) and the fact that∫

Ω
|∇u0|2 dx(∫

Ω
|u0|2? dx

) 2
2?

=
1

K(n, 2)2
,

means that u0 ∈ D1,2(Ω) ⊂ D1,2(Rn) is an extremal for the classical Sobolev
inequality on Rn. But these extremals are known (see Aubin [2] or Talenti [52])
and their support is the whole of Rn, which is a contradiction since u0 has support
in Ω 6= Rn. It follows that there is no extremal for µγ,0(Ω). This proves Proposition
9.1. �

The remainder of the section is devoted to the proof of the following.

Theorem 9.2. Let Ω be a smooth bounded domain in Rn (n ≥ 3) such that 0 ∈ ∂Ω

and let 0 ≤ s < 2 and γ < n2

4 . Assume that either s > 0, or that {s = 0, n ≥ 4
and γ > 0}. There are then extremals for µγ,s(Ω) under one of the following two
conditions:

(1) γ ≤ n2−1
4 and the mean curvature of ∂Ω at 0 is negative.

(2) γ > n2−1
4 and the mass mγ(Ω) of Ω is positive.

Moreover, if γ < γH(Ω) (resp., γ ≥ γH(Ω)), then such extremals are positive
solutions for (9.2) with λ > 0 (resp., λ ≤ 0).

The remaining case n = 3, s = 0 and γ > 0 will be dealt with in section 11.

According to Theorem 4.4, in order to establish existence of extremals, it suffices
to show that µγ,s(Ω) < µγ,s(Rn+). The rest of the section consists of showing that
the above mentioned geometric conditions lead to such gap.

In the sequel, hΩ(0) will denote the mean curvature of ∂Ω at 0. The orientation is
chosen such that the mean curvature of the canonical sphere (as the boundary of
the ball) is positive. Since {s > 0}, or that {s = 0, n ≥ 4 and γ > 0}, it follows from
Theorem 12.1 in Section 12 of the appendix (see also Bartsch-Peng-Zhang [3] and
Chern-Lin [10]) that there are extremals for µγ,s(Rn+). The following proposition
combined with Theorem 4.4 clearly yield the claims in Theorem 9.2.

Proposition 9.3. We fix γ < n2

4 . Assume that there are extremals for µγ,s(Rn+).

There exist then two families (u1
ε)ε>0 and (u2

ε)ε>0 in D1,2(Ω), and two positive
constants c1γ,s and c2γ,s such that:

(1) For γ < n2−1
4 , we have that

(9.4) J(u1
ε) = µγ,s(Rn+)

(
1 + c1γ,s · hΩ(0) · ε+ o(ε)

)
when ε→ 0.

(2) For γ = n2−1
4 , we have that

(9.5) J(u1
ε) = µγ,s(Rn+)

(
1 + c1γ,s · hΩ(0) · ε ln

1

ε
+ o

(
ε ln

1

ε

))
when ε→ 0.
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(3) For γ > n2−1
4 , we have as ε→ 0, that

(9.6) J(u2
ε) = µγ,s(Rn+)

(
1− c2γ,s ·mγ(Ω) · εα+(γ)−α−(γ) + o(εα+(γ)−α−(γ))

)
.

Remark: When γ < n2−1
4 , this result is due to Chern-Lin [10]. Actually, they

stated the result for γ < (n−2)2

4 , but their proof works for γ < n2−1
4 . However,

when γ ≥ n2−1
4 , we need the exact asymptotic profile of U that was described by

Corollary 6.8.

Proof of Proposition 9.3: By assumption, there exists U ∈ D1,2(Rn+) \ {0}, U ≥ 0,
that is a minimizer for µγ,s(Rn+). In other words,

J
Rn+
γ,s (U) =

∫
Rn+

(
|∇U |2 − γ

|x|2U
2
)
dx(∫

Rn+
|U |2?(s)
|x|s dx

) 2
2?(s)

= µγ,s(Rn+).

Therefore (see Corollary 6.8), there exists λ > 0 such that

(9.7)


−∆U − γ

|x|2U = λU
2?(s)−1

|x|s in Rn+
U > 0 in Rn+
U = 0 in ∂Rn+


and there exist K1,K2 > 0 such that

(9.8) U(x) ∼x→0 K1
x1

|x|α−
and U(x) ∼|x|→+∞ K2

x1

|x|α+
,

where here and in the sequel, we write for convenience

α+ := α+(γ) and α− := α−(γ).

In particular, it follows from Lemma 6.5 (after reducing all limits to happen at 0
via the Kelvin transform) that there exists C > 0 such that

(9.9) U(x) ≤ Cx1|x|−α+ and |∇U(x)| ≤ C|x|−α+ for all x ∈ Rn+.

We shall now construct a suitable test-function for each range of γ. First note that

γ <
n2 − 1

4
⇔ α+ − α− > 1

γ =
n2 − 1

4
⇔ α+ − α− = 1.

Concerning terminology, here and in the sequel, we define as in (5.4)

B̃r := (−r, r)×B(n−1)
r (0) ⊂ R× Rn−1,

for all r > 0 and
V+ := V ∩ Rn+

for all V ⊂ Rn. Since Ω is smooth, up to a rotation, there exists δ > 0 and

ϕ0 : B
(n−1)
δ (0)→ R such that ϕ0(0) = |∇ϕ0(0)| = 0 and

(9.10)

{
ϕ : B̃3δ → Rn

(x1, x
′) 7→ (x1 + ϕ0(x′), x′),

that realizes a diffeomorphism onto its image and such that

ϕ(B̃3δ ∩ Rn+) = ϕ(B̃3δ) ∩ Ω and ϕ(B̃3δ ∩ ∂Rn+) = ϕ(B̃3δ) ∩ ∂Ω.
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Let η ∈ C∞c (Rn) be such that η(x) = 1 for all x ∈ B̃δ, η(x) = 0 for all x 6∈ B̃2δ.

Case 1: γ ≤ n2−1
4 . As in Chern-Lin [10], for any ε > 0, we define

uε(x) :=
(
ηε−

n−2
2 U(ε−1x)

)
◦ ϕ−1(x) for x ∈ ϕ(B̃2δ) ∩ Ω and 0 elsewhere.

This subsection is devoting to give a Taylor expansion of JΩ
γ,s(uε) as ε → 0. In

the sequel, we adopt the following notation: given (aε)ε>0 ∈ R, Θγ(aε) denotes a
quantity such that, as ε→ 0.

Θγ(aε) :=

{
o(aε) if γ < n2−1

4

O(aε) if γ = n2−1
4

Estimate of
∫

Ω
|∇uε|2 dx:

It follows from (9.9) that

(9.11) |∇uε(x)| ≤ Cεα+−n2 |x|−α+ for all x ∈ Ω and ε > 0.

Therefore, ∫
ϕ((B̃3δ\B̃δ)∩Rn+)

|∇uε|2 dx = Θγ(ε) as ε→ 0.

It follows that∫
Ω

|∇uε|2 dx =

∫
B̃δ,+

|∇(uε ◦ ϕ)|2
ϕ?Eucl|Jac(ϕ)| dx+ Θγ(ε) as ε→ 0,

where B̃δ,+ := B̃δ ∩ Rn+. The definition (9.10) of ϕ yields Jac(ϕ) = 1. Moreover,
for any θ ∈ (0, 1), we have as x→ 0,

ϕ?Eucl :=

(
1 ∂jϕ0

∂iϕ0 δij + ∂iϕ0∂jϕ0

)
= Id+H +O(|x|1+θ)

where

H :=

(
0 ∂jϕ0

∂iϕ0 0

)
.

It follows that∫
Ω

|∇uε|2 dx =

∫
B̃δ,+

|∇(uε ◦ ϕ)|2Eucl dx−
∫
B̃δ,+

Hij∂i(uε ◦ ϕ)∂j(uε ◦ ϕ) dx

+O

(∫
B̃δ,+

|x|1+θ|∇(uε ◦ ϕ)|2 dx

)
+ Θγ(ε) as ε→ 0.(9.12)
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We have that ∫
B̃δ,+

Hij∂i(uε ◦ ϕ)∂j(uε ◦ ϕ) dx

= 2
∑
i≥2

∫
B̃δ,+

H1i∂1(uε ◦ ϕ)∂i(uε ◦ ϕ) dx

= 2
∑
i≥2

∫
B̃δ,+

∂iϕ0(x′)∂1(uε ◦ ϕ)∂i(uε ◦ ϕ) dx

= 2
∑
i,j≥2

∫
B̃δ,+

∂ijϕ0(0)(x′)j∂1(uε ◦ ϕ)∂i(uε ◦ ϕ) dx

+O

(∫
B̃δ,+

|x|2|∇(uε ◦ ϕ)|2 dx

)
as ε→ 0.(9.13)

We let II be the second fundamental form at 0 of the oriented boundary ∂Ω. By
definition, for any X,Y ∈ T0∂Ω, we have that

II(X,Y ) := (d~ν0(X), Y )Eucl

where ~ν : ∂Ω → Rn is the outer unit normal vector of ∂Ω. In particular, we have
that ~ν(0) = (−1, 0, ·, 0). For any i, j ≥ 2, we have that

IIij := II(∂iϕ(0), ∂jϕ(0)) = (∂i(~ν ◦ ϕ)(0), ∂jϕ(0)) = −(~ν(0), ∂ijϕ(0)) = ∂ijϕ0(0).

Plugging (9.13) in (9.12), and using a change of variables, we get that∫
Ω

|∇uε|2 dx =

∫
B̃ε−1δ,+

|∇U |2 dx− 2IIij
∑
i,j≥2

∫
B̃ε−1δ,+

(x′)j∂1U∂iU dx

+O

(∫
B̃δ,+

|x|1+θ|∇(uε ◦ ϕ)|2 dx

)
+ Θγ(ε) as ε→ 0.(9.14)

We now choose θ:
(i) If γ < n2−1

4 , then choose 0 < θ < α+ − α− − 1;

(ii) If γ = n2−1
4 , we take any θ ∈ (0, 1).

In both cases, we get by using (9.11), that

(9.15)

∫
B̃δ,+

|x|1+θ|∇(uε ◦ ϕ)|2 dx = Θγ(ε) as ε→ 0.

Moreover, using (9.9), we have that

(9.16)
∫
B̃ε−1δ,+

|∇U |2 dx =
∫
Rn+
|∇U |2 dx+ Θγ(ε) as ε→ 0.

Plugging together (9.14), (9.15), (9.16) yields∫
Ω

|∇uε|2 dx =

∫
Rn+
|∇U |2 dx

−2IIij
∑
i,j≥2

∫
B̃ε−1δ,+

(x′)j∂1U∂iU dx+ Θγ(ε).(9.17)

Estimate of
∫

Ω
|uε|2

?(s)

|x|s dx:
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Fix σ ∈ [0, 2]. We will apply the estimates below to σ = s ∈ [0, 2) or to σ := 2.
The first estimate in (9.9) yields

(9.18) |uε(x)| ≤ Cεα+−n2 d(x, ∂Ω)|x|−α+ ≤ Cεα+−n2 |x|1−α+

for all ε > 0 and all x ∈ Ω. Since Jac ϕ = 1, this estimate then yields∫
Ω

|uε|2
?(σ)

|x|σ
dx =

∫
ϕ(B̃δ,+)

|uε|2
?(σ)

|x|σ
dx+ Θγ(ε)

=
∫
B̃δ,+

|uε◦ϕ|2
?(σ)

|ϕ(x)|σ dx+ Θγ(ε) as ε→ 0.(9.19)

If γ < n2−1
4 or if γ = n2−1

4 and σ < 2, we choose θ ∈ (0, (α+−α−) 2?(σ)
2 −1)∩(0, 1).

If γ = n2−1
4 and σ = 2, we choose any θ ∈ (0, 1). Using the expression of ϕ(x1, x

′),
a Taylor expansion yields
(9.20)

|ϕ(x)|−σ = |x|−σ
1− σ

2

x1

|x|2
∑
i,j≥2

∂ijϕ0(0)(x′)i(x′)j +O(|x|1+θ)

 as ε→ 0.

The choice of θ yields

(9.21)
∫
B̃δ,+

|uε◦ϕ|2
?(σ)

|ϕ(x)|σ |x|
1+θ dx = Θγ(ε) as ε→ 0.

Plugging together (9.19), (9.20), (9.21), and using a change of variable, we get as
ε→ 0 that∫

Ω

|uε|2
?(σ)

|x|σ
dx =

∫
B̃ε−1δ,+

|U |2?(σ)

|x|σ
dx

−σ
2

∑
i,j≥2

εIIij

∫
B̃ε−1δ,+

|U |2?(σ)

|x|σ
x1

|x|2
(x′)i(x′)j dx+ Θγ(ε).

Moreover, (9.9) yields∫
B̃ε−1δ,+

|U |2?(σ)

|x|σ
dx =

∫
Rn+

|U |2?(σ)

|x|σ
dx+ Θγ(ε) as ε→ 0.

Therefore, we get that∫
Ω

|uε|2
?(σ)

|x|σ
dx =

∫
Rn+

|U |2?(σ)

|x|σ
dx

−σ
2

∑
i,j≥2

εIIij

∫
B̃ε−1δ,+

|U |2?(σ)

|x|σ
x1

|x|2
(x′)i(x′)j dx+ Θγ(ε).(9.22)

We now compute the terms in U by using its symmetry property established in
Chern-Lin [10] (see also Theorem 13.1 in the Appendix). Indeed, it follows from

(9.7) that there exists Ũ : (0,+∞) × R such that U(x1, x
′) = Ũ(x1, |x′|) for all

(x1, x
′) ∈ Rn+. Therefore, for any i, j ≥ 2, we get that∫
B̃ε−1δ,+

|U |2?(σ)

|x|σ
x1

|x|2
(x′)i(x′)j dx =

δij
n− 1

∫
B̃ε−1δ,+

|U |2?(σ)

|x|σ
x1

|x|2
|x′|2 dx
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and that ∫
B̃ε−1δ,+

(x′)j∂1U∂iU dx =
δij
n− 1

∫
B̃ε−1δ,+

∂1U(x′,∇U) dx

where x = (x1, x
′) ∈ Rn+. Therefore, the identities (9.17) and (9.22) rewrite as∫

Ω

|∇uε|2 dx =

∫
Rn+
|∇U |2 dx− 2hΩ(0)

n− 1
ε

∫
B̃ε−1δ,+

∂1U(x′,∇U) dx+ Θγ(ε)(9.23)

and ∫
Ω

|uε|2
?(σ)

|x|σ
dx =

∫
Rn+

|U |2?(σ)

|x|σ
dx(9.24)

− σhΩ(0)

2(n− 1)
ε

∫
B̃ε−1δ,+

|U |2?(σ)

|x|σ
x1

|x|2
|x′|2 dx+ Θγ(ε)

as ε→ 0, where hΩ(0) =
∑
i IIii is the mean curvature at 0.

An intermediate identity. We now claim that as ε→ 0,∫
B̃ε−1δ,+

∂1U(x′,∇U) dx =

∫
B̃ε−1δ,+

|x′|2x1

2|x|2

(
λ

s

2?(s)

U2?(s)

|x|s
+ γ

U2

|x|2

)
dx

−
∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2

4
dx+ Θγ(1)(9.25)

where λ > 0 is as in (9.7). This was shown by Chern-Lin [10], and we include it
for the sake of completeness. Here and in the sequel, νi denotes the ith coordinate
of the direct outward normal vector on the boundary of the relevant domain (for
instance, on ∂Rn+, we have that νi = −δ1i). We write∫

B̃ε−1δ,+

∂1U(x′,∇U) dx =
∑
j≥2

∫
B̃ε−1δ,+

∂1U(x′)j∂jU dx

=
∑
j≥2

∫
B̃ε−1δ,+

∂1U∂j

(
|x′|2

2

)
∂jU dx

=
∑
j≥2

∫
∂(B̃ε−1δ,+)

∂1U
|x′|2

2
∂jUνj dσ −

∑
j≥2

∫
B̃ε−1δ,+

|x′|2

2
∂j (∂1U∂jU) dx

=
∑
j≥2

∫
∂Rn+∩B̃ε−1δ

∂1U
|x′|2

2
∂jUνj dσ +O

(∫
Rn+∩∂B̃ε−1δ

|x′|2|∇U |2(x) dσ

)

−
∑
j≥2

∫
B̃ε−1δ,+

|x′|2

2
(∂1jU∂jU + ∂1U∂jjU) dx.(9.26)
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Since U(0, x′) = 0 for all x′ ∈ Rn−1, using the upper-bound (9.9) and writing
∇′ = (∂2, . . . , ∂n), we get that∫

B̃ε−1δ,+

∂1U(x′,∇U) dx

= −
∑
j≥2

∫
B̃ε−1δ,+

|x′|2

2
(∂1jU∂jU + ∂1U∂jjU) dx+ Θγ(1)

= −
∫
B̃ε−1δ,+

|x′|2

4
∂1

(
|∇′U |2

)
dx

+

∫
B̃ε−1δ,+

|x′|2

2
∂1U (−∆U + ∂11U) dx+ Θγ(1)

= −
∫
∂(B̃ε−1δ,+)

|x′|2|∇′U |2

4
ν1 dx+

∫
B̃ε−1δ,+

|x′|2

2
∂1U(−∆U) dx

+

∫
B̃ε−1δ,+

∂1

(
|x′|2(∂1U)2

4

)
dx+ Θγ(1).(9.27)

Using again that U vanishes on ∂Rn+ and the bound (9.9), we get that∫
B̃ε−1δ,+

∂1U(x′,∇U) dx =

∫
B̃ε−1δ,+

|x′|2

2
∂1U(−∆U) dx+

∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2

4
ν1 dx

+O

(∫
∂(B̃ε−1δ)∩Rn+

|x′|2|∇U |2 dx

)
+ Θγ(1)

=

∫
B̃ε−1δ,+

|x′|2

2
∂1U(−∆U) dx

−
∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2

4
dx+ Θγ(1)(9.28)

as ε→ 0. Now use equation (9.7) to get that
(9.29)∫

B̃ε−1δ,+

|x′|2

2
∂1U(−∆U) dx =

∫
B̃ε−1δ,+

|x′|2

2
∂1U

(
λ
U2?(s)−1

|x|s
+ γ

U

|x|2

)
dx.

Integrating by parts, using that U vanishes on ∂Rn+ and the upper-bound (9.9), for
σ ∈ [0, 2], we get that∫

B̃ε−1δ,+

|x′|2∂1U
U2?(σ)−1

|x|σ
dx =

∫
B̃ε−1δ,+

|x′|2|x|−σ∂1

(
U2?(σ)

2?(σ)

)
dx

=

∫
∂(B̃ε−1δ,+)

|x′|2|x|−σU
2?(σ)

2?(σ)
ν1 dx−

∫
B̃ε−1δ,+

∂1(|x′|2|x|−σ)

(
U2?(σ)

2?(σ)

)
dx

= O

(∫
Rn+∩∂B̃ε−1δ,+

|x|2−σU2?(σ) dσ

)
+

σ

2?(s)

∫
B̃ε−1δ,+

|x′|2x1

|x|σ+2
U2?(σ) dx

=
σ

2?(s)

∫
B̃ε−1δ,+

|x′|2x1

|x|σ+2
U2?(σ) dx+ Θγ(1) as ε→ 0.(9.30)
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Putting together (9.28) to (9.30) yields (9.25).

Estimate of JΩ
γ,s(uε): Since U ∈ D1,2(Rn), it follows from (9.7) that∫

Rn+

(
|∇U |2 − γ

|x|2
U2

)
dx = λ

∫
Rn+

U2?(s)

|x|s
dx.

This equality, combined with (9.23) and (9.24) gives

JΩ
γ,s(uε) =

∫
Ω

(
|∇uε|2 − γ

|x|2u
2
ε

)
dx(∫

Ω
|uε|2?(s)
|x|s dx

) 2
2?(s)

=

∫
Rn+

(
|∇U |2 − γ

|x|2U
2
)
dx(∫

Rn+
|U |2?(s)
|x|s dx

) 2
2?(s)

1 + ε
hΩ(0)

(n− 1)λ
∫
Rn+
|U |2?(s)
|x|s dx

Cε + Θγ(ε)

(9.31)

where for all ε > 0,

Cε := −2

∫
B̃ε−1δ,+

∂1U(x′,∇U) dx+ γ

∫
B̃ε−1δ,+

|x′|2x1

|x|2
U2

|x|2
dx

+λ
s

2?(s)

∫
B̃ε−1δ,+

|x′|2x1

|x|2
U2?(s)

|x|s
dx.

The identity (9.25) then yields

Cε =

∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2

2
dx+ Θγ(1)

as ε→ 0. Therefore, (9.31) yields that as ε→ 0,

JΩ
γ,s(uε) = µγ,s(Rn+)

1 + ε
hΩ(0)

∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2 dx′

2(n− 1)λ
∫
Rn+
|U |2?(s)
|x|s dx

+ Θγ(ε)

 .(9.32)

We now distinguish two cases:

Case 1’: γ < n2−1
4 . The bound (9.9) yields |x′|2|∂1U |2 = O(|x′|2−2α+) when

|x′| → +∞. Since ∂Rn+ = Rn−1, we then get that x′ 7→ |x′|2|∂1U(x′)|2 is in
L1(∂Rn+), and therefore, (9.32) yields

JΩ
γ,s(uε) = µγ,s(Rn+) (1 + C0 · hΩ(0) · ε+ o(ε)) as ε→ 0,(9.33)

with

C0 :=

∫
∂Rn+
|x′|2(∂1U)2 dx′

2(n− 1)λ
∫
Rn+
|U |2?(s)
|x|s dx

> 0.

Case 1”: γ = n2−1
4 . It follows from (9.8), Lemma 6.5 and a Kelvin transform that

lim
|x′|→+∞

|x′|α+ |∂1U(0, x′)| = K2 > 0.

Since 2α+ − 2 = n− 1, we get that∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2 dx′ = ωn−1K
2
2 ln

1

ε
+ o

(
ln

1

ε

)
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as ε→ 0. Therefore, (9.32) yields

JΩ
γ,s(uε) = µγ,s(Rn+)

(
1 + C ′0hΩ(0)ε ln 1

ε + o
(
ln 1

ε

))
as ε→ 0,(9.34)

where

C ′0 :=
ωn−1K

2
2

2(n− 1)λ
∫
Rn+
|U |2?(s)
|x|s dx

> 0.

Cases 1 and 2 prove Proposition 9.3 when γ ≤ n2−1
4 .

Case 2: γ > n2−1
4 . In this case, the test-functions are more subtle. First, use

Theorem 8.1 to obtain H ∈ C2(Ω \ {0}) such that (8.1) holds and

(9.35) H(x) = d(x,∂Ω)
|x|α+ +mγ(Ω)d(x,∂Ω)

|x|α− + o
(
d(x,∂Ω)
|x|α−

)
when x→ 0.

As above, we fix η ∈ C∞c (Rn) such that η(x) = 1 for all x ∈ B̃δ, η(x) = 0 for all

x 6∈ B̃2δ. We then define β such that

H(x) =

(
η
x1

|x|α+

)
◦ ϕ−1(x) + β(x) for all x ∈ Ω.

Here ϕ is as in (5.5) to (5.10). Note that β ∈ D1,2(Ω) and

(9.36) β(x) = mγ(Ω)d(x,∂Ω)
|x|α− + o

(
d(x,∂Ω)
|x|α−

)
as x→ 0.

Indeed, since α+ −α− < 1, an essential point underlying all this subsection is that

|x| = o (|x|α+−α−) as x→ 0.

We choose U as in (9.7). Ny multiplying by a constant if necessary, we assume that
K2 = 1, that is

(9.37) U(x) ∼x→0 K1
x1

|x|α−
and U(x) ∼|x|→+∞

x1

|x|α+
.

Now define

(9.38) uε(x) :=
(
ηε−

n−2
2 U(ε−1·)

)
◦ ϕ−1(x) + ε

α+−α−
2 β(x) for x ∈ Ω and ε > 0.

We start by showing that for any k ≥ 0

(9.39) lim
ε→0

uε

ε
α+−α−

2

= H in Ckloc(Ω \ {0}).

Indeed, the convergence in C0
loc(Ω \ {0}) is a consequence of the definition of uε,

the choice K2 = 1 and the asymptotic behavior (9.37). For convergence in Ck, we
need in addition that ∇i(U − x1|x|−α+) = o

(
|x|1−α+−i

)
as x→ +∞ for all i ≥ 0.

This estimate follows from (9.37) and Lemma 6.5.

In the sequel, we adopt the following notation: θεc will denote any quantity such
that there exists θ : R→ R such that

lim
c→0

lim
ε→0

θεc = 0.

We first claim that for any c > 0, we have that∫
Ω\ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx

= εα+−α−
(

(α+ − 1)cn−2α+
ωn−1

2n
+mγ(Ω)

(n− 2)ωn−1

2n

)
+ θεcε

α+−α− .(9.40)
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Indeed, it follows from (9.39) that
(9.41)

lim
ε→0

∫
Ω\ϕ(Bc(0)+)

(
|∇uε|2 − γ

|x|2u
2
ε

)
dx

εα+−α−
=

∫
Ω\ϕ(Bc(0)+)

(
|∇H|2 − γ

|x|2
H2

)
dx.

Since H vanishes on ∂Ω \ {0} and satisfies −∆H − γ
|x|2H = 0, integrating by parts

yields∫
Ω\ϕ(Bc(0)+)

(
|∇H|2 − γ

|x|2
H2

)
dx = −

∫
ϕ(Rn+∩∂Bc(0))

H∂νH dσ

= −
∫
Rn+∩∂Bc(0)

H ◦ ϕ∂ϕ?ν(H ◦ ϕ) d(ϕ?σ),(9.42)

where in the two last equalities, ν(x) is the outer normal vector of Bc(0) at x ∈
∂Bc(0).

We now estimate H ◦ ϕ∂ϕ?νH ◦ ϕ. It follows from (9.35) that

(9.43) H ◦ ϕ(x) =
x1

|x|α+
+mγ(Ω)

x1

|x|α−
+ o

(
x1

|x|α−

)
as x→ 0.

It follows from elliptic theory and (9.36) that for any i = 1, ..., n, we have that

(9.44) ∂i(β ◦ ϕ) = ∂i

(
mγ(Ω) x1

|x|α−

)
+ o (|x|−α−) as x→ 0.

Therefore,

∂i(H ◦ ϕ) = δi1|x|−α+ − α+x1xi|x|−α+−2

+mγ(Ω)
(
δi1|x|−α− − α−x1xi|x|−α−−2

)
+ o

(
|x|−α−

)
(9.45)

as x→ 0. Moreover, ϕ?ν(x) = x
|x|+O(|x|) as x→ 0. Therefore, the estimate (9.45)

yields

(9.46) ∂ϕ?ν(H ◦ ϕ) = −(α+ − 1)
x1

|x|α++1
− (α− − 1)mγ(Ω)

x1

|x|α−+1
+ o

(
|x|−α−

)
as x→ 0. By using that α+ + α− = n and α+ − α− < 1, (9.43) and (9.46) yield

−H ◦ ϕ∂ϕ?ν(H ◦ ϕ) =
(α+−1)x2

1

|x|2α++1 + (n− 2)mγ(Ω)
x2
1

|x|n+1 + o
(
|x|1−n

)
as x→ 0.

Integrating this expression on Bc(0)+ = Rn+∩∂Bc(0) and plugging into (9.42) yield∫
Ω\ϕ(Bc(0)+)

(
|∇H|2 − γ

|x|2
H2

)
dx =

(α+ − 1)cn−2α+ωn−1

2n
+ (n− 2)mγ(Ω)

ωn−1

2n
+ θc

where limc→0 θc = 0. Here, we have used that∫
Sn−1
+

x2
1 dσ =

1

2

∫
Sn−1

x2
1 dσ =

1

2n

∫
Sn−1

|x|2 dσ =
ωn−1

2n
, ωn−1 :=

∫
Sn−1

dσ.

This equality and (9.41) prove (9.40).

We now claim that∫
Ω

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx = λ

∫
Rn+

U2?(s)

|x|s
dx

+mγ(Ω) (n−2)ωn−1

2n εα+−α− + o (εα+−α−) as ε→ 0.(9.47)
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Indeed, define Uε(x) := ε−
n−2
2 U(ε−1x) for all x ∈ Rn+. The definition (9.38) of uε

rewrites as:

uε ◦ ϕ(x) = Uε(x) + ε
α+−α−

2 β ◦ ϕ(x) for all x ∈ Rn+ ∩ B̃δ.

Fix c ∈ (0, δ) that we will eventually let go to 0. Since dϕ0 is an isometry, we get
that ∫

ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx(9.48)

=

∫
Bc(0)+

(
|∇(uε ◦ ϕ)|2

ϕ?Eucl −
γ

|ϕ(x)|2
(uε ◦ ϕ)2

)
|Jac(ϕ)| dx

=

∫
Bc(0)+

(
|∇Uε|2ϕ?Eucl −

γ

|ϕ(x)|2
U2
ε

)
|Jac(ϕ)| dx

+2ε
α+−α−

2

∫
Bc(0)+

(
(∇Uε,∇(β ◦ ϕ))

ϕ?Eucl −
γ

|ϕ(x)|2
Uε(uε ◦ ϕ)

)
|Jac(ϕ)| dx

+εα+−α−
∫
Bc(0)+

(
|∇(β ◦ ϕ)|2

ϕ?Eucl −
γ

|ϕ(x)|2
(β ◦ ϕ)2

)
|Jac(ϕ)| dx

Since ϕ?Eucl = Eucl +O(|x|), |ϕ(x)| = |x|+O(|x|2) and β ∈ D1,2(Ω), we get that∫
ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx =

∫
Bc(0)+

(
|∇Uε|2Eucl −

γ

|x|2
U2
ε

)
| dx(9.49)

+O

(∫
Bc(0)+

|x|
(
|∇Uε|2Eucl +

U2
ε

|x|2

)
| dx

)

+2ε
α+−α−

2

∫
Bc(0)+

(
(∇Uε,∇(β ◦ ϕ))Eucl −

γ

|x|2
Uε(β ◦ ϕ)

)
dx

+O

(
ε
α+−α−

2

∫
Bc(0)+

|x|
(
|∇Uε| · |∇(β ◦ ϕ)|+ Uε|β ◦ ϕ|

|x|2

)
dx

)
+ εα+−α−θεc

as ε→ 0. The pointwise estimates (9.37) and (9.44) yield∫
ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx =

∫
Bc(0)+

(
|∇Uε|2Eucl −

γ

|x|2
U2
ε

)
dx

+2ε
α+−α−

2

∫
Bc(0)+

(
(∇Uε,∇(β ◦ ϕ))Eucl −

γ

|x|2
Uε(β ◦ ϕ)

)
dx

+εα+−α−θεc

as ε→ 0. Integrating by parts yields∫
ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx

=

∫
Bc(0)+

(
−∆Uε −

γ

|x|2
Uε

)
Uε dx+

∫
∂(Bc(0)+)

Uε∂νUε dσ

+2ε
α+−α−

2

(∫
Bc(0)+

(
−∆Uε −

γ

|x|2
Uε

)
β ◦ ϕdx+

∫
∂(Bc(0)+)

β ◦ ϕ∂νUε dσ

)
+εα+−α−θεc
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as ε→ 0. Since both U and β ◦ ϕ vanish on ∂Rn+ \ {0}, we get that∫
ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx(9.50)

=

∫
Bc(0)+

(
−∆Uε −

γ

|x|2
Uε

)
Uε dx+

∫
Rn+∩∂Bc(0)

Uε∂νUε dσ

+2ε
α+−α−

2

(∫
Bc(0)+

(
−∆Uε −

γ

|x|2
Uε

)
β ◦ ϕdx+

∫
Rn+∩∂Bc(0)

β ◦ ϕ∂νUε dσ

)
+εα+−α−θεc

as ε→ 0. The asymptotic estimate (9.37) of U and Lemma 6.5 yield (after a Kelvin
transform)

∂νUε = −(α+ − 1)ε
α+−α−

2 x1|x|−α+−1 + o
(
ε
α+−α−

2 |x|−α+

)
as ε→ 0 uniformly on compact subsets of Rn+ \ {0}. We then get that

β ◦ ϕ∂νUε = ε
α+−α−

2

(
−mγ(Ω)(α+ − 1)x2

1|x|−n−1 + o
(
|x|1−n

))
and

Uε∂νUε = εα+−α−
(
−(α+ − 1)x2

1|x|−2α+−1 + o
(
|x|1−2α+

))
as ε → 0 uniformly on compact subsets of Rn+ \ {0}. Plugging these identities in
(9.51) and using equation (9.7) yield, as ε→ 0,

∫
ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx =

∫
Bc(0)+

λ
U

2?(s)
ε

|x|s
dx− (α+ − 1)

ωn−1

2n
cn−2α+εα+−α−

+2ε
α+−α−

2

∫
Bc(0)+

λ
U

2?(s)−1
ε

|x|s
β ◦ ϕdx

−(α+ − 1)
ωn−1

n
mγ(Ω)εα+−α− + εα+−α−θεc(9.51)

Note that as ε→ 0,∫
Bc(0)+

λ
U

2?(s)
ε

|x|s
dx =

∫
Rn+
λ
U

2?(s)
ε

|x|s
dx+O

(∫
Rn+\Bc(0)+

U
2?(s)
ε

|x|s
dx

)

=

∫
Rn+
λ
U

2?(s)
ε

|x|s
dx+ o

(
εα+−α−

)
(9.52)

The expansion (9.36) and the change of variable x := εy yield as ε→ 0,
(9.53)∫

Bc(0)+

λ
U

2?(s)−1
ε

|x|s
β ◦ ϕdx = λmγ(Ω)ε

α+−α−
2

∫
Rn+

U2?(s)−1

|y|s
y1

|y|α−
dy + ε

α+−α−
2 θcε
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Integrating by parts, and using the asymptotics (9.37) for U yield

λ

∫
Rn+

U2?(s)−1

|y|s
y1

|y|α−
dy = lim

R→+∞

∫
BR(0)+

λ
U2?(s)−1

|y|s
y1

|y|α−
dy

= lim
R→+∞

∫
BR(0)+

(
−∆U − γ

|y|2
U

)
y1

|y|α−
dy

= lim
R→+∞

∫
BR(0)+

U

(
−∆− γ

|y|2

)(
y1

|y|α−

)
dy

−
∫
∂BR(0)+

∂νU
y1

|y|α−
dσ

= (α+ − 1)
ωn−1

2n
.(9.54)

Putting together (9.52), (9.53) and (9.54) yield

∫
Ω

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx = λ

∫
Rn+

U2?(s)

|x|s
dx

+mγ(Ω)
(n− 2)ωn−1

2n
εα+−α− + o

(
εα+−α−

)
as ε→ 0. This finally yields (9.47).

We finally claim that

∫
Ω

u
2?(s)
ε

|x|s
dx =

∫
Rn+

U2?(s)

|x|s
dx+

2?(s)

λ
mγ(Ω)

(α+ − 1)ωn−1

2n
εα+−α−

+o
(
εα+−α−

)
as ε→ 0.(9.55)

Indeed, fix c > 0. Due to estimates (9.36) and (9.37), we have that

∫
Ω

u
2?(s)
ε

|x|s
dx =

∫
ϕ(Bc(0)+)

u
2?(s)
ε

|x|s
dx+ o

(
εα+−α−

)
=

∫
Bc(0)+

|Uε + ε
α+−α−

2 β ◦ ϕ|2?(s)

|ϕ(x)|s
|Jac(ϕ)| dx+ o

(
εα+−α−

)
=

∫
Bc(0)+

|Uε + ε
α+−α−

2 β ◦ ϕ|2?(s)

|x|s
|(1 +O(|x|)) dx+ o

(
εα+−α−

)
as ε→ 0. One can easily check that there exists C > 0 such that for all X,Y ∈ R,
(9.56)

||X + Y |2
?(s) − |X|2

?(s) − 2?(s)|X|2
?(s)−2XY | ≤ C

(
|X|2

?(s)−2|Y |2 + |Y |2
?(s)
)
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Therefore, using the asymptotics (9.36) and (9.37) of U and β, we get that∫
Ω

u
2?(s)
ε

|x|s
dx =

∫
Bc(0)+

U
2?(s)
ε

|x|s
|(1 +O(|x|)) dx

+2?(s)ε
α+−α−

2

∫
Bc(0)+

U
2?(s)−1
ε

|x|s
β ◦ ϕ(1 +O(|x|)) dx

+ε
α+−α−

2 θcε

=

∫
Bc(0)+

U
2?(s)
ε

|x|s
dx+ 2?(s)ε

α+−α−
2

∫
Bc(0)+

U
2?(s)−1
ε

|x|s
β ◦ ϕdx

+ε
α+−α−

2 θcε as ε→ 0.

Then (9.55) follows from this latest identity, combined with (9.52), (9.53), and
(9.54).

We can finally use (9.47) and (9.55), and the fact that∫
Rn+

(|∇U |2 − γ

|x|2
U2) dx = λ

∫
Rn+

U2?(s)

|x|s
dx,

to get

JΩ
γ,s(uε) = J

Rn+
γ,s (U)

1−
(
α+ − n

2

)
ωn−1

nλ
∫
Rn+

U2?(s)

|x|s dx
mγ(Ω)εα+−α− + o

(
εα+−α−

) as ε→ 0,

which proves (9.6). This ends the proof of Proposition 9.3, and therefore, as already
mentioned, of Theorem 9.2.

10. Examples of domains with positive mass

We now assume that γ ∈ (n
2−1
4 , n

2

4 ). We have seen in Proposition 8.2 that the
mass is negative when Ω ⊂ Rn+. In particular, mγ(Ω) < 0 if Ω is convex and
γ < γH(Ω). In this section, we give examples of domains Ω with positive mass.

For any x0 ∈ Rn \ {0}, we define the inversion

ix0
(x) := x0 + |x0|2

x− x0

|x− x0|2

for all x ∈ Rn \ {x0}. The inversion ix0
is the identity map on ∂B|x0|(x0) (the ball

of center x0 and of radius |x0|), and in particular i(0) = 0.

Definition 10.1. We shall say that a domain Ω ⊂ Rn (0 ∈ ∂Ω) is smooth at
infinity if there exists x0 6∈ Ω such that ix0

(Ω) is a smooth bounded domain of Rn
having both 0 and x0 being on its boundary ∂(ix0(Ω)).

One can easily check that Rn+ is a smooth domain at infinity (take x0 := (−1, 0, . . . , 0)).
We now state and prove three propositions that are crucial for the constructions
that follow. The first one indicates that the notion of mass defined in Theorem 8.1
extends to unbounded domains that are smooth at infinity.
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Proposition 10.2. Let Ω be a domain that is smooth at infinity such that 0 ∈
∂Ω. We assume that γH(Ω) > n2−1

4 and fix γ ∈
(
n2−1

4 , γH(Ω)
)

. Then, up to a

multiplicative constant, there exists a unique function H ∈ C2(Ω \ {0}) such that

(10.1)


−∆H − γ

|x|2H = 0 in Ω

H > 0 in Ω
H = 0 on ∂Ω \ {0}

H(x) ≤ C|x|1−α+(γ) for all x ∈ Ω.

Moreover, there exists c1 > 0 and c2 ∈ R such that

H(x) = c1
d(x, ∂Ω)

|x|α+(γ)
+ c2

d(x, ∂Ω)

|x|α−(γ)
+ o

(
d(x, ∂Ω)

|x|α−(γ)

)
as x→ 0.

We define the mass mγ(Ω) := c2
c1

, which is independent of the choice of H in (10.1).

With this notion of mass, we will be in a position to prove the following continuity
result.

Proposition 10.3. Let Ω ⊂ Rn be smooth at infinity such that 0 ∈ ∂Ω. We assume

that γH(Ω) > n2−1
4 , and fix γ ∈

(
n2−1

4 , γH(Ω)
)

. For any R > 0, let DR be a smooth

domain of Rn such that

• BR(x0) ⊂ DR ⊂ B2R(x0),
• Ω ∩DR is a smooth domain of Rn.

Let Φ ∈ C∞(R× Rn,Rn) be such that

• Φt := Φ(t, ·) is a smooth diffeomorphism of Rn,
• Φt(x) = x for all |x| > 1/2 and all t ∈ R,
• Φt(0) = 0 for all t ∈ R,
• Φ0 = IdRn .

Set Ωt,R := Φt(Ω) ∩DR. Then

lim inf
t→0, R→+∞

γH(Ωt,R) ≥ γH(Ω).

Therefore, for t → 0, R → +∞, we have that γH(Ωt,R) > n2−1
4 and mγ(Ωt,R) is

well defined. In addition,

lim
t→0, R→+∞

mγ(Ωt,R) = mγ(Ω).

As a consequence of the above, we shall be able to construct smooth bounded
domains with positive or negative mass with any behavior at 0.

Proposition 10.4. Let ω be a smooth open set of Rn. Then, there exist Ω+,Ω−
two smooth bounded domains of Rn with Hardy constants > n2−1

4 , and there exists
r0 > 0 such that

Ω+ ∩Br0(0) = Ω− ∩Br0(0) = ω ∩Br0(0),

and for any γ ∈ (n
2−1
4 ,min{γH(Ω+), γH(Ω−)}), we have that

mγ(Ω+) > 0 > mγ(Ω−).
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The remainder of this section will be devoted to the proof of these three proposi-
tions. As a preliminary remark, we claim that if Ω is a domain of Rn such that
0 ∈ ∂Ω and Ω is smooth at infinity, then

(10.2) lim inf
t→0,R→∞

γH(Ωt,R) ≥ γH(Ω),

where Ωt,R are defined as in Proposition 10.3. Indeed, by definition, γH(Ωt,R) ≥
γH(Ωt) = γH(Φt(Ω)). Inequality (10.2) then follows from the limit (3.7) of Lemma
3.2. We shall proceed in 7 steps.

Step 1: Reformulation via the inversion. For convenience, up to a rotation
and a dilation, we can assume that x0 := (−1, 0, . . . , 0) ∈ Rn and we define the
inversion

i(x) := x0 +
x− x0

|x− x0|2
for all x ∈ Rn \ {x0}.

For any u ∈ C2(U), where U is a domain of Rn we define its Kelvin transform

û : Û → R by

û(x) := |x− x0|2−nu(i(x)) for all x ∈ Û := i−1(U \ {x0}).
The Kelvin transform leaves the Laplacian invariant in the following sense:

(10.3) −∆û(x) = |x− x0|−(n+2)(−∆u)(i(x)) for all x ∈ Û .

Define Ω̃ := i(Ω), Φ̃(t, x) := i◦Φ(t, i(x)) for (t, x) ∈ R×Rn, and D̃r := Rn\i(Dr−1)
(i.e., the complement in Rn). Here, note that R → +∞ in Proposition 10.3 is
equivalent to r → 0 in here. We then have that

0, x0 ∈ ∂Ω̃ and Ω̃ is a smooth bounded domain of Rn.

Note that Φ̃ ∈ C∞(R× Rn,Rn) is such that

• For any t ∈ (−2, 2), Φ̃t := Φ̃(t, ·) is a C∞−diffeomorphism onto its open

image Φ̃t(Rn).

• Φ̃0 = Id,
• Φ̃t(0) = 0 for all t ∈ (−2, 2),

• Φ̃t(x) = x for all t ∈ (−2, 2) and all x ∈ B2δ(x0) with δ < 1/4.

We define
Ω̃t := Φ̃t(Ω̃).

The sets D̃r satisfy the following properties:

• Br/2(x0) ⊂ D̃r ⊂ Br(x0),

• Ω̃t,r := Ω̃t \ D̃r is a smooth domain of Rn.

In particular, we have that

Ω̃t,r = i(Ωt,r−1).

Let u ∈ C2(Ωt,r \ {0}) be such that

(10.4) −∆u− γ

|x|2
u = 0 in Ωt,r , u > 0 in Ωt,r , u = 0 on ∂Ωt,r.

The existence of u follows from Theorem 8.1. Consider the Kelvin transform of u,
that is

ũ(x) := |x− x0|2−nu(i(x)) for all x ∈ Ω̃t,r.

It then follows from (10.3) that

−∆ũ− V ũ = 0 in Ω̃t,r,
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where

(10.5) V (x) :=
γ

|x|2|x− x0|2
for x ∈ Rn \ {0, x0}.

It is easy to check that

V (x) =
γ +O(|x|)
|x|2

as x→ 0 and V (x) =
γ +O(|x− x0|)
|x− x0|2

as x→ x0

The coercivity of −∆ − γ|x|−2 on Ω (since γ < γH(Ω)) yields the coercivity of

−∆− V on Ω̃, that is there exists c0 > 0 such that∫
Ω̃

(
|∇u|2 − V (x)u2

)
dx ≥ c0

∫
Ω̃

|∇u|2 dx for all u ∈ D1,2(Ω̃).

From now on, we should be able to transfer the analysis to the bounded domain Ω̃.

Step 2: Perturbation of the domain via the two singular points 0 and x0.
We shall need the following.

Proposition 10.5. For any t ∈ (−1, 1), there exists ut ∈ C2(Ω̃t \ {0, x0}) such
that

(10.6)


−∆ut − V ut = 0 in Ω̃t

ut > 0 in Ω̃t
ut = 0 on ∂Ω̃t \ {0, x0}

ut(x) ≤ C|x|1−α+(γ) + C|x− x0|1−α−(γ) for x ∈ Ω̃t.

Moreover, we have that

(10.7) ut(x) =
d(x, ∂Ω̃t)

|x|α+(γ)
(1 +O(|x|α+(γ)−α−(γ)))

as x→ 0, uniformly wrt t ∈ (−1, 1).

Proof of Proposition 10.5. We construct approximate singular solutions as in Sec-
tion 5. For all t ∈ (−2, 2), there exists a chart ϕt that satisfies (5.5) to (5.10) for

Ω̃t. Without restriction, we assume that limt→0 ϕt = ϕ0 in Ck(B̃2δ,Rn). We define

a cut-off function ηδ such that ηδ(x) = 1 for x ∈ B̃δ and ηδ(x) = 0 for x 6∈ B̃2δ. As

in (5.12), we define uα+(γ),t ∈ C2(Ω̃t \ {0}) with compact support in ϕt(B̃2δ) such
that

(10.8) uα+,t◦ϕt(x1, x
′) := ηδ(x1, x

′)x1|x|−α+(1+Θt(x)) for all (x1, x
′) ∈ B̃2δ\{0},

where Θt(x1, x
′) := e−

1
2x1Ht(x

′) − 1 for all x = (x1, x
′) ∈ B̃2δ and all t ∈ (−2, 2).

Here, Ht(x
′) is the mean curvature of ∂Ω̃t at the point ϕt(0, x

′). Note that
limt→0 Θt = Θ0 in Ck(U). Arguing as is Section 5, we get that

(−∆− V )uα+,t = O(d(x, ∂Ω̃t)|x|−α+(γ)−1) in Ω̃t ∩ B̃δ
uα+,t > 0 in Ω̃t ∩ B̃δ
uα+,t = 0 on ∂Ω̃t \ {0},

and

uα+,t(x) =
d(x, ∂Ω̃t)

|x|α+(γ)
(1 +O(|x|) as x→ 0.

The construction in Section 5 also yields

(10.9) lim
t→0

uα+,t ◦ Φt = uα+,0 in C2
loc(Ω̃ \ {0}).
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Note also that all these estimates are uniform in t ∈ (−1, 1). In particular, defining

(10.10) ft := −∆uα+,t − V uα+,t,

then there exists C > 0 such that

(10.11) |ft(x)| ≤ Cd(x, ∂Ω̃t)|x|−α+(γ)−1 ≤ C|x|−α+(γ)

for all t ∈ (−1, 1) and all x ∈ Ω̃t ∩ B̃δ. Therefore, since γ > n2−1
4 , it follows from

(10.9) and this pointwise control that ft ∈ L
2n
n+2 (Ω̃t) for all t ∈ (−1, 1) and that

(10.12) lim
t→0
‖ft ◦ Φt − f0‖

L
2n
n+2 (Ω̃)

= 0.

For any t ∈ (−1, 1), we let vt ∈ D1,2(Ω̃t) be such that

(10.13) −∆vt − V vt = ft weakly in D1,2(Ω̃t).

The existence follows from the coercivity of −∆−V on Ω̃t, which follows itself from
the coercivity on Ω̃ = Ω̃0. We then get from (10.12) and the uniform coercivity on

Ω̃t that

lim
t→0

vt ◦ Φt = v0 in D1,2(Ω̃) and C1
loc(Ω̃ \ {0, x0}).

It follows from the construction of the mass in Section 8 (see the proof of Theorem
8.1) that around 0, |vt(x)| is bounded by |x|1−α−(γ). Around x0, −∆vt − V vt = 0
and the regularity Theorem 6.1 yields a control by |x− x0|1−α−(γ). These controls
are uniform with respect to t ∈ (−1, 1). Therefore, there exists C > 0 such that

|vt(x)| ≤ Cd(x, ∂Ω̃t)
(
|x|−α−(γ) + |x− x0|−α−(γ)

)
for all t ∈ (−1, 1) and all x ∈ Ω̃t. Now define

ut(x) := uα+,t(x)− vt(x)

for all t ∈ (−1, 1) and x ∈ Ω̃t. This function satisfies all the requirements of
Proposition 10.5. �

Step 3: Chopping off a neighborhood of x0: We now study Ω̃t,r = Ω̃t \ D̃r.

For r ∈ (0, δ/2), note that Ω̃t,r ∩ Bδ(0) = Ω̃ ∩ Bδ(0). We shall now define a mass
associated to the potential V , and prove its continuity.

Step 3.1: The function ft : Ω̃t → R defined in (10.10) has compact support in

B2δ(0), therefore, it is well-defined also on Ω̃t,r. We define vt,r ∈ D1,2(Ω̃t,r) such
that

(10.14) −∆vt,r − V vt,r = ft weakly in D1,2(Ω̃t,r).

Since the operator −∆−V is uniformly coercive on Ω̃t, it is also uniformly coercive
on Ω̃t,r with respect to (t, r), so that the definition of vt,r via (10.14) makes sense.
The uniform coercivity and (10.10)-(10.11) yield the existence of C > 0 such that

‖vt,r‖D1,2(Ω̃t,r) ≤ C for all t, r. Since x0 6∈ Ω̃t,r, (10.10)-(10.11) and regularity theory

yield vt,r ∈ C1(Ω̃t,r \ {0}) and for all ρ > 0, there exists C(ρ) > 0 independent of t
and r such that

(10.15) ‖vt,r‖C1(Ω̃t,r\(Bρ(0)∪Bρ(x0))) ≤ C(ρ).

Step 3.2: We claim that there exists C > 0 such that

(10.16) |vt,r(x)| ≤ Cd(x, ∂Ωt)
(
|x|−α−(γ) + |x− x0|−α−(γ)

)
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for all t ∈ (−1, 1) and all x ∈ Ω̃t,r. Indeed, around 0, Ω̃t,r coincides with Ω̃t, and
the proof of the control goes as in the construction of the mass in Section 8 (see
the proof of Proposition 8.1). The argument is different around x0. We let r0 > 0

be such that Ω̃t ∩B2r0(x0) = Ω̃∩B2r0(x0). Therefore, for r ∈ (0, r0), we have that

Ω̃t,r ∩B2r0(x0) = (Ω̃ \ D̃r) ∩B2r0(x0).

Arguing as in the proof of Proposition 5.1, there exists ũα− ∈ C∞(Ω̃ \ {0}) and
τ ′ > 0 such that 

ũα− > 0 in Ω̃ ∩B2r0(x0)

ũα− = 0 in (∂Ω̃) ∩B2r0(x0)

−∆ũα− − V ũα− > 0 in Ω̃ ∩B2r0(x0).

Moreover, we have that

(10.17) ũα−(x) =
d(x, ∂Ω̃)

|x− x0|α−
(1 +O(|x− x0|)) as x→ x0, x ∈ Ω̃.

Therefore, since vt,r vanishes on B2r0(x0) ∩ ∂(Ω̃ \ D̃r), it follows from (10.15) and
the properties of ũα− that there exists C > 0 such that

vt,r ≤ Cũα− on ∂
(

(Ω̃ ∩ D̃r) ∩B2r0(x0)
)
.

Since in addition (−∆ − V )vt,r = 0 < (−∆ − V )(Cũα−), it follows from the com-

parison principle that vt,r ≤ Cũα− in (Ω̃ \ D̃r) ∩ B2r0(x0). Arguing similarly with
−vt,r and using the asymptotic (10.17), we get (10.16).

Step 3.3: We claim that

(10.18) lim
t,r→0

vt,r ◦ Φt = v0 in D1,2(Ω̃)loc,{x0}c ∩ C
1
loc(Ω̃ \ {0, x0}),

where v0 was defined in (10.13) and convergence in D1,2(Ω̃)loc,{x0}c means that

limt,r→0 ηvt,r◦Φt = ηv0 inD1,2(Ω̃) for all η ∈ C∞(Rn) vanishing around x0. Indeed,

vt,r ◦Φt ∈ D1,2(Ω̃ \ D̃r) ⊂ D1,2(Ω̃). Uniform coercivity yields weak convergence in

D1,2(Ω̃) to ṽ ∈ D1,2(Ω̃). Passing to the limit, one gets (−∆ − V )ṽ = f0, so that

ṽ = v0. Uniqueness then yields convergence in C1
loc(Ω̃ \ {0, x0}). With a change

of variable, equation (10.14) yields an elliptic equation for vt,r ◦ Φt. Multiplying
this equation by η2 · (vt,r ◦Φt − v0) for η ∈ C∞(Rn) vanishing around x0, one gets

convergence of ηvt,r ◦ Φt to ηv0 in D1,2(Ω̃). This proves the claim.

It follows from the construction of the mass (see Theorem 8.1) and the regularity
Theorem 6.1 that there exists K0 ∈ R and for all (t, r) small, there exists Kt,r ∈ R
such that

(10.19) vt,r(x) = Kt,r
d(x, ∂Ω̃t)

|x|α−(γ)
+ o

(
d(x, ∂Ω̃t)

|x|α−(γ)

)
and

(10.20) v0(x) = K0
d(x, ∂Ω̃)

|x|α−(γ)
+ o

(
d(x, ∂Ω̃)

|x|α−(γ)

)
as x ∈ Ω̃ goes to 0. Note that around 0, Ω̃t,r coincides with Ω̃t.



66 NASSIF GHOUSSOUB AND FRÉDÉRIC ROBERT

Step 3.4: We claim that

(10.21) lim
t,r→0

Kt,r = K0.

We only give a sketch. Noting ṽt,r := vt,r ◦ Φt, the proof relies on (10.18) and the
fact that

−∆
Φ?tEuclṽt,r − V ◦ Φtṽt,r = ft ◦ Φt in Ω̃ ∩Bδ(0).

The comparison principle and the definitions (10.19) and (10.20) then yield (10.21).

Step 4: Proof of Proposition 10.2. We define H̃0(x) := uα+(γ),0(x)− v0(x) for

all x ∈ Ω̃ \ {0, x0}, and consider its Kelvin transform

(10.22) H0(x) := |x− x0|2−nH̃0(i(x)) = |x− x0|2−n
(
uα+(γ),0 − v0

)
(i(x))

for all x ∈ Ω. It follows from (10.3), the definitions of uα+(γ),0 and v0 that H0

satisfies the following properties:

(10.23)


−∆H0 − γ

|x|2H0 = 0 in Ω

H0 > 0 in Ω
H0 = 0 in ∂Ω \ {0}.

Concerning the pointwise behavior, we have that

(10.24) H0(x) =
d(x, ∂Ω)

|x|α+
−K0

d(x, ∂Ω)

|x|α−
+ o

(
d(x, ∂Ω)

|x|α−

)
as x→ 0, x ∈ Ω, and

(10.25) H0(x) ≤ C|x|1−α+ for all x ∈ Ω, |x| > 1.

This proves the existence part in Proposition 10.2. We now deal with the unique-
ness. We let H ∈ C2(Ω \ {0}) be as in Proposition 10.2, and consider its Kelvin

transform H̃(x) := |x− x0|2−nH(i(x)) for all x ∈ Ω̃ \ {0, x0}. The transformation
law (10.3) yields

(10.26)


−∆H̃ − V H̃ = 0 in Ω̃

H̃ > 0 in Ω̃

H̃ = 0 in ∂Ω̃ \ {0, x0}.

Moreover, we have that H̃(x) ≤ C|x|1−α+(γ) + C|x − x0|1−α−(γ) for all x ∈ Ω̃. It
then follows from Theorem 7.1 that there exist C1, C2 > 0 such that

(10.27) H̃(x) ∼x→0 C1
d(x, ∂Ω̃)

|x|α
and H̃(x) ∼x→x0

C2
d(x, ∂Ω̃)

|x− x0|α−(γ)
,

where α ∈ {α−(γ), α+(γ)}. We claim that α = α+(γ). Indeed, otherwise, we would

have H̃ ∈ D1,2(Ω̃) (see Theorem 7.1) and then (10.26) and coercivity would yield

H̃ ≡ 0, which is a contradiction. Therefore α = α+(γ). By the same reasoning,

the estimates (10.27) hold for H̃0 (with different constants C1, C2). Arguing as in

the proof of Theorem 8.1, we get that there exists λ > 0 such that H̃ = λH̃0, and
therefore H = λH0. This proves uniqueness and completes the proof of Proposition
10.2.

As a consequence of (10.24), the mass mγ(Ω) is well-defined and we have that

(10.28) mγ(Ω) = −K0.
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Step 5: convergence of the mass: We claim that

(10.29) lim
t→0,R→∞

mγ(Ωt,R) = mγ(Ω).

We define H̃t,r := uα+,t − vt,r so that

−∆H̃t,r − V H̃t,r = 0 in Ω̃t,r.

It follows from (10.7) and (10.19) that H̃t,r > 0 around 0. From the maximum

principle, we deduce that H̃t,r > 0 on Ω̃t,r and that it vanishes on ∂Ω̃t,r \ {0, x0}.
It follows from (10.7) and (10.19) that

H̃t,r(x) =
d(x, ∂Ω̃t,r)

|x|α+
−Kt,r

d(x, ∂Ω̃t,r)

|x|α−
+ o

(
d(x, ∂Ω̃t,r)

|x|α−

)
as x → 0, x ∈ Ω̃t,r. Coming back to Ωt,R with R = r−1 via the inversion i with

Ht,R(x) := |x− x0|2−nH̃t,r(i(x)) for all x ∈ Ωt,R, we get that
−∆Ht,R − γ

|x|2Ht,R = 0 in Ωt,R
Ht,R > 0 in Ωt,R
Ht,R = 0 in ∂Ωt,R \ {0}

and

Ht,R(x) =
d(x, ∂Ωt,R)

|x|α+
−Kt,r

d(x, ∂Ωt,R)

|x|α−
+ o

(
d(x, ∂Ωt,R)

|x|α−

)
as x → 0, x ∈ Ωt,R. Therefore, it follows from the definition of the mass (see
Theorem 8.1) that mγ(Ωt,R) = −Kt,r for all t, r, R = r−1. Claim (10.29) then
follows from (10.21) and (10.28).

This ends the proofs of Propositions 10.2 and 10.3.

Step 6: In order to prove Proposition 10.4, we need to exhibit prototypes of
unbounded domains with either positive or negative mass.

Proposition 10.6. Let Ω be a domain such that 0 ∈ ∂Ω and Ω is smooth at

infinity. Assume that γH(Ω) > n2−1
4 and fix γ ∈

(
n2−1

4 , γH(Ω)
)

. Then mγ(Ω) > 0

if Rn+ ( Ω, and mγ(Ω) < 0 if Ω ( Rn+.

Proof of Proposition 10.6 : With H0 defined as in (10.22), we set

U(x) := H0(x)− x1|x|−α+ for all x ∈ Ω.

We first assume that Rn+ ( Ω . We then have that

(10.30)

{
−∆U − γ

|x|2U = 0 in Rn+
U 	 0 in ∂Rn+ \ {0}.

We claim that

(10.31)

∫
Rn+
|∇U|2 dx < +∞.

Indeed, at infinity, this is the consequence of the fact that |∇U|(x) ≤ C|x|−α+

for all x ∈ Rn+ large, this latest bound being a consequence of (10.25) combined
with elliptic regularity theory. At zero, the argument is different. Indeed, one
first notes that d(x, ∂Ω′) = x1 + O(|x|2) for x ∈ Rn+ close to 0, and therefore,
U(x) = O(|x|1−α−) for x → 0. The control on the gradient |∇U|(x) ≤ C|x|−α−
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at 0 follows from the construction of H̃0. This yields integrability at 0 and proves
(10.31).

We claim that U > 0 in Rn+. Indeed, it follows from (10.30) and (10.31) that
U− ∈ D1,2(Rn+). Multiplying equation (10.23) by U−, integrating by parts on
(BR(0) \ Bε(0)) ∩ Rn+, and letting ε → 0 and R → +∞ by using (10.31), one gets
U− ≡ 0, and then U ≥ 0. The result follows from Hopf’s maximum principle.

We now claim that

(10.32) mγ(Ω) > 0.

Indeed, since U > 0 in Rn+, there exists c0 > 0 such that U(x) ≥ c0x1|x|−α− for all
x ∈ ∂(B1(0)+). It then follows from (10.31), (10.30) and the comparison principle
that U(x) ≥ c0x1|x|−α− for all x ∈ B1(0)+. The expansion (10.24) then yields
−K0 ≥ c0 > 0. This combined with (10.28) proves the claim.

When Ω ⊂ Rn+, the argument is similar except that one works on Ω (and not Rn+)
and that U � 0 in ∂Ω \ {0}. This ends the proof of Proposition 10.6.

Step 7: Proof of Proposition 10.4: Let ω be a smooth domain of Rn such
that 0 ∈ ∂Ω. Up to a rotation, there exists ϕ ∈ C∞(Rn−1) such that ϕ(0) = 0,
∇ϕ(0) = 0 and there exists δ0 > 0 such that

ω ∩Bδ0(0) = {x1 > ϕ(x′)/ (x1, x
′) ∈ Bδ0(0)}.

Let η ∈ C∞c (Bδ0(0)) be such that η(x) = 1 for all x ∈ Bδ0/2(0), and define

Φt(x) :=

(
x1 + η(x)

ϕ(tx′)

t
, x′
)

for all t > 0 and x ∈ Rn,

and Φ0 := IdRn . It is easy to see that Φt satisfies the hypotheses of Proposition
10.3. Moreover, for 0 < t < 1, we have that

ω

t
∩ Φt(Bδ0/2(0)) = Φt(Rn+ ∩Bδ0/2(0)).

We let Ω be a smooth domain at infinity such that

(10.33) Ω ∩B1(0) = Rn+ ∩B1(0) and γH(Ω) >
n2 − 1

4
.

(for example, Rn+), and let Ωt,R be as in Proposition 10.3. It is easy to see that

ω ∩ tΦt(Bδ0/2(0)) = tΩt,R ∩ tΦt(Bδ0/2(0)).

Therefore, for t > 0 small enough, we have that

ω ∩Btδ0/3(0) = tΩt,R ∩Btδ0/3(0).

Moreover, γH(tΩt,R) = γH(Ωt,R) > (n2 − 1)/4 as t→ 0 and R→ +∞ (see (10.2)).
Concerning the mass, we have that

tα+(γ)−α−(γ)mγ(tΩt,R) = mγ(Ωt,R)→ mγ(Ω) as t→ 0, R→ +∞.
We now choose Ω appropriately.
To get a negative mass, we choose Ω smooth at infinity such that Ω ∩ B1(0) =
Rn+ ∩B1(0) and Ω ( Rn+. Then γH(Ω) = n2/4, (10.33) holds and Proposition 10.6
yields mγ(Ω) < 0. With this choice of Ω, we take Ω− := Ωt,R for t small and R
large.

To get a positive mass, we choose Rn+ ( Ω such that (10.33) holds (this is possible

for any value of γH(Ω) arbitrarily close to n2

4 , see point (5) of Proposition 3.1). Then
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Proposition 10.6 yields mγ(Ω) > 0. With this choice of Ω, we take Ω+ := Ωt,R for
t small and R large.

This proves Proposition 10.4.

11. The remaining cases corresponding to s = 0 and n = 3

The remaining situation not covered by Proposition 9.1 and Theorem 9.2 is s = 0,

n = 3 and γ ∈ (0, n
2

4 ). Note first, that if γ ≥ γH(Ω), we have from Proposition
4.1 and Theorem 4.4 that µγ,0(Ω) ≤ 0 < µγ,0(Rn+) and the existence of extremals
is guaranteed. Another situation is when µγ,0(Rn+) does have an extremal U . In
this case, Proposition 9.3 provides sufficient conditions for µγ,0(Ω) < µγ,0(Rn+),
and hence there are extremals by again using Theorem 4.4. The rest of this section
addresses the remaining case, that is when γ ∈ (0, γH(Ω)) and when µγ,0(Rn+) has
no extremal, and therefore µγ,0(R3

+) = K(3, 2)−2 according to Theorem 12.1.

We first define the “interior” mass in the spirit of Schoen-Yau [49].

Proposition 11.1. Let Ω ⊂ R3 be an open smooth bounded domain such that
0 ∈ ∂Ω. Fix x0 ∈ Ω. If γ ∈ (0, γH(Ω)), then the equation

−∆G− γ
|x|2G = 0 in Ω \ {x0}

G > 0 in Ω \ {x0}
G = 0 on ∂Ω \ {0}

has a solution G ∈ C2(Ω\{0, x0})∩D2
1(Ω\{x0})loc,0, that is unique up to multipli-

cation by a constant. Moreover, for any x0 ∈ Ω, there exists a unique Rγ(x0) ∈ R
independent of the choice of G and cG > 0 such that

G(x) = cG

(
1

|x− x0|
+Rγ(x0)

)
+ o(1) as x→ x0.

Proof of Proposition 11.1. Since γ < γH(Ω), the operator −∆− γ|x|−2 is coercive
and we can consider G to be its Green’s function at x0 on Ω with Dirichlet boundary
condition. In particular, for any ϕ ∈ C∞c (Ω), we have that

ϕ(x) =

∫
Ω

Gx(y)

(
−∆ϕ(y)− γϕ(y)

|y|2

)
dy for x ∈ Ω,

where Gx := G(x, ·). Fix x0 ∈ Ω and let η ∈ C∞c (Ω) be such that η(x) = 1 around
x0. Define the distribution βx0 : Ω→ R as

Gx0(x) = 1
ω2

(
η(x)
|x−x0| + βx0(x)

)
for all x ∈ Ω,

where ω2 := 4π is the volume of the canonical 2−sphere. Set

f(x) := −
(
−∆− γ

|x|2

)(
η(x)
|x−x0|

)
for all x 6= x0.

In particular, (
−∆− γ

|x|2

)
βx0 = f in the distributional sense.

On can easily see that there exists C > 0 such that

|f(x)| ≤ C|x− x0|−1 for all x ∈ Ω.

Therefore f ∈ L2(Ω) and, by uniqueness of the Green’s function (since the operator
is coercive), we have that βx0

∈ D1,2(Ω). It follows from standard elliptic theory
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that βx0
∈ C∞(Ω\{0, x0})∩C0,θ(Ω\Bδ(0)) for all θ ∈ (0, 1) and δ > 0. In addition,

for any θ ∈ (0, 1) and δ > 0, there exists Cθ > 0 such that

(11.1) |∇βx0
(x)| ≤ Cθ|x|θ−1 for all x ∈ Ω \Bδ(0).

Since f vanishes around 0, it follows from Theorem 6.1 and Lemma 6.5 that
(11.2)

βx0
(x) = O(|x|1−α−(γ)) and |∇βx0

(x)| = O(|x|−α−(γ)) when x→ 0.

We can therefore define the mass of Ω at x0 associated to the operator Lγ by

Rγ(Ω, x0) := βx0(x0).

One can easily check that this quantity is independent of the choice of η.

The uniqueness is proved as in Theorem 8.1. The behavior on the boundary is
given by Theorem 6.1 and the interior behavior around x0 is classical. This ends
the proof of Proposition 11.1. �

Lemma 11.2. Let Ω ⊂ R3 be an open smooth bounded domain such that 0 ∈ ∂Ω
and x0 ∈ Ω. Assume that γ ∈ (0, γH(Ω)) and that µγ,0(R3

+) = K(3, 2)−2. Then,
there exists a family (uε)ε in D1,2(Ω) such that

(11.3) JΩ
γ,0(uε) = 1

K(n,2)2

(
1− ω2Rγ(x0)

3
∫
R3 U

2? dx
ε+ o(ε)

)
as ε→ 0,

where U(x) := (1 + |x|2)−1/2 for all x ∈ R3 and 2? = 2?(0) = 2n
n−2 .

Proof of Lemma 11.2: We proceed as in Schoen [48] (see Druet [15, 16] and Jaber

[34]). The computations are similar to the case γ > n2−1
4 performed in Section 9.

For ε > 0, define the functions

uε(x) := η(x)
(

ε
ε2+|x−x0|2

) 1
2

+ ε
1
2 βx0

(x) for all x ∈ Ω.

One can easily check that uε ∈ D1,2(Ω). We now estimate JΩ
γ,0(uε).

In the sequel, Θc(ε) will denote any quantity such that

lim
c→0

lim
ε→0

Θc(ε)

ε
= 0.

We first claim that

(11.4)

∫
Ω\Bc(x0)

(
|∇uε|2 − γ

u2
ε

|x|2

)
dx = ω2c

−1ε+ ω2Rγ(x0)ε+ Θc(ε).

Indeed, it is clear that ε−
1
2uε → G′x0

:= ω2Gx0
in C2

loc(Ω \ {0, x0}). Therefore,
Lebesgue’s dominated convergence theorem yields

(11.5) lim
ε→0

∫
Ω\Bc(x0)

(
|∇uε|2 − γ u2

ε

|x|2

)
dx

ε
=

∫
Ω\Bc(x0)

(
|∇G′x0

|2 − γ
(G′x0

)2

|x|2

)
dx.
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Integrating by parts and using (11.2), as δ > 0 goes to 0, we have that

∫
Ω\Bc(x0)

(
|∇G′x0

|2 − γ
(G′x0

)2

|x|2

)
dx

=

∫
Ω\(Bc(x0)∪Bδ(0)

(
|∇G′x0

|2 − γ
(G′x0

)2

|x|2

)
dx+ o(1)

=

∫
Ω\(Bc(x0)∪Bδ(0)

(
−∆G′x0

− γ
G′x0

|x|2

)
G′x0

dx−
∫
∂Bc(x0)

G′x0
∂νG

′
x0
dσ

−
∫
∂Bδ(0)

G′x0
∂νG

′
x0
dσ + o(1)

= −
∫
∂Bc(x0)

G′x0
∂νG

′
x0
dσ +O(δn−1δ1−α−(γ)δ−α−(γ)) + o(1) as δ → 0.

Since α−(γ) < n/2, we then have that

∫
Ω\Bc(x0)

(
|∇G′x0

|2 − γ
(G′x0

)2

|x|2

)
dx = −

∫
∂Bc(x0)

G′x0
∂νG

′
x0
dσ.

With the definition of Rγ(x0) and (11.1), we have that G′x0
= c−1 +Rγ(x0)+O(cθ)

and ∂νG
′
x0

(x) = −c−2 +O(cθ−1) on ∂Bc(x0) as c→ 0. Therefore

−
∫
∂Bc(x0)

G′x0
∂νG

′
x0
dσ = ω2c

−1 + ω2Rγ(x0) +O(cθ) as c→ 0.

Combined with (11.5), this proves (11.4).
Now define for each ε > 0, the function

Uε(x) :=
(

ε
ε2+|x−x0|2

) 1
2

for all x ∈ R3,

and set U(x) := (1 + |x|2)−1/2 for all x ∈ R3. It is clear that ∆U = 3U2?−1. We
claim that

(11.6)

∫
Bc(x0)

(
|∇uε|2 − γ

u2
ε

|x|2

)
dx = 3

∫
R3

U2? dx− ω2c
−1ε+ Θc(ε).

Indeed, note first |uε(x)| ≤ C
√
ε|x − x0|−1 for all ε > 0 and all x ∈ Ω close to x0.

Therefore, for c > 0 small enough, we have that

(11.7)

∫
Bc(x0)

u2
ε

|x|2
dx = Θc(ε).
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Using that βx0
∈ D1,2(Ω) and integrating by parts, we get that∫

Bc(x0)

|∇uε|2 dx =

∫
Bc(x0)

|∇(Uε +
√
εβx0

)|2 dx

=

∫
Bc(x0)

|∇Uε|2 dx+ 2
√
ε

∫
Bc(x0)

∇Uε∇βx0
dx

+ε

∫
Bc(x0)

|∇βx0
|2 dx

=

∫
Bc(x0)

Uε(−∆Uε) dx+

∫
∂Bc(x0)

Uε∂Uε dσ

+2
√
ε

∫
Bc(x0)

βx0
(−∆Uε) dx

+2
√
ε

∫
∂Bc(x0)

βx0
∂νUε dσ + Θc(ε)(11.8)

Since ε−1/2Uε → | · −x0|−1 in C1
loc(R3 \ {0}), we get that

(11.9)

∫
∂Bc(x0)

Uε∂νUε dσ = −ω2c
−1ε+ o(ε) as ε→ 0.

Using in addition that βx0 ∈ C0,θ around x0, we get as ε→ 0 and for c > 0 small,
that

(11.10)

∫
∂Bc(x0)

βx0∂νUε dσ = −
√
εω2Rγ(x0) +O(cθ

√
ε)

Plugging (11.9) and (11.10) into (11.8) yields∫
Bc(x0)

|∇uε|2 dx = 3

∫
Bc/ε(0)

U2? dx− ω2c
−1ε+ o(ε)(11.11)

+2
√
ε

∫
Bc(x0)

βx0
(−∆Uε) dx− 2εω2Rγ(x0) + Θc(ε).

It is easy to check that
∫
Bc/ε(0)

U2? dx =
∫
R3 U

2? dx+o(ε) as ε→ 0. For θ ∈ (1/2, 1)

we have that

(11.12)
∫
Bc(x0)

|∆Uε| · |x− x0|θ dx = o(ε) as ε→ 0.

Integrating by parts and using that ε−1/2Uε(x)→ |x− x0|−1 in C1
loc(R3 \ {0}), we

get that as ε→ 0,∫
Bc(x0)

−∆Uε dx = −
∫
∂Bc(x0)

∂νUε dσ

= −
√
ε

∫
∂Bc(x0)

∂ν |x− x0|−1 dσ + o(ε)

= ω2

√
ε+ o(ε)(11.13)

Plugging (11.12) and (11.13) into (11.11) and using that βx0(x) = Rγ(x0) +O(|x−
x0|θ), we get (11.6).

Putting together (11.4) and (11.5) yields

(11.14)
∫

Ω

(
|∇uε|2 − γ u2

ε

|x|2

)
dx = 3

∫
R3 U

2? dx+ ω2Rγ(x0)ε+ o(ε) as ε→ 0.
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We now claim that

(11.15)
∫

Ω
u2?

ε dx =
∫
R3 U

2? dx+ 2?

3 ω2Rγ(x0)ε+ o(ε) as ε→ 0.

Using (9.56), the boundedness of βx0
around x0, and the above computations, we

get that ∫
Ω

u2?

ε dx =

∫
Bc(x0)

u2?

ε dx+ o(ε)

=

∫
Bc(x0)

|Uε +
√
εβx0
|2
?

dx+ o(ε)

=

∫
Bc(x0)

U2?

ε dx+ 2?
√
ε

∫
Bc(x0)

βx0
U2?−1
ε dx

+O

(∫
Ω

(
εU2?−2

ε β2
x0

+ |
√
εβx0
|2
?
)
dx

)
+ o(ε)

=

∫
Bc/ε(0)

U2? dx+
2?

3
ω2Rγ(x0)ε+ o(ε)

=

∫
R3

U2? dx+
2?

3
ω2Rγ(x0)ε+ o(ε) as ε→ 0,

which proves (11.15).

Putting together (11.14) and (11.15) yields

(11.16)

∫
Ω

(
|∇uε|2 − γ u2

ε

|x|2

)
dx(∫

Ω
u2?
ε dx

) 2
2?

=
3
∫
R3 U

2? dx(∫
R3 U2? dx

) 2
2?

(
1− ω2Rγ(x0)

3
∫
R3 U2? dx

ε+ o(ε)

)
as ε → 0. Since ∆U = 3U2?−1 and U is an extremal for the Sobolev inequality
µ0,0(R3), we have that

JΩ
γ,0(uε) = 1

K(n,2)2

(
1− ω2Rγ(x0)

3
∫
R3 U

2? dx
ε+ o(ε)

)
as ε→ 0.

This proves Lemma 11.2. �

We finally get the following.

Theorem 11.3. Let Ω be a bounded smooth domain of R3 such that 0 ∈ ∂Ω.

(1) If γ ≥ γH(Ω), then there are extremals for µγ,0(Ω).
(2) If γ ≤ 0, then there are no extremals for µγ,0(Ω).
(3) If 0 < γ < γH(Ω) and there are extremals for µγ,0(Rn+), then there are

extremals for µγ,0(Ω) under either one of the following conditions:

• γ ≤ n2−1
4 and the mean curvature of ∂Ω at 0 is negative.

• γ > n2−1
4 and the mass mγ(Ω) is positive.

(4) If 0 < γ < γH(Ω) and there are no extremals for µγ,0(Rn+), then there are
extremals for µγ,0(Ω) if there exists x0 ∈ Ω such that Rγ(Ω, x0) > 0.

Proof of Theorem 11.3: The two first points of the theorem follow from Proposition
9.1 and Theorem 4.4. The third point follows from Proposition 9.3. For the fourth
point, in this situation, it follows from Theorem 12.1 below that µγ,0(Rn+) = 1

K(n,2)2 ,

and then Lemma 11.2 yields µγ,0(Ω) < µγ,0(Rn+), which yields the existence of
extremals by Theorem 4.4. This proves Theorem 11.3. �
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12. Appendix 1: Existence of extremals for µγ,s(Rn+) and other cones

The following result is used frequently throughout this memoir in the case of
Rn+. In this appendix we give proofs for any open connected cone of Rn, n ≥ 3,
centered at 0, that is

(12.1)

{
C is a domain (that is open and connected)

∀x ∈ C, ∀r > 0, rx ∈ C.

Fix γ < γH(C), then by the Hardy-Sobolev inequality, there exists µγ,s(C) > 0 such
that

(12.2) µγ,s(C) := inf
u∈D1,2(C)\{0}

∫
C

(
|∇u|2 − γ u2

|x|2

)
dx(∫

C
|u|2?(s)
|x|s dx

) 2
2?(s)

.

We consider the question of whether there is an extremal u0 ∈ D1,2(C) \ {0}
for µγ,s(C), that is if the latter achieves its infimum in (12.2). The question
of the extremals on general cones has been tackled by Egnell [17] in the case
{γ = 0 and s > 0}. Theorem 12.1 below has been noted in several contexts by
Bartsch-Peng-Zhang [3] and Lin-Wang [10]. We sketch an independent proof for
the convenience of the reader.

Theorem 12.1. We let C be a cone of Rn, n ≥ 3, as in (12.1), s ∈ [0, 2) and
γ < γH(C). Then,

(1) If {s > 0} or {s = 0, γ > 0 and n ≥ 4}, then extremals for µγ,s(C) exist.
(2) If {s = 0 and γ < 0}, there are no extremals for µγ,0(C).
(3) If {s = 0 and γ = 0}, there are extremals for µ0,0(C) if and only if there

exists z ∈ Rn such that (1+|x−z|2)1−n/2 ∈ D1,2(C) (in particular C = Rn).

Moreover, if there are no extremals for µγ,0(C), then µγ,0(C) = µ0,0(C), that is

(12.3) µγ,0(C) =
1

K(n, 2)2
:= inf

u∈D1,2(Rn)\{0}

∫
Rn |∇u|

2 dx(∫
Rn |u|2

? dx
) 2

2?
.

Remark: Note that the case when {s = 0, n = 3 and γ > 0} remains unsettled.
We isolate two corollaries. The first one is essentially what we need in our context

(C = Rn+). The second deals with the case C = Rn. There is no issue for n = 3 in
the second corollary.

Corollary 12.2. We let C be a cone of Rn, n ≥ 3, as in (12.1) such that C 6= Rn.
We let s ∈ [0, 2) and γ < γH(C). Then,

(1) If {s > 0} or {s = 0, γ > 0 and n ≥ 4}, then there are extremals for
µγ,s(C).

(2) If {s = 0 and γ ≤ 0}, there are no extremals for µγ,0(C).

Corollary 12.3. We let C be a cone of Rn, n ≥ 3, as in (12.1). We assume that
there exists z ∈ Rn such that (1 + |x− z|2)1−n/2 ∈ D1,2(C) (in particular C = Rn).
We fix s ∈ [0, 2) and γ < γH(C). Then,

(1) If {s > 0} or {s = 0 and γ ≥ 0}, then there are extremals for µγ,s(C).
(2) If {s = 0 and γ < 0}, there are no extremals for µγ,0(C).



HARDY-SCHRÖDINGER OPERATOR 75

Proof of Theorem 12.1: This goes as the classical proof of the existence of extremals
for the Sobolev inequalities using Lions’s concentration-compactness Lemmas ([40,
41], see also Struwe [51] for an exposition in book form).

We let (ũk)k ∈ D1,2(Rn+) be a minimizing sequence for µγ,s(C) such that∫
C

|ũk|2
?(s)

|x|s
dx = 1 and lim

k→+∞

∫
C

(
|∇ũk|2 −

γ

|x|2
ũ2
k

)
dx = µγ,s(C).

We use a concentration compactness argument in the spirit of Lions [40, 41]. For

any k, there exists rk > 0 such that
∫
Brk (0)∩C

|ũk|2
?(s)

|x|s dx = 1/2. We define uk(x) :=

r
n−2
2

k ũk(rkx) for all x ∈ C. Since C is a cone, we have that uk ∈ D1,2(C). We then
have that

(12.4) lim
k→+∞

∫
C

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx = µγ,s(C),

and

(12.5)

∫
C

|uk|2
?(s)

|x|s
dx = 1 ,

∫
B1(0)∩C

|uk|2
?(s)

|x|s
dx =

1

2
.

We first claim that, up to a subsequence,

(12.6) lim
R→+∞

lim
k→+∞

∫
BR(0)∩C

|uk|2
?(s)

|x|s
dx = 1.

Indeed, for k ∈ N and r ≥ 0, we define

Qk(r) :=

∫
Br(0)∩C

|uk|2
?(s)

|x|s
dx.

Since 0 ≤ Qk ≤ 1 and r 7→ Qk(r) is nondecreasing for all k ∈ N, then, up to a
subsequence, there exists Q : [0,+∞)→ R nondecreasing such that Qk(r)→ Q(r)
as k → +∞ for a.e. r > 0. We define

α := lim
r→+∞

Q(r).

It follows from (12.4) and (12.5) that 1
2 ≤ α ≤ 1. Up to taking another subsequence,

there exist (Rk)k, (R
′
k)k ∈ (0,+∞) such that 2Rk ≤ R′k ≤ 3Rk for all k ∈ N,
limk→+∞Rk = limk→+∞R′k = +∞,
limk→+∞Qk(Rk) = limk→+∞Qk(R′k) = α.

In particular,
(12.7)

lim
k→+∞

∫
BRk (0)∩C

|uk|2
?(s)

|x|s
dx = α and lim

k→+∞

∫
(Rn\BR′

k
(0))∩C

|uk|2
?(s)

|x|s
dx = 1− α.

We claim that

(12.8) lim
k→+∞

R−2
k

∫
(BR′

k
(0)\BRk (0))∩C

u2
k dx = 0.
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Indeed, for all x ∈ BR′k(0) \ BRk(0), we have that Rk ≤ |x| ≤ 3Rk. Therefore,
Hölder’s inequality yields

∫
(BR′

k
(0)\BRk (0))∩C

u2
k dx ≤

(∫
(BR′

k
(0)\BRk (0))∩C

dx

)1− 2
2?(s)

(∫
(BR′

k
(0)\BRk (0))∩C

|uk|2
?(s) dx

) 2
2?(s)

≤ CR2
k

(∫
(BR′

k
(0)\BRk (0))∩C

|uk|2
?(s)

|x|s
dx

) 2
2?(s)

for all k ∈ N. The conclusion (12.8) then follows from (12.7).

We now let ϕ ∈ C∞c (Rn) be such that ϕ(x) = 1 for x ∈ B1(0) and ϕ(x) = 0 for
x ∈ Rn \B2(0). For k ∈ N, we define

ϕk(x) := ϕ

(
|x|

R′k −Rk
+
R′k − 2Rk
R′k −Rk

)
for all x ∈ Rn.

One can easily check that ϕkuk, (1− ϕk)uk ∈ D1,2(C) for all k ∈ N. Therefore, we
have that

∫
C

|ϕkuk|2
?(s)

|x|s
dx ≥

∫
BRk (0)∩C

|uk|2
?(s)

|x|s
dx = α+ o(1),∫

C

|(1− ϕk)uk|2
?(s)

|x|s
dx ≥

∫
(Rn\BR′

k
(0))∩C

|uk|2
?(s)

|x|s
dx = 1− α+ o(1)

as k → +∞. The Hardy-Sobolev inequality (12.2) and (12.8) yield

µγ,s(C)
(∫
C

|ϕkuk|2
?(s)

|x|s
dx

) 2
2?(s)

≤
∫
C

(
|∇(ϕkuk)|2 − γ

|x|2
ϕ2
ku

2
k

)
dx

≤
∫
C
ϕ2
k

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+O

(
R−2
k

∫
(BR′

k
(0)\BRk (0))∩C

u2
k dx

)

≤
∫
C
ϕ2
k

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+ o(1)

as k → +∞. Similarly,

µγ,s(C)
(∫
C

|(1− ϕk)uk|2
?(s)

|x|s
dx

) 2
2?(s)

≤
∫
C
(1− ϕk)2

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+ o(1)
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as k → +∞. Therefore, we have that

µγ,s(C)
(
α

2
2?(s) + (1− α)

2
2?(s) + o(1)

)
≤ µγ,s(C)

(∫
C

|ϕkuk|2
?(s)

|x|s
dx

) 2
2?(s)

+

(∫
C

|(1− ϕk)uk|2
?(s)

|x|s
dx

) 2
2?(s)


≤
∫
C
(ϕ2
k + (1− ϕk)2)

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+ o(1)

≤
∫
C
(1− 2ϕk(1− ϕk))

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+ o(1)

≤ µγ,s(C) + 2

∫
C
ϕk(1− ϕk)

γ

|x|2
u2
k dx+ o(1)

≤ µγ,s(C) +O

(
R−2
k

∫
(BR′

k
(0)\BRk (0))∩C

u2
k dx

)
+ o(1) ≤ µγ,s(C) + o(1)

as k → +∞. Therefore, α
2

2?(s) + (1 − α)
2

2?(s) ≤ 1, which implies α = 1 since
0 < α ≤ 1. This proves the claim in (12.6).

We now claim that there exists u∞ ∈ D1,2(C) such that uk ⇀ u∞ weakly in D1,2(C)
as k → +∞, and x0 6= 0 such that, in the sense of measures,

either limk→+∞
|uk|2

?(s)

|x|s 1C dx = |u∞|2
?(s)

|x|s 1C dx and

∫
C

|u∞|2
?(s)

|x|s
dx = 1(12.9)

or limk→+∞
|uk|2

?(s)

|x|s 1C dx = δx0
and u∞ ≡ 0.(12.10)

Arguing as above, we get that for all x ∈ Rn, we have that

lim
r→0

lim
k→+∞

∫
Br(0)∩C

|uk|2
?(s)

|x|s
dx = αx ∈ {0, 1}.

It then follows from the second identity of (12.5) that α0 ≤ 1/2, and therefore
α0 = 0. Moreover, it follows from the first identity of (12.5) that there exist at
most one point x0 ∈ Rn such that αx0 = 1. In particular x0 6= 0 since α0 = 0.
Therefore, it follows from Lions’s second concentration compactness lemma [40,41]
(see also Struwe [51] for an exposition in book form) that, up to a subsequence,
there exists u∞ ∈ D1,2(C), x0 ∈ Rn \{0} and C ∈ {0, 1} such that uk ⇀ u∞ weakly
in D1,2(C) and

lim
k→+∞

|uk|2
?(s)

|x|s
1C dx =

|u∞|2
?(s)

|x|s
1C dx+ Cδx0 .

In particular, due to (12.5) and the compactness (12.6), we have that

1 = lim
k→+∞

∫
C

|uk|2
?(s)

|x|s
dx =

∫
C

|u∞|2
?(s)

|x|s
dx+ C.

Since C ∈ {0, 1}, the claims in (12.9) and (12.10) follow.

We now assume that u∞ 6≡ 0, and we claim that limk→+∞ uk = u∞ strongly in
D1,2(C) and that u∞ is an extremal for µγ,s(C).
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Indeed, it follows from (12.9) that
∫
C
|u∞|2

?(s)

|x|s dx = 1. It then follows from the

Hardy-Sobolev inequality (12.2) that

µγ,s(C) ≤
∫
C

(
|∇u∞|2 −

γ

|x|2
u2
∞

)
dx.

Moreover, since uk ⇀ u∞ weakly as k → +∞, we have that∫
C

(
|∇u∞|2 −

γ

|x|2
u2
∞

)
dx ≤ lim inf

k→+∞

∫
C

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx = µγ,s(C).

Therefore, equality holds in this latest inequality, u∞ is an extremal for µγ,s(C) and
reflexivity yields convergence of (uk) to u∞ in D1,2(C). This proves the claim.

We now assume that u∞ ≡ 0 and show that as k → +∞ in the sense of measures,

(12.11) s = 0 , lim
k→+∞

∫
C

u2
k

|x|2
dx = 0 and |∇uk|2 dx ⇀ µγ,s(C)δx0 .

Indeed, since uk ⇀ u∞ ≡ 0 weakly in D1,2(C) as k → +∞, then for any 1 ≤ q <

2? := 2n
n−2 , uk → 0 strongly in Lqloc(C) when k → +∞. Assume by contradiction

that s > 0: then 2?(s) < 2? and therefore, since x0 6= 0, we have that

lim
k→+∞

∫
Bδ(x0)∩C

|uk|2
?(s)

|x|s
dx = 0

for δ > 0 small enough, contradicting (12.10). Therefore s = 0 and the first part of
the claim is proved.

For the rest, we let f ∈ C∞(Rn) be such that f(x) = 0 for x ∈ Bδ(x0), f(x) = 1

for x ∈ Rn \ B2δ(x0) and 0 ≤ f ≤ 1. We define ϕ := 1 − f2 and ψ := f
√

2− f2.
Clearly ϕ,ψ ∈ C∞(Rn) and ϕ2 + ψ2 = 1. Inequality (12.2) yields

µγ,s(C)
(∫
C
|ϕuk|2

?

dx

) 2
2?

≤
∫
C

(
|∇(ϕuk)|2 − γ

|x|2
(ϕuk)2

)
dx.

Integrating by parts, using (12.10), using that uk → 0 strongly in L2
loc(Rn) as

k → +∞, and that ϕ2 = 1− ψ2, we get that

µγ,s(C)
(
|ϕ(x0)|2

?

+ o(1)
) 2

2? ≤
∫
C
ϕ2

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+O

(∫
Supp ϕ∆ϕ

u2
k dx

)

µγ,s(C) + o(1) ≤
∫
C

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx−

∫
C
ψ2

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+ o(1)

as k → +∞. Using again (12.4), we then get that∫
C
ψ2

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx ≤ o(1)

as k → +∞. Integrating again by parts and using the strong local convergence to
0, we get that ∫

C

(
|∇(ψuk)|2 − γ

|x|2
(ψuk)2

)
dx ≤ o(1)
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as k → +∞. The coercivity (12.2) then yields limk→+∞ ‖∇(ψuk)‖2 = 0. Therefore,
the Hardy inequality yields convergence of |x|−1(ψuk)k to 0 in L2(C). Therefore,

lim
k→+∞

∫
(B2δ(x0))c∩C

u2
k

|x|2
dx = 0.

Taking δ > 0 small enough and combining this result with the strong convergence
of (uk)k in L2

loc around x0 6= 0 yields

lim
k→+∞

∫
C

u2
k

|x|2
dx = 0.

Combining this equality, limk→+∞ ‖∇(ψuk)‖2 = 0 and (12.4) yields the third part
of the claim. This proves the claim.

We now show that if u∞ ≡ 0, then s = 0 and

µγ,s(C) = µ0,0(Rn) =
1

K(n, 2)2
.

Indeed, since uk ∈ D1,2(C) ⊂ D1,2(Rn), we have that

µ0,0(Rn)

(∫
Rn
|uk|2

?

dx

) 2
2?

≤
∫
Rn
|∇uk|2 dx.

It then follows from (12.11, (12.4) and (12.5) that µ0,0(Rn) ≤ µγ,s(C). Conversely,
the computations of Proposition 9.1 yield µγ,s(C) ≤ µ0,0(Rn) = K(n, 2)−1. These
two inequalities prove the claim.

Note now that if s = 0, γ > 0 and n ≥ 4, then necessarily

(12.12) µγ,s(C) < µ0,0(Rn) =
1

K(n, 2)2
.

Indeed, consider the family uε as in the proof of Proposition 9.1. Well known
computations by Aubin [2] yield

JCγ,s(uε) = K(n, 2)−2 − γ|x0|−2cθε + o(θε) as ε→ 0,

where c > 0, θε = ε2 if n ≥ 5 and θε = ε2 ln ε−1 if n = 4. It follows that if γ > 0
and n ≥ 4, then µγ,s(C) < K(n, 2)−1. This proves the claim.

As in Proposition 9.1, even if the cone is nonsmooth, it is easy to see that if s = 0
and γ ≤ 0, then

(12.13) µγ,s(C) = µ0,0(Rn) =
1

K(n, 2)2
.

Moreover, is no extremal if γ < 0.

If now s = 0 and γ = 0, then

(12.14) µγ,s(C) = µ0,0(Rn) =
1

K(n, 2)2
,

and there are extremals iff there exists z ∈ Rn such that (1+|x−z|2)1−n/2 ∈ D1,2(C)
(in particular C = Rn).

Again, the proof goes essentially as in Proposition 9.1, even if the cone is nonsmooth.
The potential extremals for µ0,0(C) are extremals for µ0,0(Rn), and therefore of the

form x 7→ a(b+ |x− z0|2)1−n/2 for some a 6= 0 and b > 0 (see Aubin [2] or Talenti
[52]). Using the homothetic invariance of the cone, we then get that there is an
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extremal of the form x 7→ (1 + |x − z|2)1−n/2 for some z ∈ Rn. Since an extremal
has support in C, we then get that C = Rn. This proves the claim.

Finally, assume that s = 0 and that there exists z ∈ Rn such that x 7→ (1 +
|x − z|2)1−n/2 ∈ D1,2(C). Then µγ,0(C) < 1

K(n,2)2 for all γ > 0. For that it

suffices to consider U(x) := (1 + |x − z|2)1−n/2 for all x ∈ Rn, and to note that
JCγ,0(U) = JRn

γ,0(U) < JRn
0,0(U) = K(n, 2)−2.

This ends the proof of Theorem 12.1 and Corollaries 12.2, 12.3.

13. Appendix 2: Symmetry of the extremals for µγ,s(Rn+)

The symmetry of the nonnegative solutions to the Euler-Lagrange equation for
µγ,s(Rn+) is proved in Chern-Lin [10] for γ < (n−2)2/4. The proof of the symmetry
carried out by Ghoussoub-Robert [24] in the case γ = 0 extends immediately to the
case 0 ≤ γ < n2/4. For the convenience of the reader, we give here a general and
complete proof inspired by Chern-Lin [10], which includes the case where γ < 0.

For γ < n2/4, s ∈ [0, 2) and 2?(s) := 2(n−s)
n−2 , we consider nontrivial solutions

u ∈ D1,2(Rn+) to the problem

(13.1)


−∆u− γ

|x|2u = u2?(s)−1

|x|s weakly in D1,2(Rn+)

u ≥ 0 in Rn+
u = 0 on ∂Rn+

and prove the following.

Theorem 13.1. If u is a solution to (13.1) in D1,2(Rn+), then u ◦ σ = u for
all isometries of Rn such that σ(Rn+) = Rn+. In particular, there exists v ∈
C∞((0,+∞) × R) such that for all x1 > 0 and all x′ ∈ Rn−1, we have that
u(x1, x

′) = v(x1, |x′|).
Remark: Unlike the case of the extremals for the full space Rn, there is no
symmetry-breaking phenomenon in the case of the half-space Rn+. However, the
price to pay is that the best constant when restricted to the functions with best
possible symmetry is unknown, contrary to the case of Rn. We refer to the histor-
ical reference Catrina-Wang [5] and to Dolbeault-Esteban-Loss-Tarantello [14] for
disussions and developments on the symmetry-breaking phenomenon.

We adapt the moving-plane method of Chern-Lin [10] that was made in the case

γ < (n−2)2

4 . Given any θ ∈ [0, π2 ], we define the hyperplane and the half space:

Pθ := {x ∈ Rn/ x1 cos θ = x2 sin θ},
P−θ := {x ∈ Rn/ x1 cos θ < x2 sin θ}.

We define sθ : Rn → Rn as the orthogonal symmetry with respect to Pθ. As one
checks, we have that
(13.2)

sθ(x) =

−x1 cos(2θ) + x2 sin(2θ)
x1 sin(2θ) + x2 cos(2θ)

xi (i ≥ 2)

 and sθ(x)−x = 2 (x2 sin θ − x1 cos θ)

 cos θ
− sin θ

0


Note that it follows from Theorem 6.1 that there exists K1 > 0 such that

(13.3) u(x) ∼x→0 K1
x1

|x|α−(γ)
.

The proof of Theorem 13.1 relies on two main Lemmas:
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Lemma 13.2. For all j = 1, ..., n, we have that

(13.4) lim
x→0

(
|x|α−(γ)∂ju(x)−K1

(
δj,1 − α−(γ)

x1xj
|x|2

))
= 0,

and

(13.5) |x|α−(γ)+1‖d2ux‖ ≤ C for all x ∈ Rn+, |x| < 1.

Proof of Lemma 13.2: We proceed by contradiction and assume that there exists
(xk)k ∈ Rn+ such that xk → 0 and

(13.6)

(
|xk|α−(γ)∂ju(xk)−K1

(
δj,1 − α−(γ)

xk,1xk,j
|xk|2

))
6→ 0

as k → +∞. We define uk(x) := |xk|α−(γ)−1u(|xk|x) for all x ∈ Rn+. It follows from
(13.3) that

(13.7) lim
k→+∞

uk(x) = K1
x1

|x|α−(γ)
for all x ∈ Rn+ \ {0}.

Moreover, this convergence holds in C0
loc(Rn+ \ {0}). Equation (13.1) rewrites as

−∆uk −
γ

|x|2
uk = |xk|(2

?(s)−2)(n2−α−(γ))u
2?(s)−1
k

|x|s
in Rn+

for all k, and uk vanishes on ∂Rn+. It then follows from elliptic theory that the

convergence in (13.7) holds in C2
loc(Rn+ \ {0}). Therefore,

lim
k→+∞

∂juk

(
xk
|xk|

)
= ∂j(K1x1|x|−α−(γ))(X∞)

where X∞ := limk→+∞
xk
|xk| . Coming back to uk contradicts (13.6). This proves

(13.4). The proof of (13.5) is similar. This ends the proof of Lemma 13.2.

The second Lemma is a general analysis of the difference u(sθ(x))− u(x).

Lemma 13.3. We let (θi)i ∈ R and (xi) ∈ Rn+ be such that xi ∈ Rn+ ∩ P−θi for all
i ∈ N. We assume that θi → θ∞ and xi → x∞ as i→ +∞, and that

(13.8) sθi(xi)− xi = o(|xi|) as i→ +∞.

Then,

• If x∞ 6= 0 then

(13.9) lim
i→+∞

u(sθi(xi))− u(xi)

2(xi,2 sin θi − xi,1 cos θi)
= cos(θ∞)∂1u(x∞)− sin(θ∞)∂2u(x∞).

• If x∞ = 0, then

(13.10) lim
i→+∞

u(sθi(xi))− u(xi)

2(xi,2 sin θi − xi,1 cos θi)|xi|−α−(γ)
= K1 cos(θ∞).

Proof of Lemma 13.3: Taylor’s formula yields
(13.11)
|u(sθi(xi))− u(xi)− duxi(sθi(xi)− xi)| ≤ ‖sθi(xi)−xi‖2 sup

t∈[0,1]

‖d2uxi+t(sθi (xi)−xi)‖
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for all i. It follows from (13.5) that

sup
t∈[0,1]

‖d2uxi+t(sθi (xi)−xi)‖ ≤ C sup
t∈[0,1]

‖xi + t(sθi(xi)− xi)‖−(1+α−(γ))

= C

∥∥∥∥xi + sθi(xi)

2

∥∥∥∥−(1+α−(γ))

,

and therefore

(13.12) u(sθi(xi)) = u(xi) + duxi(sθi(xi)− xi) +O

(
‖sθi(xi)− xi‖2

‖xi + sθi(xi)‖1+α−(γ)

)
,

and then, we get with (13.8) that

(13.13) u(sθi(xi)) = u(xi) + duxi(sθi(xi)− xi) + o

(
‖sθi(xi)− xi‖
|xi|α−(γ)

)
,

as i→ +∞. With the expression (13.2), we get that

(13.14) ‖sθi(xi)− xi‖ = 2(xi,2 sin θi − xi,1 cos θi) > 0

and that

(13.15)
u(sθi(xi))− u(xi)

2(xi,2 sin θi − xi,1 cos θi)
= ∂1u(xi) cos θi − ∂2u(xi) sin θi + o

(
|xi|−α−(γ)

)
as i → +∞. If x∞ 6= 0, then we get (13.9) and we are done. We assume that
x∞ = 0. It then follows from Lemma 13.2 that

|xi|α−(γ)(u(sθi(xi))− u(xi))

‖sθi(xi)− xi‖
= K1

(
1− α−(γ)

(
xi,1
|xi|

)2
)

cos θi

+K1α−(γ)
xi,1xi,2
|xi|2

sin θi + o(1)

= K1

[
cos θi + α−(γ)

xi,1
|xi|

(
xi,2 sin θi − xi,1 cos θi

|xi|

)]
+o(1) as i→ +∞.

Using (13.8) and (13.14), we get that

(13.16) lim
i→+∞

|xi|α−(γ)(u(sθi(xi))− u(xi))

‖sθi(xi)− xi‖
= K1 cos θ∞.

This ends the proof of Lemma 13.3. �

We are now in position to initiate the moving plane method.

Proposition 13.4. There exists θ0 > 0 such that

(13.17) for all θ ∈ (0, θ0), then u(sθ(x)) > u(x) for all x ∈ P−θ ∩ R
n
+

Proof of Proposition 13.4: We argue by contradiction and we assume that there
exists (θi)i ∈ (0,+∞), there exists xi ∈ P−θi ∩ R

n
+ such that

(13.18) lim
i→+∞

θi = 0 and u(sθi(xi)) ≤ u(xi) for all i.

We first claim that without loss of generality, we can assume that (xi)i is bounded in
Rn. For that we define the Kelvin transform ũ(x) := |x|2−nu(x/|x|2) for all x ∈ Rn+.
As one checks, ũ ∈ D1,2(Rn+) satisfies (13.1) and (13.18) rewrites ũ(sθi(x̃i)) ≤ ũ(x̃i)
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for all i, where x̃i := xi/|xi|2 ∈ P−θi ∩ R
n
+. Therefore, up to changing u into ũ, we

can assume that (xi)i is bounded. This proves the claim.

Now define limi→+∞ xi = x∞. We claim that

(13.19) xi,1 = o(xi,2) as i→ +∞ and x∞ ∈ ∂Rn+.

Indeed, since xi ∈ P−θi ∩R
n
+, we have that xi,1 > 0 and xi,1 cos θi < xi,2 sin θi for all

i. Letting i→∞ yields xi,1 = o(xi,2) as i→ +∞, and therefore x∞ ∈ ∂Rn+.

We now show that

(13.20) sθi(xi)− xi = o(|xi|) as i→ +∞.
Indeed, it suffices to note that the expression (13.14) and (13.19) yield sθi(xi)−xi =
o(|xi,2|) = o(|xi|) as i→ +∞.

We now conclude the proof of Proposition 13.4. If x∞ = 0, it follows from (13.10)
that u(sθi(xi))−u(xi) > 0 for i→ +∞, contradicting (13.18). If x∞ 6= 0, it follows
from (13.9) and (13.18) that ∂1u(x∞) ≤ 0: this contradicts Hopf’s strong maximum
principle since x∞ ∈ ∂Rn+. This ends the proof of Proposition 13.4. �

Define now

θ0 := sup
{

0 < θ ≤ π

2
/ u(st(x)) > u(x) for all x ∈ P−t ∩ Rn+ and all 0 < t < θ

}
It follows from Proposition 13.4 that θ0 > 0 exists. Our objective is to prove that
θ0 = π

2 . We argue by contradiction and assume that

(13.21) 0 < θ0 <
π

2
.

For any θ ≥ 0, we define
vθ(x) := u(sθ(x))− u(x)

for all x ∈ P−θ ∩ Rn+. Since sθ is an isometry for all θ ≥ 0, we have that

(13.22) −∆vθ −
γ

|x|2
vθ = cθ(x)vθ

where cθ(x) = |x|−s u(sθ(x))2
?(s)−1−u(x)2

?(s)−1

u(sθ(x))−u(x) if u(sθ(x)) 6= u(x), and cθ(x) = |x|−s(2?(s)−
1)u(x)2?(s)−2 otherwise. In particular, cθ > 0. It follows from the definition of θ0

that vθ0 ≥ 0. It then follows from (13.22) and Hopf’s maximum principle that
either vθ0 > 0 in P−θ0 ∩R

n
+ or vθ0 ≡ 0 in P−θ0 ∩R

n
+. In the latter case, taking points

on ∂Rn+, we would get that u(x) = 0 on P2θ0 ∩ Rn+: this is impossible since θ0 <
π
2

and u > 0. Therefore

(13.23) vθ0 > 0 in P−θ0 ∩ R
n
+.

It follows from the definition of θ0 that there exists (θi)i ∈ (θ0,+∞) such that

(13.24) lim
i→+∞

θi = θ0 and ∀i there exists xi ∈ P−θi ∩ R
n
+ such that vθi(xi) ≤ 0.

Arguing as in Step 1 of the proof of Proposition 13.4, we can assume with no loss
of generality that (xi)i is bounded, and, up to a subsequence, that there exists
x∞ ∈ Rn such that limi→+∞ xi = x∞.

We claim that

(13.25) x∞ ∈ Pθ0 ∩ Rn+.
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Indeed, it follows from (13.24) that x∞ ∈ P−θ0 ∩ R
n
+ and vθ0(x∞) ≤ 0. It then follows

from (13.23) that x∞ ∈ ∂P−θ0 ∩ R
n
+ = (Pθ0 ∩ Rn+) ∪ (∂Rn+ ∩ P−θ0 and vθ0(x∞) = 0.

We argue by contradiction and assume that (13.25) does not hold. Therefore,
x∞ ∈ ∂Rn+ and u(sθ0(x∞)) = vθ0(x∞) = 0, and then sθ0(x∞) ∈ ∂Rn+. We then get
with (13.2) and (13.21) that sθ0(x∞) = x∞ and then x∞ ∈ Pθ0 , which contradicts
our initial hypothesis. This proves (13.25) and therefore the claim.

We claim that

(13.26) sθi(xi)− xi = o(|xi|) as i→ +∞.

It follows from (13.25) that sθ0(x∞) = x∞, and therefore (13.26) holds if x∞ 6= 0.
We now assume that x∞ = 0. Dividing (13.26) by |xi| and passing to the limit
i→ +∞, one gets that (13.26) is equivalent to proving that sθ0(X∞) = X∞ where
X∞ := limi→+∞

xi
|xi| . Since xi ∈ P−θi , we have that xi,2 sin θi > xi,1 cos θi for all i.

Dividing by |xi| and passing to the limit i→ +∞ yields

(13.27) X∞,2 sin θ0 ≥ X∞,1 cos θ0.

Since u(sθi(xi)) ≤ u(xi), the asymptotic (13.7) yields

K1
(sθi(xi))1

|sθi(xi)|α−(γ)
≤ (1 + o(1))K1

xi,1
|xi|α−(γ)

as i→ +∞. Dividing by |xi| and passing to the limit, we get that

(13.28) (sθ0(X∞)−X∞)1 ≤ 0.

Plugging (13.27) and (13.28) into (13.2) yields sθ0(X∞) = X∞. As already men-
tioned, this proves the claim.

Here goes the final argument. We apply Lemma 13.3. If x∞ = 0, (13.10), (13.14)
and (13.24) yield K1 cos(θ0) ≤ 0: a contradiction since K1 > 0 and 0 < θ0 < π/2.
If x∞ 6= 0, (13.9) and (13.24) yield

(13.29) ∂1u(x∞) cos(θ0)− ∂2u(x∞) sin(θ0) ≤ 0.

If x∞ ∈ ∂Rn+, then ∂2u(x∞) = 0 and ∂1u(x∞) > 0 (Hopf’s Lemma), contradicting
(13.29). So x∞ ∈ Pθ0 \ ∂Rn+. It then follows from (13.22), (13.23), (13.25) and

Hopf’s Lemma that ∂ ~Nvθ0(x∞) < 0 with ~N = (cos θ0,− sin θ0, 0). However, one
can easily see that ∂ ~Nvθ0(x∞) = −2(∂1u(x∞) cos(θ0) − ∂2u(x∞) sin(θ0)), which
again contradicts (13.29).

In all cases, we get a contradiction, and therefore (13.21) is not valid, which means
that θ0 = π

2 . It follows that

u(x1,−x2, ...) ≥ u(x1, x2, ...) for all x ∈ Rn+, x2 > 0.

Since the equation satisfied by u is invariant under the action of isometries fixing
∂Rn+, we get the reverse inequality and therefore u(x1, x2, ...) = u(x1,−x2, ...) for
all x ∈ Rn+. So u is invariant under the action of the symmetry wrt {x2 = 0}. This
argument works for any hyperplane orthogonal to ∂Rn+: then u is invariant under
the action of the symmetries fixing ∂Rn+. This completes the proof of Theorem
13.1.
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