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ABSTRACT. We investigate the Hardy-Schrédinger operator Ly, = —A — #

on smooth domains 2 C R™, whose boundary contain the singularity 0. The
situation is quite different from the well-studied case when 0 is in the interior

2
of Q. For one, if 0 € Q, then L. is positive if and only if v < @7 while
if 0 € 092 the operator L~ could be positive for larger value of 7, potentially

2
reaching the maximal constant 2~ on convex domains.
We prove optimal regularity and a Hopf-type Lemma for variational solu-

tions of corresponding linear Dirichlet boundary value problems of the form
2% (s)—2

Lyu = a(x)u, but also for non-linear equations including L. u = ul” 27"

2 s
where v < -, s € [0,2) and 2*(s) := 2(:_;)
exponent. We also provide a Harnack inequality and a complete description
of the profile of all positive solutions —variational or not— of the corresponding

2

linear equation on the punctured domain. The value v = 2 471
to be another critical threshold for the operator L, and our analysis yields a

corresponding notion of “Hardy singular boundary-mass” m~ (Q2) of a domain
2

Q having 0 € 99, which could be defined whenever ”2471 <<

As a byproduct, we give a complete answer to problems of existence of
extremals for Hardy-Sobolev inequalities of the form

ER.

is the critical Hardy-Sobolev

turned out

s

2
C (f Mdm) 7 Jo IVul?2dz — v |, w2 dr forallu e D2(Q)
Q  |z|s —= JQ Q |z|2 )

whenever v < ”72, and in particular, for those of Caffarelli-Kohn-Nirenberg.

These results extend previous contributior}s by the authors in the case v = 0,
and by Chern-Lin for the case v < @. Namely, if 0 < v < "2471, then
the negativity of the mean curvature of 9 at 0 is sufficient for the existence
of extremals. This is however not sufficient for "2471 << %, which then
requires the positivity of the Hardy singular boundary-mass of the domain
under consideration.
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1. INTRODUCTION

Let © be a smooth domain of R™ (i.e. a C* connected open set), define the best
constant in the corresponding Hardy inequality by,

S we @) {0}} ,
Q oz 47

where D12(Q) is the completion of C2°(Q) with respect to the norm given by

(1.1) va(Q) = inf{

[ul[> = [, [Vu|?dz. It is well known that vx () = % for any domain Q having
0 in its interior, including R™, and that it is never attained by a function in D*2(Q).
On the other hand, it has been noted by several authors (See for example Pinchover-
Tintarev [44] Fall-Musina [19] or the book of Ghoussoub-Moradifam [22]) that the
situation is quite different for the half-space R} := {x € R"/x; > 0}, in which

case, yg(R}) = %. More generally, if 0 € 9 the boundary of €, then v (Q2) can

(n=2)> n?
T 04

be anywhere in the interval ( ] (see Proposition 3.1). Moreover, vy (§2)

is attained whenever vy (Q) < ”72 (See Section 3). This already points to the fact
that the Hardy-Schrédinger operator Ly, = —A — # behaves differently when the
singularity 0 is on the boundary of a domain €, than when 0 is in the interior. The
latter case has already been extensively covered in the literature. Without being
exhaustive, we refer to Ghoussoub-Yuan [26], Guerch-Véron [30], Jaber [34], Kang-
Peng [35], Pucci-Servadei [45], Ruiz-Willem [47], Smets [50], and the references
therein.

The study of nonlinear singular variational problems when 0 € 92 was initiated
by Ghoussoub-Kang [21] and was studied extensively by Ghoussoub-Robert [23-25].
For more recent contributions, we refer to Attar-Merchdn-Peral [1], Davila-Peral
[12], and Gmira-Véron [29]. We also learned recently —after a first version of this
paper was posted on arxiv— about a paper of Pinchover [43], and a more recent one
by Devyver-Fraas-Pinchover [13] that also treat the Hardy potential when 0 € 092.
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Our main goal in this paper is to show that the above noted discrepancy —
between the case when the singularity 0 belongs to the interior of the domain and
when it is on the boundary— is only the tip of the iceberg. The differences manifest
themselves in both linear problems of the form

(1.2) {A“m“z = a(z)u onQ

v = 0 on 01,
and in nonlinear Dirichlet boundary value problems associated to L., such as:

u2*(s)71

—Au — ’y# = BE on 2
(1.3) u > 0 on ()
u = 0 on 012,

where 0 < s < 2 and 2*(s) := % Actually, Ghoussoub-Kang noted in [21] that
even when v = 0, the situation can already be quite different whenever 0 belongs to
the boundary of a bounded C%-smooth domain © as long as s > 0. Ghoussoub and
Robert [23,24] eventually proved that if the mean curvature at 0 of such domains
is negative, and provided s > 0, then minimizers for the functional

2
(1.4) IR 1= ol

(fQ ﬁgﬁdx) 2
exist in DV2(Q2) \ {0} = HE(Q) \ {0} and are solutions to equation (1.3) in the
case when v = 0. While this new phenomenon occured because of the presence of
the singularity ||~® in the nonlinear term, we shall show in this paper, that the
differences also appear on the linear level, as soon as v > 0, but also as one varies
~ between 0 and "Tz.

Another motivation for this work came from the recent work of C.S. Lin and his
co-authors [9,10] on the existence of extremals for the Caffarelli-Kohn-Nirenberg
(CKN) inequalities [4]. These inequalities state that in dimension n > 3, there is a
constant C' := C(a,b,n) > 0 such that for all u € C°(R™), the following inequality
holds:

(1.5) (/ x|_bq|uq)q < C/ 2| 72%| V| dz,
R™ R™

where

2n

n—2
1.6 — ——, 0<b—a<landg= ———+~.
(1.6) o<a<——, 0< a<1andgq R T

A proof and various extensions of (1.5) will be given in section 2.

For a domain Q in R™, we let D!?(Q) be the completion of C°(Q) with respect to
the norm |[ul|2 = [, |#|72*|Vu|?dz. Consider the best constant defined as:

JoleVuldr o iy oy

(1.7) S(a,b,Q) = inf .
(fQ |x|—b‘1\u|q)q dz
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The extremal functions for S(a,b,Q) are then the least-energy solutions of the
corresponding Euler-Lagrange equations:

—div(]z|72*Vu) = |z|7%ui"t  on Q
(1.8) u >0 on 2
u =0 on Of).

The existence or nonexistence of minimizers for (1.7), when the domain 2 is the
whole space R™, have been extensively studied for the past twenty years, see
Catrina-Wang [5], Chou-Chu [6], Dolbeault-Esteban-Loss-Tarantello [14], Lin-Wang
[38] and references therein. The result can be briefly summarized in the following;:

Theorem A: Suppose n > 3 and that a,b and q salisfy condition (1.6). Then
minimizers exist for the best constant S(a;b;R™) if and only if a,b satisfy

(1.9) eithera <b<a-+1orb=a>0.

If now 2 is any domain in R™ that contains 0 in its interior, one can easily see
that scale invariance yields for any A > 0, that S(a;b;\Q) = S(a;b;Q) where
AQ = {dz;z € Q). Tt follows that if 0 € Q, then S(a;b;Q) = S(a;b;R™), which
means that S(a;b; ) can never be achieved unless 2 = R™ (up to a set of capacity
zero). However, as mentioned above, if 0 belongs to the boundary of a smooth
bounded domain 2 and if the mean curvature at 0 of such domains is negative, then
minimizers for the best constant S(0;b; ) were shown to be attained [21,23,24].
This result was later extended by Chern and Lin [10], who eventually established
existence of minimizers under the same negative mean curvature condition at 0
provided a, b satisfy one of the following conditions:

(i) a<b<a+landn>3
(1.10) { (i) a=bandn > 4.
They left open the case when n = 3 and 0 < a = b < "?’2, a problem that we

address in Theorem 1.9 (see also Section 11).

To make the connection, we note that by making the substitution w(x) = |z|~%u(x)
for x € 2, one can see that if a < 252, then u € D1?(Q) if and only if w € D12()
by the Hardy inequality, and

Jo I\ Vul2de Jo [Vl =7 fq *f;;; dx
2 w
(f,, |2 ~balula) (Jo trdr)

where y =a(n —2—a), s = (b—a)q and 2* =

WQ"(FG). This means that u is a

solution of (1.8) if and only if w(z) is a solution of equation (1.3) where 0 < s < 2
and 2* := 2*(s) = % Therefore, instead of looking for solutions of (1.8) one
can study equation (1.3). To state the result of Chern-Lin in this context, we define
the functional

Jo IVul? =~ [, %daz
fQ u dzx) b 7

[a]*

(1.11) I (u) =

and its infimum on D2(Q2) \ {0}, that is
(1.12) fiy,s(Q) = inf {J (u);u € DV?(Q)\ {0}}.
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Theorem 1.1 (Chern-Lin [10]). Let Q be a smooth bounded domain in R™ (n > 3).

Assume v < @ and 0 < s < 2. If either {s > 0} or {n >4 and v > 0}, then
there are extremals for j1, s(), provided the mean curvature of 92 at 0 is negative.

The case when n = 3, s = 0 and v > 0 was left open. As we shall see in section

4, the infimum p., () is finite for all v < "72, whenever 0 € 9. This means that

(n—2)*
1

equation (1.3) may have positive solutions for v beyond and all the way to

%2. This turned out to be the case as we shall establish in this paper.

We first note that standard compactness arguments [10,21,22] —also described in
section 4- yield that for 1, 4(€2) to be attained it is sufficient to have that

(1.13) fhy,5(2) < iy, (RY),

where the latter is the corresponding best constant on R”}. In order to prove the
existence of such a gap, one tries to construct test functions for u%s(Q) that are
based on the extremals of ji, (R’ ) provided the latter exist. The cases where this
is known are given by the following standard proposition (see for instance Bartsch-
Peng-Zhang [3] and Chern-Lin [10]). See Corollary 12.2 in the appendix for a proof.

Proposition 1.2. Assumey < %2, n >3 and0 < s < 2. Then, there are extremals
for piy s(R%) provided either {s > 0} or {n >4 and v > 0}.
On the other hand,
(1) If {s = 0 and v < 0}, then there are no extremals for p,o(R’) for any
n > 3.
(2) Furthermore, whenever jio(R") has no extremals, then necessarily
Jan |Vul? da 1

1.14 R") = inf = ;
(1.14) 0 (RY) WEDLARMINO} ([ 2 dx)% K(n,2)?

where the latter is the best constant in the Sobolev inequality and 2* :=
2%(0) = 2%,

n—2

The only unknown situation is again when s = 0, n = 3 and v > 0, which we
address below (see Theorem 1.9) and in full detail in Section 11. For now, we shall
discuss the new ingredients that we bring to the discussion.

Assuming first that an extremal for p1, (R ) exists and that one knows its profile
at infinity and at 0, then this information can be used to construct test functions for
s (£2). This classical method has been used by Kang-Ghoussoub [21], Ghoussoub-

Robert [23,24] when v = 0, and by Chern-Lin [10] for 0 < v < @ in order to

establish (1.13) under the assumption that 02 has a negative mean curvature at 0.
Actually, the estimates of Chern-Lin [10] extend directly to establish an analogue of

21
Theorem 1.1 for all v <

n?—1

under the same local geometric condition. However,

the case where v = already requires a much more refined analysis of the
Hardy-Schrodinger operator L := —A — # on the half-space R} .

The remaining range (”24_ L ”72) for v turned out to be even more interesting for

the operator L.. Indeed, the curvature condition at 0 is not sufficient anymore to
insure existence, as more global test functions are required. We therefore proceed
to isolate a notion of “Hardy boundary-mass” m.(€2) for any bounded domain
(with 0 € 0R) that is associated to the operator L,. This is stated in Theorem 8.1
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below and is reminiscent of the positive mass theorem of Schoen-Yau [49] that was
used to complete the solution of the Yamabe problem.

In order to explain the new critical threshold that is "24* L we need first to consider

the Hardy-Schrodinger operator L, 1= —A — # on R’}. The most basic solutions

for Lyu = 0, with u = 0 on OR"} are of the form u(z) = z1|z[~*, and a straight-

forward computation yields —A(z|z|~%) = a(lzl_f)xl\xra on R%, which means

that

<—A—F#)@ﬂﬂﬂﬂ:00nRL
n n?

for a € {a_(7),ay(y)} where ax(y) := § &1/ % — 7. Actually, any non-negative

solution of Lyu = 0 on R? with v = 0 on OR" is a (positive) linear combination of
these two solutions ( Proposition 7.4 below).

Note that a_(v) < § < a(v), which points to the difference around 0 between the
“small” solution, namely 2+ z1]|z|~*~ ), and the “large one” z — x|z|~*+(),
Indeed, the “small” solution is “variational”, i.e. is locally in D'?(R" ), while the
large one is not. This turned out to be a general fact since we shall show that
x> d(x,00)|z|~* () is essentially the profile at 0 of any variational solution —

positive or not— of equations of the form L u = f(x,u) on a domain §, as long as
2% (s)—1

the nonlinearity f is dominated by C(|v| + MT) Here d(x,09) denotes the

distance function to 9. To state the theorem, we use the following terminology.
We say that u € DV2(Q)0¢ 0 if there exists n € C2°(R™) such that = 1 around 0
and nu € DV2(Q). Say that u € DV2(2)5¢,0 is a weak solution to the equation

~Au=F € (D**(Qioc0)
if for any ¢ € D"?(Q) and n € C°(R™), we have [,(Vu, V(ng))dz = (F,np) .
The following theorem will be established in section 6.

Theorem 1.3 (Optimal regularity and Generalized Hopf’s Lemma). Let Q be a
smooth domain in R™ such that 0 € 992, and let f: Q x R — R be a Caratheodory
function such that

Fw)| < Clol (1 T

|U‘2*(s)_2
|[*

Assume v < "72 and let uw € DY2(Q)10c,0 be such that for some T > 0,

> forallz € Q and v € R.

(1.15) —Auy — 7)u = f(x,u) weakly in D**(2)1pc.0-

Then, there exists K € R such that
, u(z)
1
250 d(x, )|~
Moreover, if w >0 and u # 0, then K > 0.

(1.16) =K.

This theorem can be seen as an extension of Hopf’s Lemma [28] in the following
sense: when v = 0 (and therefore a_(y) = 0), the classical Nash-Moser regularity
scheme then yields that v € C}. ., and when u > 0, u # 0, Hopf’s comparison

principle yields 9,u(0) < 0, which is really a reformulation of (1.16) in the case
where a_(y) = 0.
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The proof of this theorem is quite interesting since, unlike the regular case (i.e.,
when L, = Ly = —A) or the classical situation when the singularity 0 is in the
interior of the domain § (see Smets [50]), a direct application of the standard Nash-
Moser iterative scheme is not sufficient to obtain the required regularity. Indeed,
the scheme only yields the existence of pg, with 1 < pg < ﬁ such that u € L?
for all p < pg. Unfortunately, py does not reach ﬁ, which is the optimal rate

of integration needed to obtain the profile (1.16) for u. However, the improved
order pg is enough to allow for the inclusion of the nonlinearity f(z,w) in the linear
term of (1.15). We are then reduced to the analysis of the linear equation, that
is (1.15) with f(z,u) = 0, in which case we get the conclusion by constructing
suitable super- and sub- solutions to the linear equation that have the same profile
at 0 as (1.16). For details, see Section 6.

As a corollary, one obtains the following description of the profile of variational so-
lutions of (1.3) on R’}, which improves on a result of Chern-Lin [10], hence allowing

us to construct sharper test functions and to prove existence of solutions for (1.3)
n?-1

when v = *

Theorem 1.4. Assume v < %2 and let w € DM*(R), u > 0, u # 0 be a weak
solution to

2% (s)—1
v u o
Then, there exist K1, Ko > 0 such that
X1 T
u(e) ~vooo Kiprgy - and () el Kapry

The above theorem yields in particular, the existence of a solution u for (1.17)
which satisfies for some C' > 0, the estimates

(118)  w(x) < Caqlz|~*+)  and  |Vu(z)| < Clz|=*+O) for all x € RY.
Noting that

n?—1
4

it follows from (1.18), that whenever v < "24*1 , then |2/|2]01u)?> = O(|2|>~22+ (M) as

2’| = 400 on OR?. = R™™!, from which we could deduce that ' — |z'|?|9yu(z’)|?

is in L*(9R"% ). This estimate —which does not hold when v > "24_1 — is key for the

construction of test functions for 1 4(€2) based on the solution w of (1.17), in the
21

: 4 : 2 2

In order to deal with the remaining cases for «, that is when v € (2 44 o), we

prove the following result which describes the general profile of any positive solution

of Lu = a(z)u, albeit variational or not.

v <

& ap(y)-—a() > 1,

case when v <

Theorem 1.5 (Classification of singular solutions). Assume v < %2 and let u €
C?(Bs(0) N (Q2\ {0})) be such that
—Au—H2ED =0 in 0N B,(0)
(1.19) >0 in QN Bs0)
u=0 on (002N Bs(0))\ {0}.
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Then, there exists K > 0 such that

d(x,090)
|gg‘047 (v)

d(z,00)

(1.20) either u(x) ~z_0 K 0 T

or  u(x) ~py

In the first case, the solution u is variational; in the second case, it is not.

This result then allows us to completely classify all positive solutions to L,u = 0
on R, a fact alluded to in Pinchover-Tintarev ([44], Example 1.5).

Proposition 1.6. Assume v < %2 and let w € C*(R \ {0}) be such that

— e P : n
Au |a:\2“_0 in R

(1.21) u>0 in R?
u=20 on OR".
Then, there exists A_, AL > 0 such that
(1.22) u(x) = A_aq|z| 7D 4 Ay a2 7D for all x € R .

. 27 . . . . . .
As mentioned above, the case when v > #— L is more intricate and requires isolating

a new notion of singular boundary mass associated to the operator L, for domains
of R™ having 0 on their boundary. The following result will be proved in section 8.

Theorem 1.7. Let Q be a smooth bounded domain of R™. Assume that "2471 <

v <vu(Q). Then, up to multiplication by a positive constant, there exists a unique
function H € C*(Q\ {0}) such that

(1.23) —AH—%H:OinQ,H>0mQ,H:00naQ\{O}.
x

Moreover, there exists ¢y > 0 and co € R such that

H(z)=c d@.02) 4 . A0 , , (d(w’am ) as x — 0.

‘$|0+(v) |z|”*("’) |I|07(w)

The quantity m~(Q) = f—f € R, which is independent of the choice of H satisfying
(1.23), will be referred to as the Hardy singular b-mass of ).

Indeed, another interpretation of the threshold is the following. The case v >
2
R 4_1 is the only situation in which one can write a solution H to (1.23) as the

sum of the two profiles given in (1.20) (plus lower-order terms) for any bounded

domain . When v < ”2; L there might be some intermediate terms between the
two profiles.

We show that the map Q@ — m.,(2) is a monotone increasing function on the class
of domains having zero on their boundary, once ordered by inclusion. We shall also
see below that it is possible to define the mass of some unbounded domains, and
that m, (R"}) = 0 for any ”24’ Loy < ”72, from which follows that the mass of any
one of its smooth subsets having zero on its boundary is non-positive. In particular,

m~(2) < 0 whenever Q is convex bounded and 0 € 9.

We shall however exhibit in section 10 examples of bounded domains €2 in R™ with
0 € 09 and with positive mass. Among other things, we provide examples of
domains with either positive or negative boundary mass, while satisfying any local
behavior at 0 one wishes. In other words, the sign of the Hardy b-mass is totally
independent of the local properties of 02 around O.
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This notion and the preceeding results allow us to establish the following extension
of the results of Chern-Lin.

Theorem 1.8. Let Q) be a bounded smooth domain of R™ (n > 3) such that 0 € 09,

hence @ <vg(Q) < ”72. Let 0 < s < 2.

(1) Ifyu(Q) <y < ”72, then there are extremals for piy () for all n > 3.
(2) If v < yu () and either s >0 or {s =0, n >4 and v > 0}, then there are

extremals for piy s(), under either one of the following conditions:
n?—1

o v < and the mean curvature of 02 at 0 is negative.

n?—1

o v > " and the Hardy b-mass m.(Q) is positive.
(3) If{s =0 andy < 0}, then there are no extremals for p, o(2) for anyn > 3.

Still when €2 is a smooth bounded domain, we shall also address in section 11 the
remaining case, i.e., n =3 and s = 0 and v € (0,9) (note that n*/4 = 9/4). In
this situation, there may or may not be extremals for /,L%O(Ri). If they do exist,
we can then argue as before —using the same test functions— to conclude existence
of extremals under the same conditions, that is either v < 2 = % and the mean
curvature of 0 at 0 is negative, or v > 2 and the mass m., () is positive. However,

if no extremal exist for y, o(R3), then as noted in (1.14), we have that

) |Vul? do 1
/J”on(Ri) = ) %n f]R3 - = 5
WEDLEENDY ([ |uf2* d) > K(3,2)

and we are back to the case of the Yamabe problem with no boundary singularity.
This means that one needs to resort to a more standard notion of mass R (€2, z¢)
associated to L, and an interior point zg € €. One can then construct suitable
test-functions in the spirit of Schoen [48]. In order to define the “internal mass”, we
show (see Proposition 11.1) that for a given v € (0, v (Q2)), there exists a solution
G € C2(@\ {0,20}) N DAHQ\ {20} ioeo of

—AG—#G:O in Q\ {zo}
G>0 inQ\{zo}
G=0 ond0Q\{0},

is unique up to multiplication by a constant, and that for any xy € €2, there exists
R,(Q,z0) € R (independent of the choice of G) and cg > 0 such that

1
|z — o]

G(l‘) = Ca ( + R’y(Q7xO)> + 0(1) as r — Ig.
Withe the uniqueness of Proposition 11.1, the quantity R, (€, z) is well defined,

and we prove the following.

Theorem 1.9. Let Q be a bounded smooth domain of R® such that 0 € 0. In
particular + <y (Q) < 2.

(1) If yu(Q) <~ < 2, then there are extremals for i o(S).

(2) If 0 < v < vu(Q), and if there exists xo € Q such that Ry (2, z) > 0, then
there are extremals for iy o(2), under either one of the following conditions:
(a) v <2 and the mean curvature of 9 at 0 is negative.
(b) v > 2 and the mass m~(Q) is positive.
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More precisely, if there are extremals for ., o(R?), then conditions (a) and (b)
are sufficient to get extremals for p. o(Q2). If there are no extremals for pi,o(R?),
then the positivity of the internal mass R (£, z¢) is sufficient to get extremals for
,0(€2). We refer to Theorem 11.3 for a precise statement. The following table
summarizes our findings.

TABLE 1. Singular Sobolev-Critical term: s > 0

Hardy term \ Dimension \ Geometric condition Extremal
—o00o < v < ”iT_l n>3 Negative mean curvature at 0 Yes
"24_ L <y < "72 n>3 Positive boundary-mass Yes

TABLE 2. Non-singular Sobolev-Critical term: s =0

’ Hardy term \ Dim. \ Geometric condition \ Extr. ‘
0<y< ”24*1 n = 3 | Negative mean curvature at 0 & Positive internal mass | Yes
n>4 Negative mean curvature at 0 Yes
"24_1 <y < "72 n=3 Positive boundary-mass & Positive internal mass Yes
n>4 Positive boundary mass Yes
v <0 n>3 - No

Notations: in the sequel, C;(a,b,...) (i = 1,2,...) will denote constants depending
on a,b,.... The same notation can be used for different constants, even in the same
line. We will always refer to the monograph [28] by Gilbarg and Trudinger for
standard elliptic pdes results.

2. OLD AND NEW INEQUALITIES INVOLVING SINGULAR WEIGHTS

The following general form of the Hardy inequality is well known. See for example
Cowan [11] or the book of Ghoussoub-Moradifam [22]. We include here a proof for
completeness.

Theorem 2.1. Let Q be a connected open subset of R™ and consider p € C*(Q)
such that p > 0 and —Ap > 0. Then for anyu € DY%(Q) we have that \/p=1(—A)pu €
L?(Q) and

(2.1) /_—Aqudxg/ |Vul|? d.
Q P Q

Moreover, the case of equality is achieved exactly on Rp N DY2(Q). In particular,
if p & DY2(), there are no nontrival extremals for (2.1).

Proof of Theorem 2.1: The proof relies of the following integral identity:

(2.2) /\V(pv)|2dx—/ _—Ap(pv)2dx:/p2\Vv|2dx20
Q Q P Q
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for all v € C$°(€2). This identity is a straightforward integration by parts. Since
—Ap > 01in Q, it follows from density arguments that for any u € D'2(Q), then
p~1(=A)pu € L?(Q) and (2.1) holds.

Assume now that there exists ug € DV2(2) \ {0} that is an extremal for (2.1). In
other words, we have that

pu% dx = / |Vuo|? da.
Q Q

Let (u;); € C2°(2) be such that lim; o u; = ug in D2(Q) and define v;(x) :=
“pi((;)) for all z € 2 and all ¢. This is well defined since u; has compact support in
Q: therefore v; € C°(Q) for all 4. Since D*2(Q2) ¢ DY2(R™), Sobolev’s embedding
theorem yields convergence of u; to ug in LQ"/(”*z)(Q). Since p > 0 in 2, we then
get that (v;); is uniformly bounded in H? 10c(€2). It then follows from reflexivity
and a diagonal argument that there exists v € Hy ;,.(€2) such that

li = H Q
Jim = v in HE (@),

Applying (2.2) to v; = p~1

w CC Q, we have that

u; yields lim; 4 o fw 0%|Vv;|? dz = 0. Therefore, for any

/ |Vo|? dz < ljm_gnf/ |V, |* dz = 0.
w 1—>+00 w

Therefore [ |Vv[*dz = 0 for all w CC €, and then there exists ¢ € R such that
v = ¢. Up to extracting additional subsequence, we can assume that u;(z) and v;(x)
converge to ug(z) and v(z) respectively when i — 400 for a.e. x € Q. Therefore,
up(z) = ¢ p(x) for a.e. = € Q. Since ug £ 0, we have that ¢ # 0 and then
p € DY2(Q). For dimensional reasons, the equality is then achieved exactly on
RpN DY2(R™). This ends the case of equality in case there is a nontrivial extremal.
Assume now that p € D2(Q). We let (p;) € C2°(9) such that lim; 4o p; = p in
D12(2). Without loss of generality, we can assume that p;(x) — p(z) as i — 400
for a.e. x € Q. We define v; := £8 € C°(Q2). We have that v;(z) — 1 as i — +oo
for a.e. x € Q. For any 4,7, (2.2) yields

—A
[ V=P iz = [ e = [ P90 0P da
Q P Q

Therefore (pVv;); is a Cauchy sequence in L?(€2,R"), and therefore, there exists
X € L*(Q,R") such that
(2.3) lim pVu; = X in L2(Q,R").

1—+o00
Arguing as in the first part of the proof of Theorem 2.1, we get that there exists
v € H7,.(Q) such that lim; ;o v; = v in H} ,.(Q). Since vi(x) — 1 as i — +00
for a.e. x € Q, we get that v = 1 and therefore Vv = 0, which yields X =0. It then
follows from (2 3) that (pVv;); goes to 0 in L*(Q,R™). Using again (2.2) yields

(2.4) /\Vpl|2dx—/ —pl dx—/p2|Vvi|2dm.

Therefore, letting ¢ — 400 yields [, [Vp|*dz = fQ Lp?dx, and then p is an
extremal for (2.1).
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Theorem 2.1 follows from the case of the existence of an extremal and the case
p € DV2(Q). O

The above theorem applies to various weight functions p. See for example the
paper of Cowan [11] or the book [22]. For this paper, we need it for the following
inequality.

Corollary 2.2. Fiz 1 < k <n, we then have the following inequality.

n+2k—2\° Jrr xmn—r [Vul? da
— ) = inf —* — ,
v fRiwak Tz 4

where the infimum is taken over all u in DV2(RX x R"=%)\ {0}. Moreover, the
infimum is never achieved.

Proof of Corollary 2.2: Take p(x) := z1...x|z| = for all z € Q :=RE x R"*\ {0}.

Then =22 = W We then maximize the constant by taking o := (n +

2k — 2)/2. Since p ¢ D*?(RE x R"™%), Theorem 2.1 applies and we obtain that
2k —2\° 2

(2.5) (H) / u—z dx < / |Vul|? dx
2 R xRn—k |z RE xRn—F

for all u € DV2(RE x R"~*), and that the extremals are trivial.

It remains to prove that the constant in (2.5) is optimal. This will be achieved via
the following test-function estimates. Construct a sequence (pc)eso € DV2(RE x
R"~F) as follows. Starting with p(z) = zy...75|z| %, we fix 8 > 0 and define

|£|ﬁp(x) if |z <e
(2.6) pe(r) =14 p(x) ife<|z| < %
e alPp(a) it fo] > 1

with o := (n + 2k — 2)/2. As one checks, p. € D'?(RE x R"™*) for all € > 0. The
changes of variables z = ey and z = ¢!z yield

(27) fBe((]) ‘Zﬁ sz = 0(1)’ fBE(()) |Vp6|2 dl‘ = 0(1)?

fR“\gﬁfl(O) |Zﬁ dr = O(l)a fRn\§€71(0) |Vp€|2 dx = 0(1)

when € — 0. Integrating by parts yields

—-A
/ | VpePda / B —ppz dz + O(1)
B_—1(0)\B(0) B__1(0)\B.(0) P

2% —2\?2 2
2.8) (”*) / L dw+0(1),
2 B._1(0\B.(0) 17|

when € — 0. Using polar coordinates yields

2
do.

k
[=:
i=1

> 1
(2.9) / p—z dx = C(2)In — where C(2) := 2/
B._1 (0\B.(0) || € -
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Therefore, (2.7), (2.8) and (2.9) yield
Sk wmnn [V pel? dz 2
RE xR (n+2k 2) o(1)

p? -
fJRi xRk [o(z AT 2
as € — 0, and we are done. Note that the infimum is never achieved since p ¢
DY2(R% x R™™*). This ends the proof of Corollary 2.2. O

Another approach to prove Corollary 2.2 is to see R% x R"~* as a cone generated
by a domain of the unit sphere. Then the Hardy constant is given by the Hardy
constant of R™ plus the first eigenvalue of the Laplacian of the Dirichlet of the above
domain of the unit sphere endowed with its canonical metric. This point of view
is developed in Pinchover-Tintarev [44] (see also Fall-Musina [19] and Ghoussoub-
Moradifam [22] for an exposition in book form).

We get the following generalized Caffarelli-Kohn-Nirenberg inequality.

Proposition 2.3. Let Q be an open subset of R™. Let p,p’ € C(Q) be such that
p,p >0 and —Ap,—Ap' > 0. Fiz s € [0,2] and assume that there exists € € (0,1)
and pe € C*(Q) such that

—-A —Ap.
—2f <(1- 5)7'0 in Q with p., —Ape > 0.
p Pe

Then we have that

—Ap s/2 R @
(2.10) / (/> P2 N> dg < C/ p?|Vu|? dx
Q P Q

for allu € C(Q).

Proof of Proposition 2.3: The Sobolev inequality yields the existence of C(n) > 0
such that

2

(/ u|* dm) <C(n /|Vu|2dx

for all u € C°(Q), where 2* = 2*(0) = -2&. A Holder inequality 1nterpolat1ng
between this Sobolev inequality and the Hardy inequality (2.1) for p’ yields the
existence of C' > 0 such that

N s/2 . 2%(5)
(2.11) / < Ip> lu?" ) da < C’/ |Vu|? dx
Q P Q

for all u € C°(Q2). The identity (2.2) for p and (2. 1) for p. yield for v € C°(Q),

/ P2V de = / |V (pv)|? dz — / - (pv) dx

Q
—Ap.
[ V0P ds =1 -e) [ =2 (pu) do
Q Q Pe
= [ 190P
Q

Taking u := pv in (2.11) and using this latest inequality yield (2.10). This ends the
proof of Proposition 2.3. O

v

v

Here is an immediate consequence.
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Corollary 2.4. Fiz k € {1,...,n — 1}. There exists then a constant C :=
C(a,b,n) > 0 such that for all u € C°(RY. x R"™%), the following inequality holds:
(2.12)

/ e () Jul? | < © (T y2,)? || 2| Vulda,
RE xRn—k RE xRn—k

where

n—2+ 2k 2n
2.1 - _— <b-a<l =
(2.13) o <a< 5 , 0< a<l, ¢ 2120 —a)

n— 2+2k

Proof of Corollary 2.4: Define p(z) = p/(z) = (IIf_, ;) |z|~* and p.(z) = (ITE_ 2;) ||~
for all x € Rﬁ_ x R"*. Here, we have that

Ap' a(n—2+2k—a) and —Ap.  (n—2+2k)?

o FE o T

Apply Proposition 2.3 with this data, with suitable a, b, ¢ to get Corollary 2.4. [

Remark: Observe that by taking k& = 0, we recover the classical Caffarelli-Kohn-
Nirenberg inequalities (1.5). However, one does not see any improvement in the
integrability of the weight functions since (TI®_; ;) [z[~ is of order k —a > —(n —
2)/2, hence as close as we wish to (n—2)/2 with the right choice of a. The relevance
here appears when one considers the Hardy inequality of Corollary 2.2.

3. ESTIMATES FOR THE BEST CONSTANT IN THE HARDY INEQUALITY

As mentioned in the introduction, the best constant in the Hardy inequality

. Vu 2dx

vu (Q) := inf { Jo |V / u € DM2(Q) \ {O}}

fQ ez d

does not depend on the domain €2 C R™ if the singularity 0 belongs to the interior

(n—2)" 2)

of Q. It is always equal to . We have seen, however, in the last section that

the situation changes whenever 0 € 09, since yy(R}) = ";. Some properties of
the best Hardy constants have been studied by Fall-Musina [19] and Fall [18]. In
this section, we shall collect whatever information we shall need later on about ~yg.

Proposition 3.1. Let Q) be a smooth domain of R™. Then vy satisfies the following
properties:

. n— 2
(1) For any smooth domain Q such that 0 € Q, we have vg(Q) = %,

(2) If 0 € 09, fhen % <vg(Q) < ”72.

(3) yu(2) =" fzor every § such that 0 € 9Q and Q C R"}.
(4) If yu(Q) < Z-, then it is attained in D*?(9).

(5) We have inf{g(Q); 0 € 99} = =2 2 forn > 3.

(6) For every € > 0, there ezists a smooth domain Rt € Q. C R™ such that

=

0 € 99, and%Q—eSVH(Qe) < %2.

Proof of Proposition 3.1: Properties (1)-(2)-(3)-(4) are well known (See Fall-Musina
[19] and Fall [18]). However, we sketch proofs since we will make frequent use
of the test functions involved. Note first that Corollary 2.2 already yields that

2
vu(RY) = 7.
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Proof of (2): Since  C R™, we have that vy (Q) > yg(R") = (”_42)2. Assume

by contradiction that vy (Q) = %. It then follows from Theorem 4.4 below

(applied with s = 2) that v (Q) is achieved by a function in ug € D¥2(Q) \ {0}
(note that o~ () = vu(2) — 7). Therefore, vy (R™) is achieved in DV2(R™).
Up to taking |ug|, we can assume that ug > 0. Therefore, the Euler-Lagrange
equation and the maximum principle yield ug > 0 in R™: this is impossible since

ug € DV2(Q). Therefore vy () > %~

For the other inequality, the standard proof normally uses the fact that the domain
contains an interior sphere that is tangent to the boundary at 0. We choose here to
perform another proof based on test-functions, which will be used again to prove
Proposition 4.1. It goes as follows: since €2 is a smooth bounded domain of R™ such
that 0 € 09, there exist U,V open subsets of R™ such that 0 € U, 0 € V' and there
exists ¢ € C>(U, V) a diffeomophism such that ¢(0) = 0 and

e(UN{z; >0}) =¢(U)NQ and o(U N {x; =0}) = o(U) NOQN.

Moreover, we can and shall assume that dpg is an isometry. Let n € C*(U)
such that n(x) = 1 for € Bs(0) for some 6 > 0 small enough, and consider
(ate)es0 € (0, +00) such that a. = o(€) as € — 0. For € > 0, define

n—2

3.1) u(e):= nyas T pe (L) forallz € o(U)NQ, @ = p(y),
0 elsewhere.

Here p is constructed as in (2.6) with k = 1. Now fix ¢ € [0, 2], and note that only
the case o = 2 is needed for the above proposition. We then have as € — 0,

e uw e 0 o(x)2 (@)
/| d“ :,ﬁl &;L Hecle) (z)| d=
+

ue 0 ()2 (@)
= [ T o(fel) o

|z[7
2% (o)
_ /‘ e P77 L o)) da + O(1).
Bs(0)NR™?

Dividing B;5(0) = (B5(0) \ Be-14,(0))U(Bc-14,(0) \ Bea,(0))UBcq, (0) and arguing
as in (2.7) to (2.9), we get as e — 0,

|u ‘2 () U ogp(gg)z*(d)
/ W = i 0B A+ 0(e)dr +0(1)
—1q coe NR™
-/ ue 0 p@)” @ o
[Beflae(o)\Bﬁue(O)}mRi |x‘o-

tA;(JQJm\BmemﬂﬁRi |z[7
Passing to polar coordinates yields
Jue ()"

3.2
(3:2) Q ly|®

1
dy=C(oc)ln-+0(1) ase—0,
€

2% (o)
do.

where C(0) :== 2 [g. . Hf:1 i
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Similar arguments yield

vt = f Ve o p(@)[*(1+ O(al) da +O(1)
Q B*l 6(0)\35045(0)0]1%1

/ Vue o p(x)[* dz + O(1)
B,-1, (0)\Bea, (0)NRY

/ Vo) ? dz + O(1)
B, -1 (0)\B.(0)NR?
as € — 0. Using (2.8) and (2.9) yield

2
1
(3.3) / Vuel dy="-C(2)In~ +0(1) as e 0.
QO €

As a consequence, we get that

Vu|*d 2
WZH—FO(I) as € — 0.
2

In particular, we get that vz (€2) < %, which proves the upper bound in point (2)
of the proposition.

Proof of (3). Assume that @ C R”, then D"?(Q2) c D'?(R"), and therefore
Yu(Q) > vu(R7) = n?/4. With the reverse inequality already given by (2), we get
that v (€2) = n?/4 for all Q C R such that 0 € 9.

Proof of (4). This will be a particular case of Theorem 4.4 when s = 2.

Proof of (5). Let Q be a bounded domain of R™ such that 0 € Qg (i.e., it is
not on the boundary). Given § > 0, we chop out a ball of radius 6/4 with 0 on its
boundary to define

— -4
Qs = QO\B% ((4,0,...,0))
Note that for § > 0 small enough, 2 is smooth and 0 € 9€2. We now prove that

(n—2)?

(3.4) lim 77 (Q25) = ——
Define 7, € C*°(R"™) such that

() = 0 iflz] <1
M= 1 i |2 > 2,

and let ns(x) := (6 1x) for all § > 0 and z € R™. Fix U € C2°(R") and consider
for any § > 0, an €5 > 0 such that

.0 .
lim — = lim es = 0.
=0 &g 0—0

For 6 > 0, we define

ug(x) := m(x)sgnTiZU(sglm) for all x € Qs.

For § > 0 small enough, we have that us € C°(€Qs). A change of variable yields

2 2

us U= , resx

dr= [ ——ni (=) d
/ o2 / x|2”1< ;)
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for all § > 0 small enough. Since § = o(es) as 6 — 0, the dominated convergence

theorem yields
2 U2
lim u—‘z dx = / — dr.
6—0 Qs |.T| R |ZL‘|

For § > 0 small enough, we have that

/ Vus|2de = / ‘VUg‘QdCE:/ v (U~ni)|2dx

Qs R™ R €8

(3.5) = / IVU|?n% dm+/ Ns (*AT}A) U? da.
n £s Rn 6 €5

Let R > 0 be such that U has support in Br(0). We then have that

€s

/ s (—An%) Ulde = O ((5)2V01(BR(0) N Supp (—An;sé)))

of(E)7) -

as 0 — 0 since n > 3. This latest identity, (3.5) and the dominated convergence
theorem yield
lim [ |Vus|? dx :/ |VU|? da.

Qs R™

6—0
Therefore, for U € C°(R™), we have

Vus|? dx L IVUI2d
limsup’yH(Q(s) < lim fﬂé‘ 25‘ _ fR,| U2| x.
550 20 o mmdr Jeppde

Taking the infimum over all U € C°(R™), we get that
Jan IVU|? da

lim sup 7z (Q5) < inf R — (R =
6_>OP’YH( 5)_U€D1,2(Rn)\{0} fo o dr 7u(R")

Since g (€25) > % for all § > 0, this completes the proof of (3.4), yielding (5).

Proof of (6). The proof uses the following observation.
Lemma 3.2. Let (®y)ren € CH(R™,R™) be such that
(36) ||(I>k — Idgn||oo + ||V((I)k — Id]Rn) oo) =0 and (I)k(()) =0.

lim (
k—4o00
Let D C R™ be an open domain such that 0 € 0D (the domain is not necessarily

bounded nor regular), and set Dy := ®i(D) for all k € N. Then 0 € 9Dy, for all
ke N and

(3.7) lim yu (D) = vu(D).

k—+oo

Proof of Lemma 3.2: If u € C°(Dy,), then uwo @, € C°(D) and

/Dk Vul?dr = / V(10 B1) 3, o Pac(®4)] dor

™

i . (uo ®p(x))? ac .
/D d /Riu ()] d,

o 2l no | Pw(2)?
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where here and in the sequel ®;Eucl is the pull-back of the Euclidean metric via
the diffeomorphisme ®;. Assumption (3.6) yields

i _sup (|22 1| 509 |(0:81(0), 0,4 o)) = 6] + (@) ~ 1] ) =0
k—+o00 €D |I| i,

where 0;; = 1 if ¢ = j and O otherwise. Therefore, for any ¢ > 0, there exists kg
such that for all u € C°(Dy) and k > ko,

(1+£)/ |V(uo<1>k)\2dx2/ \w?dxzu—g)/ IV (1o @) 2 da,
D Dy, D

and

uo x))? U o z))?
(1+6)/D(|(I;]|€2())dx2/D —d:c>( 6)/[)((1)de.

o lzf?

We can now deduce (3.7) by using a standard density argument. This completes
the proof of Lemma 3.2. (]

We now prove (6) of Proposition 3.1. Let ¢ € C°°(R"~!) such that 0 < ¢ < 1,
©(0) = 0, and ¢(z') = 1 for all 2/ € R"~! such that 2’| > 1. For ¢t > 0, define
Dy (x1,2") := (11 — tp(x'), o) for all (x1,2') € R™. Set Q, == &R ) and apply
Lemma 3.2 to note that lim._,q ’yH(Qt) = vu(R%}) = 5. Since ¢ > 0, p # 0, we
have that R} C Q, for all t > 0. To get (6) it suffices to take Q. := €, for t > 0
small enough.

4. ESTIMATES ON THE BEST CONSTANTS IN THE HARDY-SOBOLEV
INEQUALITIES

As in the case of v (), the best Hardy-Sobolev constant

. Jo IVul?dz —~ [, Z?d
fy,s(€2) := inf q — ()d 2*(|)| e DV2(Q)\ {0}
Q

|]®

will depend on the geometry of 2 whenever 0 € 9f). In this section, we collect
general facts that will be used throughout the paper.

Proposition 4. 1 Let Q be a bounded smooth domain such that 0 € 0N.
(1) If v < 2, then p, s(2) > —oc.
(2) If v > 2, then p, s(2) = —oc.
Moreover
(3) If v <u(Q), then py () > 0.
(4) If yu(Q) <y < o then0>,u75((2)>—oo.
(6) If vy =vu(Q) < %, then py () = 0.

Proof of Proposition 4.1: We first assume that v < %2. Let € > 0 be such that

(I+e)y < %. It follows from Proposition 4.3 that there exists Cc > 0 such that
for all u € D12(Q),

—/—dgc< 1+e)/|Vu|2dx+Ce/u2dx.
Q Q
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For any u € DY2(Q) \ {0}, we have
(1-23(1+e) [, |Vu?dz — 220, [, u?
") Ee)

fQ EIR
4y fQ u? dx
—Ce —.
n ‘u|2 © )T
It follows from Holder’s inequality that there exists C' > 0 independent of u such

Ju)* ()

2
that [, wder < C (fQ R das) “ 1t then follows that fos(u) > —%CSC for
all u € DV2(Q) \ {0}. Therefore i, 5(2) > —oc whenever v < %2.

Q
S ()

Y

Assume now that v > %2 and define for every ¢ > 0 a function u. € D»?(Q2) as in
(3.1). Tt then follows from (3.2) and (3.3) that as ¢ — 0,

J2 (u2) = (£ ) c@mi + o ((T - 7) e, 0(1)> (m 1) =

(C(s) lng +0(1))7® C(s)T® €
Since s < 2 and v > %, we then get that lim._. Jﬁs(us) = —o0, and therefore
HV,S(Q) = —00.

Now assume that v < v (€2). Sobolev’s embedding theorem yields that 19 s(£2) > 0,
hence the result is clear for all v < 0 since then fiy s(€2) > po,s(€2). If now 0 <y <
i (9), it follows from the definition of v () that for all u € D2(Q2) \ {0},

_ Jo IVl = [ 1 |;p\2 S <1 Y ) Jo IVul? dx
> 5 (

ﬁs(u) - 2% (s) (Q) _2
fQ e d.%‘ 2 ( ) H fQ |u“z|$(s) d.%‘)z 0)
Y
> (1- L().
= ( ’YH(Q)) Ho,s(€2)

Therefore f1,,5(2) > (1 - #(Q)) to,5(£2) > 0 when v <y ().

We now assume that vy (Q) < v < ”72. It follows from Proposition 3.1 (4), that
vu () is attained. We let up be such an extremal. In particular J’?H(Q)»S(u) >0=

JSH(Q),S(UO)’ and therefore 1, (),s(£2) = 0. Since vy () < v < ”72, we have that

Jﬂs(uo) < 0, and therefore i 5(€2) < 0 when yx(Q) < v < %. This ends the
proof of Proposition 4.1. O

Remark 4.2. The case vy = % is unclear and anything can happen at that value

of 7. For example, if v4(Q) < "72 then ,u%z’s(Q) < 0, while if v () = "72 then

paz [(€2) > 0. It is our guess that many examples reflecting different regimes can
4 0°

be constructed.
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Proposition 4.3. Assume v < "TZ and s € [0,2]. Then, for any € > 0, there exists
C. > 0 such that for all u € D*2(Q),
(4.1)

2
2% (s) Pe) u2
< [l dx) < <1+e>/ <Vu2'y 2) derC'e/uzdx.
o lz/° fiy,s(RZ) Q || Q

Proof of Proposition 4.3: Fix e > 0. We first claim that there exists 6. > 0 such
that for all uw € C}(Q N Bs,(0)),

|u|2*(s) =@ 1 2 u’
an  ([EE ) < e@eg [ (9P -ay ) an
o |7 Q \ |

Indeed, for two open subsets of R™ containing 0, we may define a diffeomorphism
@ : U — V such that ¢(0) = 0, o(UNR"}) = p(U)NQ and (UNIRY ) = o(U)NOAQ.
Moreover, we can also assume that dyg is a linear isometry. In particular

(4.3) |p*Eucl — Eucl|(z) < Clz| and |p(z)| = |z| - (1 + O(|z]))

for z € U. If now u € C}(¢(B5(0)) N ), then v := uo ¢ € CH(Bs(0) NR7Y). If
g = ¢~ "Eucl denotes the metric induced by ¢, then we get from (4.3),

2 _2
2*(s) PO 2 7 (5)
(/ [ul - dx) < / lol” = |Jac o(x)| dz
o |zl Bs(0)R? lo(@)]* )‘s
(14 o) / |U|2*(s) s PO
Bs(0)NR™: |z[®

2
o @) [ ([ )
Bs(0)NR? |z

IA

IN

1+ C6 / ( 2 yu? ) 1
< — Vul|Z — ——5 | [Jac ¢~ "(z)| dx
e @) Josiopen \ 10 T ) e e )

IN

2
T N =
Q

2
(4.4) +025/ (|VU|2+ “2) dz.

We also have that

[ = w= [ )@
— _dr = x = ——|Jac(p)(z)| dx
o lzf? @(B5(0)NR7) \$| B;s(0)NR% l(x)]?

2
- /B(O) . |x|2(1+0(|x|))dx§(1+015)/ iz
5 (0)NR™

e [al?

and

|V’u|2d1’ = / |Vu|2dx:/ |VU|2* Jac(p) ()| da
/Q LP(B(S(O)QRLL_) Ba(o)ﬂRi %2 EuCl

/ |Vol2(1 + O(|z|) dz > (1 — 025)/ |Vo|? d,
B;(0)NR?.

R}
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where Cp,Cy > 0 are independent of § and v. Hardy’s inequality (2.5) then yields
for all u € Cl(p(Bs(0) NRY)),

n? u? 1+C 9 9
. — < <
(4.5) 4/Q|x|2d ,1_05/\V|dx (1+C50) /|Vu| dz.

Since v < %2, there exists ¢ > 0 such that for ¢ > 0 small enough,

u2
_1/ \Vu|2dx§/ <|Vu|2— | |2) dm<c/ |Vu|? do
Q Q

for all u € C}((Bs(0)) N Q). Plugging these latest inequalities in (4.4) yields (4.2)
by taking J. small enough.

Consider now 7 € C*(R") such that /7, /T —1n € C*(R™), such that n(z) =1 for
x € Bs_/2(0) and n(z) = 0 for x & B;_(0), where J. is chosen such that (4.2) holds.

We shall use the notation
|w|p 1/p
p"w‘fs = < 5 d:c) .
o |7l

For u € Cg°(Q), use Holder’s inequality to write

2
w7
< = e -0 = e + Q=) flze )

j]°

[[]

N

< Ml e 10 =D e -

IVmlZe o).z + IV = 7Ull3e () g -+

Since \/nu € C2(Bs_(0) N Q), it follows from inequality (4.2) and integrations by
parts that

IN

2

|U|2*(S) z ny—1 2 ’7 §
([Eora) ™ < @ o [ (iR -0 )
o |7l Q | \
VT = null3e 6). o)
<

2
@D ) [ (1VaP =t ) o0 [ s
Q Q
(4.6) HIV = null3. (5) o)

Case 1: s =0. Then 2*(s) = 2* and it follows from Sobolev’s inequality that

VI nul e < K(n,2)? /Q V(T ) da
(4.7 < K(n,2)2/(177y)|Vu|2 derC/ u? d,
Q Q

where K(n,2) is the optimal Sobolev constant defined in (1.14). Since s = 0, it
follows from the proof of Proposition 9.1 that K(n,2)? < p, (R%)7'. It then
follows from (4.7) that

n\— u2
W= e < (B +0) /Q (1-n) <|Vu2—v|x2) dz
(4.8) e / 2 de.
Q
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Plugging together (4.6) and (4.8) yields (4.1) when s = 0.

Case 2: 0 < s < 2. We let v > 0 be a positive number to be fixed later. Since
2 < 2*(s) < 2*, the interpolation inequality yields the existence of C,, > 0 such

that
v1-— 77“”3*(3)7\90\—5 < C||mu||§*(8)
< O (VIVI=ml + Gl VT =ul3)
< O (vEm 22 I9(/T=m)l} + CulV/T—nul3).

We choose v > 0 such that vK (n,2)? < puy s(R?)™! + €. Then we get (4.8) and we
conclude (4.1) in the case when 2 > s > 0 by combining it with (4.6).

Case 3: s = 2. This is the easiest case, since then

— (1 —n)u)?
|| 1-— nu‘lg*(5)>‘$|_s = \/Q Tdﬂ? S 05 Q’Z,L2 d.’E

This completes the proof of (4.1) for all s € [0, 2], and therefore of Proposition 4.3.
O.

Now we prove the following result, which will be central for the sequel. The proof
is standard.

2
Theorem 4.4. Assume that v < %, 0 < s < 2 and that p1y () < piy,s(R7}).
Then there are extremals for p s(). In particular, there exists a minimizer u in

DY2(Q)\ {0} that is a positive solution to the equation

u2*(s)—1

—Au — 'y‘l% = ,LL%S(Q)W in
(4.9) u > 0 in 092
u = 0 on 0f).

Proof of Theorem 4.4: Let (u;) € DY2(Q) \ {0} be a minimizing sequence for
Hy,s(82), that is Jffs(uz) = py,s(2) + 0(1) as i — +oo. Up to multiplying by a
constant, we can assume that

Jug |2

(4.10) / dex =1 for all i,

o |zf°

u?

(4.11) / (Vui|2 - 'y| 72) dx = f1y,5(Q) + 0(1) as i = +o0.

Q T
We show that (u;); is bounded in D%?(Q). Indeed, (4.10) yields that
(4.12) Jou?dx < C < 400 for all 4.
Fix €9 > 0 and use Proposition 4.3 and (4.12) to get that
(4.13) %2 Jo ‘7;% de < (1+4€o) [ |Vui|*de+C  for all i.
Since v < 72—2, up to taking ey > 0 small enough, this latest inequality combined

with (4.11) yield the boundedness of (u;); in DY2(Q). It follows that there exists
u € DV2(Q2) such that, up to a subsequence, (u;) goes to u weakly in D*?(Q) and
strongly in L?(Q) as i — +oo.



HARDY-SCHRODINGER OPERATOR 23

We now show that [, [ G — 1. For that, define 6; := u; —u € D%2(Q)

ER
for all i. In particular, 6; goes to 0 weakly in D'2(Q) and strongly in L?(Q) as
i — +o00. In particular, we have as i — +00,

2% (s) 2% (s ) 0,12 )
(4.14) 1_/ ui” = 4 = [ 1 ; | = et o(1)

|[* o |z |z[*

and

(4.15) MS(Q)Z/ (|Vu|2—'y |22> dx—l—/Q(W@ 1> - 12>da:+

For € > 0, it follows from the definition of . ,(€2) and from (4.

||
1)t
|2 () 4y
wio) ([ w) < (|Vu|2—v ;) da
o |zl Q

and

6; 2% (s) 2%@) 92
1) (a®@—a ([ PE2a) ™ < [ (Iw0p -0 k) des o)
Q

Summing these two inequalities and using (4.14) and (4.15) and passing to the
limit, as i — +o0, yields

hat, as 1 — +o00

2

W ®  \TE W2 \TO
Hy,s(2) [ 1 — < - dx) > (py,s(RY) =€) (1 - - dm)
o |z o |z
|u|2 (s) 2* )
> (/J“’YaS(R - 6 1- ( |x|g

Since fiy,(2) < fiy,5(R7), then by taking e > 0 small enough, we finally conclude

2% (5)
that [o, Mo do = 1.

It remains to show that v is an extremal for p 4(€). For that, note that since
Jo B dw = 1, the definition of j,,.(Q) yields J,, <|vu|2 _ 7@7) dz > 1,.4().
The second term in the right-hand-side of (4.15) is nonnegative due to (4.17).
Therefore, we get that [, (\Vu|2 - 7%) dx = iy (). This proves the claim and

ends the proof of Theorem 4.4. O

5. SUB- AND SUPER-SOLUTIONS FOR THE EQUATION L u = a(z)u

Here and in the sequel, we shall assume that 0 € 0, where ) is a smooth
domain. In this section, we shall construct basic sub- and super-solutions for the
equation L,u = a(x)u, where a(x) = O(|z|"~2) for some 7 > 0.

First recall from the introduction that two solutions for L u = 0, with u = 0 on
ORY are of the form u, (x) = z1]2z|~%, where o € {a_(7), a4 (y)} with

(5.1) a-(M)=% /% -7 and ai(y):=5+/% -

These solutions will be the building blocks for sub- and super-solutions of more
general linear equations involving L.
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Proposition 5.1. Let v < "72 and o € {a_(7),a+(7)}. Let 0 <7 <1 and f €R
such that o — 7 < 8 < «a and B & {a_(y),axr(v)}. Then, there exist r > 0,
Ug 4 Ua,— € C(Q\ {0}) such that

Ug 45 Ug,— > 0 in QN B.(0)

Ug 4y Ug,— =0 on 9N B.(0)
(5:2) —Aug 4 — %‘fmua# >0 inQNB.(0)

A %‘I;/’V)ua,_ <0 in QN B.(0).
Moreover, we have as © — 0, x € €, that
(5.3)

d(z, 00 . d(x, 09 o
ot 0) = T (140012 and - (0) = “EED 1+ Ofal* ),

Proof of Proposition 5.1: We first choose an adapted chart to lift the basic solutions
from R"}. Since 0 € 9 and (2 is smooth, there exists U, V two bounded domains of

R™ such that 0 € U, 0 € V, and there exists ¢ € COO(U, f/) a C*°—diffeomorphism
such that ¢(0) = 0,

c(UN{zy >0}) =c¢(0)NQand (U N {z; =0}) = ¢(U) NN
The orientation of 9 is chosen in such a way that for any 2’/ € U N {z1 =0},
{01¢(0,2"), 02¢(0,2), ..., 0nc(0,2)}

is a direct basis of R” (canonically oriented). For 2/ € UN{xz; = 0}, we define v/(z')
as the unique orthonormal inner vector at the tangent space T, (g .0 (it is chosen
such that {v(a’), d2¢(0,2'),...,0,c(0,2")} is a direct basis of R™). In particular,
on R := {x; > 0}, v(2') := (1,0,...,0).

Here and in the sequel, we write for any » > 0
(5.4) B, := (—r,r) x B"™(0)

where Bﬁn_l)(O) denotes the ball of center 0 and radius r in R*~!. It is standard
that there exists 6 > 0 such that

(55) L A
(x1,2") e Rx R" —  ¢(0,2") + x1v()

is a C'°°—diffeomorphism onto its open image 90(325), and

(5.6)  @(Bas N {1 > 0}) = ¢(Bzs) N and p(Bas N {z1 = 0}) = ¢(Bas) N 9.

We also have for all 2’ € Bs(0)"~1),

(5.7) v(z') is the inner orthonormal unit vector at the tangent space Ty (g )08

An important remark is that

(5.8) d(p(z1,2'),00Q) = |x1| for all (z1,2) € Bas close to 0.

Consider the metric g := ¢*Eucl on Bss, that is the pull-back of the Euclidean

metric Eucl via the diffeomorphism ¢. Following classical notations, we define

(5.9) gij () == (0ip(x), 050(x))fye) for all x € Bysand i,j =1,...,n.
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Up to a change of coordinates, we can assume that (92¢(0), ...,9,9(0)) is an or-
thogonal basis of Tpd€2. In other words, we then have that
(5.10) 9i5(0) = 6;5 for all 4,5 =1,...,n.

We claim that
(5.11) gi1(z) = ;1 for all x € Bss and i = 1,...,n.

Indeed, for any © = (x1,2’) € Bss, we have that 9; o(x) = v(z'), which is a unitary
vector. Therefore gi1(x) = 1. For ¢ > 2, we have

g1i(x) = (v(@"), 0ip(0,2) + 2100(2")) el = (&), 0ip(0, 2")) el +210; (Jv(2')]?) /2.

Since v(z') is orthogonal to the tangent space spanned by (92¢(0, 2'), ..., 9, (0, 2'))
and |v(z')] = 1, we get that g1;(z) = 0, which proves (5.11).

Fix now o € R and consider © € C®(Bys) such that ©(0) = 0 and which will
be constrycted later (independently of «) Wi~th additional needed properties. Fix
n € C°(Bys) such that n(z) = 1 for all x € Bs. Define u, € C*(Q\ {0}) as

(5.12) g 0 p(x1, 2 := n(x)z|z| (1 + O(x)) for all (z1,2") € Bys \ {0}.
In particular, uq(z) > 0 for all z € ¢(Bas) N Q and uq(z) = 0 on Q \ p(Bas).
We claim that with a good choice of ©, we have that

(5.13) —Au, = "(";l_za) Uy + O (LW) as x — 0.

|]
Indeed, using the chart ¢, we have that
(—Aug) 0 p(x1,2") = —Ag(ua 0 @)(z1,2")

for all (z1,2') € Bs \ {0}. Here, —A, is the Laplace operator associated to the
metric g, that is

—Ay = —g" (9;; —TE0)
where

1 m
F?j = §9k (0igjm + 0jGim — OmGij)

and (g%) is the inverse of the matrix (g;;). Here and in the sequel, we have adopted
Einstein’s convention of summation. It follows from (5.11) that

(FAug)op = —Apye(taop) — Z (gij - 5”) 93 (ua 0 )
i,5>2
(5.14) T Oh (0 9) + 3 99T Ok 0 ).
k>2

It follows from the definition (5.12) that there exists C' > 0 such that for any
1,7,k > 2, we have that

104 (wa 0 @) (w1,2")| < Cla] - [¢]7*7* and |9k (uq © @) (21, 2")] < Claa| - |27,

for all (x1,2') € B; \ {0}. It follows from (5.10) that g” — 6% = O(|z|) as = — 0.
Therefore, (5.14) yields that as © — 0,

(5.15) (—Aug) o = —Apyel(ta o @)+ 99T 501 (ug 0 @) + Oay |z~
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The definition of g;; and the expression of ¢(z1,’) then yield that as z — 0,

- 1 -
QUF}]' = ) Zgwalgij
i,§>2
= = g7, 2) ((9ip(0,2"), 0 (') + 21(0:(2'), 0;v(2")))
i,j>2
= = > g7(0,2)) (3ip(0,2"), 050(2")) + O(|z1])
,j>2

H(2') + O(lz1)),

where H(z') is the mean curvature of the (n — 1)—manifold 9Q at (0, 2’) oriented
by the outer normal vector —v(2’). Using the expression (5.12) and using the
smoothness of ©, (5.15) yields

(—Au)op = (~Apual@le) - (1+0) + 2]~ (H(')(1 + ) — 20,0)
+O(xy |z| 1) as ¢ — 0.

‘We now define

O(z1,2') == e 2™ HE) _ 1 for all = (z1,2’) € Bas.

Clearly ©(0) = 0 and © € C*°(Bss). Noting that

—« a(n B Oé) —«
—Apye (w1l2]7) = g kel
we then get that as z — 0,
an —«
(5.16) (—Auy)op = (|xz)x1|az|_a (14 0)+0(z1]x| 7>

With the choice that g;;(0) = d;;, we have that (0;¢(0))i=1,...» is an orthonormal
basis of R™, and therefore |p(z)| = |z|(1 + O(|z])) as x — 0. It then follows from
(5.16) and (5.12) that

a(n — a)

FE Ug + O(|z] ™ ug) as ¢ — 0.

(5.17) —Aug =

This proves (5.13). We now proceed with the construction of the sub- and super-
solutions. Let o € {a_(7), a4+ (7)} in such a way that a(n — ) = v and consider
B, € R to be chosen later. It follows from (5.13) that

(A WO(W)) (o + up) = 2B0=B=%)

= ﬂ—f (AB(n - B) —7)
+0(2[7) + O(|a|"+#=) + O([] +7~))

as ¢ — 0. Choose § such that a« — 7 < 8 < « in such a way that § # «a_(y) and
B # a; (7). In particular, 5 > a — 1 and B(n — 8) — v # 0. We then have

519) (-4~ D) b us) = 125 (N30 ) =) + Ol 7))
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as x — 0. Choose A € R such that A(8(n—8)—+) > 0. Finally, let uq 4 1= uq+Aug
and uq,— := uq — Aug. They clearly satisfy (5.2) and (5.3), which completes the
proof of Proposition 5.1. (]

6. REGULARITY AND HOPF-TYPE RESULT FOR THE OPERATOR L,

This section is devoted to the proof of the following key result.
Theorem 6.1 (Optimal regularity and Generalized Hopf’s Lemma). Fiz v < %2
and let f: QxR — R be a Caratheodory function such that
|,U|2*(s)—2

[, 0)| < Clol (1 T

Let u € DY2(Q)10c.0 be a weak solution of

7+ O(2]")
||

for some T > 0. Then there exists K € R such that

1

#50 d(z, 09) x|~

Moreover, if u > 0 and u # 0, we have that K > 0.

)forallxeﬂandveR.

(6.1) —Au w= f(z,u) in D*(Q)i0c,0

(6.2) - K.

As mentioned in the introduction, this can be viewed as a generalization of Hopf’s
Lemma in the following sense: when v = 0 (and then a_(y) = 0), the classical
Nash-Moser regularity scheme yields u € C} , and when u > 0, u # 0, Hopf’s
comparison principle yields 9,u(0) < 0, which is a reformulation of (6.2) when
a_(v) =0.

The remainder of this section is devoted to the proof of Theorem 6.1. In this whole
7+0(|z|7)

|=|?
uw —Au— %‘()u where a € C°(Q\ {0}) such that a(z) = O(|z|) as 7 — 0.

We shall need the following two lemmas, which will be used frequently throughout
the paper.

section, by a slight abuse of notation, v — —Au— u will denote an operator

Lemma 6.2. (Rigidity of solutions) Let u € C*(RF\{0}) be a nonnegative function
such that
(6.3) —Au—%uzom R 5 u=0 on JRY.

x
Suppose there exists a € {a_(y),ay(y)} such that u(xz) < Clz|'=%, then there
exists A > 0 such that

u(x) = Azq|z|~ for all z € R}

We note that this lemma is only a first step in proving rigidity for solutions of
Lyu = 0 on R%}. Indeed, the pointwise assumption above is not necessary as it
will be removed in Proposition 7.4, which will be a consequence of the classification
Theorem 7.1.

Proof of Lemma 6.2: We first assume that « := a_(y) and prove that

(6.4) either u =0 or liminf u(z)

—— > 0.
|z]—+o00 $1|$‘_a*(7)
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Indeed suppose that the second situation does not hold, that is there exists (x;); €
R? such that

lim |z;| = 400 and lim _ulm) =0.
i—oo i—+oo (x;)1|w;| - (1)
Define r; := |z;|, 0; := 1o and ui(x) == 'ria‘w)*lu(rix) for all 4 and all z € R} . It
follows from the hypothesis of the lemma that for all 7,
—Au,; — #uz =01in RY ; u; = 0 on ORY,

and 0 < u;(z) < Clz|'=*-0) for all z € R?. It follows from elliptic theory that
there exists @ € C?(R%) such that u; — @ in CZ (R \ {0}). In particular, we have
that

—#azomm; i>0in R, ; 4=0on OR".

Let 0 := lim;_, 4 o 6;. It follows from the convergence that 4(f) = 0 if 6 € R}, and
014(0) = 0if § € OR’y. Hopf’s maximum principle yields that 4 = 0. In particular,
we get that

—Ad

lim sup % =0.

i—+00 2€dB,,(0) X1 ‘x|—047 (v)
For ¢ > 0, there exists iy such that u(x) < ex1|z|~* () for all x € dB,,(0) and i >
ig. Since u — ex1|z|~* ) is locally in D%? and (—A — #)(u— exq|z) =) =0,
it follows from the maximum principle (and coercivity) that u(z) < exy|z|~*- ()
for € B,,(0) with i > ig. Letting i — +oo yields u(z) < exi|z|~* ) for all
z € R} and all € > 0. Letting € — 0 yields u < 0, and therefore u = 0. This proves
the claim (6.4).

We now assume that u # 0. It then follows from (6.4) that there exists g > 0
and Ry > 0 such that u(z) > egap|z|~*= ) for all |z| > Bg,(0). Applying again
the maximum principle on Bg, (0), we get that u(z) > eoz1|z|~* V) for all 2 € R}
We have so far proved that

(6.5) u =0 or there exists ey > 0 such that u(z) > ez |z| == for all z € RY.

Let now A := max{k > 0 such that u(z) > kxq|z|~*-() for all z € R?}. Then
a(z) = u(x) — Azy|z|~* ) > 0 satisfies (6.3). It then follows from (6.5) that
=0 or a(z) > eox1|m|_°‘*(7) for all z € RY} for some ¢ > 0. This second

8

case cannot happen since it would imply that u > (X + €g)z1 |z~ which is a
contradiction. Therefore @ = 0 and the Proposition is proved when a = a_ (7).
To finish, it remains to consider the case where a = a4 (7). Here we define
w(x) == |z|* "u(z/|z|?) to be the Kelvin transform of w. The function @ then
satisfies (6.3) with a_(y). It then follows from the first part of this proof that
@ = \zy]z|~* ). Coming back to the initial function u yields u = A |z| =+ ().
This completes the proof of Lemma 6.2. (]

Lemma 6.3. Assume that u € DV2(Q)10c0 is a weak solution of

(6.6)

—Au — %ﬂfmu =0 in D1’2(9>loc,0
u=0 on Bys(0)NOQ,
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for some 7 > 0. We fir 6 > 0. Then there exists Cy > 0 such that
(6.7) lu(z)| < Crd(z, 8Q)|z| =) for x € QN B;(0).
Moreover, if u > 0 in Q, then there exists Cy > 0 such that

(6.8) u(x) > Cod(z, 8Q)|z| =) for z € QN Bs(0).

Proof of Lemma 6.3: First, we assume that u € DV2(Q);,c.0, satisfies (6.27) and
u > 0 on Bs(0) N Q. We claim that there exists Cy > 0 such that

1 d(z,00)
CO |$‘O‘—('Y)

<u(z) < COM for all x € QN B;(0).

(6.9) 2o

Indeed, since u is smooth outside 0, it follows from Hopf’s Maximum principle that
there exists Cy, Cy > 0 such that

(6.10) C1d(z,090) < u(z) < Cod(x,09) for all z € QN IB;s(0).

Let uq_(y),4+ be the super-solution constructed in Proposition 5.1. It follows from
(6.10) and the asymptotics (5.3) of uq_ (4,4 that there exists C3 > 0 such that

u(r) < Csug_(4)4+(x) for all z € 9(B5(0) N Q).

Since u is a solution and u,_(),4 is a supersolution, both being in Dl’Q(Q)loqo,
it follows from the maximum principle (by choosing ¢ > 0 small enough so that
—A — (v + O(|z]|7))|z| =2 is coercive on Bj(0) N Q) that u(z) < Csug_(4),4 () for
all x € Bs(0) N €. In particular, it follows from the asymptotics (5.3) of uq_(+),+
that there exists C4 > 0 such that

u(x) < Cyd(z, 0Q)|z| =) for all z € QN Bs(0).

Arguing similarly with the lower-bound in (6.10) and the subsolution uq_(+),—, we
get the existence of Cp > 0 such that (6.9) holds. This yields Lemma 6.3 for u > 0.

Now we deal with the case when w is a sign-changing solution for (6.6). We then
define u1,ug : Bs(0) N — R be such that

||

—Auy — 22D — 0 in Bs(0)NQ
up(x) = max{u(x),0} on 9(Bs(0) NN).

|]

—Aug — MUQ =0 in B5(O) no
ug(z) = max{—u(z),0} on 9(Bs(0) N Q).

The existence of such solutions is ensured by choosing § > 0 small enough so that
the operator —A — (v + O(|z|7))|x|~2 is coercive on Bs(0) N Q. In particular,
ut,uz € DY2(Q)joc0, ut,uz > 0 and u = uy — ug. It follows from the maximum
principle that for all 4, either u; = 0 or u; > 0. The first part of the proof yields
the upper bound for uq,us. Since u = u; — ug, we then get (6.7). This ends the
proof of Lemma 6.3. O

This lemma allows to construct sub- and super solutions with Dirichlet boundary
conditions on any small smooth domain.
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Proposition 6.4. Let () be a smooth bounded domain of R™, and let W be a smooth
domain of R™ such that for some r > 0 small enough, we have

(6.11) B, (0)NQ C W C Bap(0)NQ and B,(0) N OW = B,.(0) N .

Fixy <2-,0<7<1andp €R such that oy (v)—7 < f < ay(y) and B # a_(7).

Then, up to choosing v small enough, there exists ui{dj(v)#, u&dj (.- €CT (W\{0})
such that

d d) .
o)) 1 (ﬁ(w)# =0 in WA {0}
(6.12) *5(7 %ﬂf‘)u st >0 inW
_ v+0(z|") (d ;
Aug ) - = FEE ) <0 W
Moreover, we have as © — 0, x € Q that
d d(x,aQ) a—
(6.13) u&j(v)&(iﬂ) = W(1+O(|m| B))
and
d d(:c,@ﬂ) a—
(6.14) ul ) (@) = Tofarm (1 +0(lal ).

Proof of Proposition 6.4: Take n € C°°(R™) such that n(x) = 0 for z € Bj/4(0) and
n(xz) =1 for x € R™ \ Bs/3(0). Define on W the function
7+ O(lz]")
f(z) = (—A - T (nua+(v)7+)7
where u,, (+),+ i given by Proposition 5.1. Note that f vanishes around 0 and that
it is in C°°(W). Let v € DY2(W) be such that

“Av — % =f W
v=0 on dW.

Note that for » > 0 small enough, —A — (y + O(|z|7))|z| 2 is coercive on W, and
therefore, the existence of v is ensured for small r. Define

(d)
Yo (7)+ = Yay () — Mhay (), + +o.

The properties of W and the definition of  and v yield

d) :
ul =0 mow\ {0}
_Au® | 2%00e) 3 W
v ; =P Tar (), ’
Moreover, since —Av — (v + O(|z|7))|=|~ 21) =0 around 0 and v € DV2(W), it fol-
lows from Lemma 6.3 that there exists C' > 0 such that |v(z)| < Cd(z, W)|z|~*- )
for all x € W. Then (6.13) follows from the asymptotics (5.3) of us_ (y),+ and the

fact that a_(y) < oy (7). We argue similarly for u? )(W) _. This proves Proposition

6.4. (]

Lemma 6.5. Let f : @ xR — R be as in the statement of Theorem 6.1, and
consider u € DV2()10c,0 such that (6.1) holds. Assume there exists C > 0 and
a € {at(7),a—(y)} such that

(6.15) lu(z)| < Clz|*~* forx — 0, z € Q.
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If f £0, we assume that « = a_ (7).
(1) Then, there exists C1 > 0 such that
(6.16) [Vu(z)] < Cilz|™ asz — 0, z € Q.
(2) Iflimg_o|z|* tu(z) = 0, then lim,_o |z|%|Vu(z)| = 0. Moreover, ifu > 0,
then there exists 1 > 0 such that

|z u(x) , a _
(6.17) il_)o (.09 =1 and m_}(l)}r;lean [Vu(z)| =1

Proof of Lemma 6.5: Assume that (6.15) holds. As a first remark, we claim that
we can assume that for some 7 > 0,

(6.18) —Au — #u =0 in D"*(Q)10c.0-
Indeed, this is clear if f = 0. If f # 0, since a = a_(7), we have as z — 0,
If(z,u)] < Clu (1 + |9L‘|_S|x|—(2*(8)—2)(a7(7)—1))

| | 2 2% (5)—2) (2 —a U
| 2 (m + |2|@ (=23 (7))) || E

for some 7’ > 0. Plugging this inequality into (6.1) and replacing 7 by min{r, 7'}
yields (6.18).

In the sequel, we shall write w(x) := le[*ule) for 4 € Q. Let (2;); € © be such that

d(z,09)
(6.19) il:inoo z; =0
Choose a chart ¢ as in (5.5) such that dpy = Idg~. For any i, define X; € R}
such that z; = p(X;), r; := |X;| and 6; := é:l' In particular, lim; ., 7; = 0 and

|6;]=1 for all i. Set
() = r?  u(p(rix)) for all i and x € Br(0) NRY ; 2 # 0.
Equation (6.18) then rewrites

_ 7. — D( ) — 3 n
(6.20) Ag iy — =i, =0 in Br(0)N R+n
,L—O m BR(O)Q8R+,
where g;(z) := (¢*Eucl)(r;z) is a metric that goes to Eucl on every compact subset
of R™ as i — oo. Here, o(1) — 0 in Cp_(R™ \ {0}). It follows from (6.15) and (6.19)
that

(6.21) |%;(2)| < Clz|'~* for all i and all z € Br(0) NRY,

It follows from elliptic theory, that there exists @ € C?(R'} \ {0}) such that @; — @
in C’lloc(]Ri \ {0}). By letting 6 := lim; ;. 6; (|0] = 1), we then have that for any

j=1,..,n, 0;4;(6;) — 0;u(f) as i — +o0, which rewrites
(6.22) .liin || “Oju(z;) = 9;u() for all j =1,...,n
1—>+00

We now prove (6.16). For that, we argue by contradiction and assume that there
exists a sequence (z;); € € that goes to 0 as i — 400 and such that |z;|*|Vu(z;)| —
+00 as i — 4o00. It then follows from (6.22) that |z;|%|Vu(z;)| = O(1) as i — +o0.
A contradiction to our assumption, which proves (6.16). The case when |z|*u(z) —
0 as z — 0 goes similarly.
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Now we consider the case when u > 0, which implies that #; > 0 and @ > 0. We
let I € [0,400] and (z;); € © be such that

(6.23) lim x; =0and lim w(z;) =1

1——+o00 1—+o00

We claim that

(6.24) 0 <! < +o0 and lir%w(x) =1€0,+00).
z—
Indeed, using the notations above, we get that
w;(0;
tim 20
i——+00 (02)1

The convergence of @; in C}(R™ \ {0}) then yields | < 4+co. Passing to the limit

loc

as i — +oo in (6.20), we get

~Apyafi — 2@ =0 inRY
@>0 inR?
=0 inJR".

The limit (6.23) can be rewritten as @(6) = (0 if § € R" and 01u(f) = [if § € OR}.
The rigidity Lemma 6.2 then yields

a(x) = lzy|z|”* for all z € RY}.

In particular, since the differential of ¢ at 0 is the identity map, it follows from the
convergence of @; to @ locally in C! that
: u(x) u(z)
(6.25) lim sup —— = sup — =]
i=+0 4cQNIB;, (0) d(x, 0Q)|x|~> TER NI B (0) xy|z|e

and

(6.26) T . . R S 1) B
i—+00 2€QNIB,, (0) d(z,00)|x|~%  zerRTNIB.(0) T1|z|~

We distinguish two cases:

d
Case 1: a = ay(y). Let W and u((hz(,y)y_

Note that the existence and properties of u

be as in Proposition 6.4, and fix € > 0.
(d)

ay(v),—
currently proved. It follows from (6.26) that there exists ig such that for ¢ > ig, we

have that

do not use the Lemma that is

u(z) > (I — e)u(d) (z) for all x € W N OB,,(0).

ar(v),—
Since (—A = (v + O(|z|")]al %) (u — (1 — ul? | ) > 0in W\ By,(0) and since
Uq, (v),— vanishes on OW \ {0}, it follows from the comparison principle that
d
u(z) > (1 — e)uéz(w)v_(x) for all x € W\ 0B,,(0).
Letting ¢ — +o00 yields

u(z) > (I —€) (@) (z) for all x € W\ {0}.

Yoy (v),—

It follows from this inequality and the asymptotics for ufi)(v) _ that

liminf w(z) > 1.
z—0

Note that this is valid for any I € R satisfying (6.23). By taking ! := limsup,_,,w(z),
we then get that lim, o w(z) = 1.
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Case 2: a = a_(y). Consider the super- and sub-solutions wuq_(v) 4, Ua_ (v),—
constructed in Proposition 5.1. It follows from (6.25) and (6.26) that for € > 0,
there exists ig such that for i > ig, we have

(I = ua_(y),—(7) Su(r) < (14 €)uq_(y),+(z) for all z € QN IB,,(0).

Since the operator —A — (7 + O(|z|7))|x| =2 is coercive on QN B, (0) and that the
functions we consider are in Dllo’iO(Q N B,,(0)) (i.e., they are variational), it follows

from the maximum principle that
(I = ua_(y),—(®) Su(x) < (14 €)uq_(y),+(z) for all z € QN B, (0).
Using the asymptotics (5.3) of the sub- and super-solution, we get that
o u(x) . u(z)
l—e¢) <1 f < lims <(l .
(=6 < Hm it  a—et = Hmsup oo e = (+¢)

Letting € — 0 yields lim, ,ow(z) = 1 > 0. This ends Case 2 and completes the
proof of (6.24).

The case u > 0 is a consequence of (6.24) and (6.22) (note that for the second
limit, z; € 0N rewrites as 0; € OR" and therefore (6;); = 0). This ends the proof
of Lemma 6.5. O

The following lemma is essentially Theorem 6.1 in the case of linear equations of
the form L,u = a(z)u.

Lemma 6.6. Assume that u € DV2(Q)10c0 is a weak solution of

{ —Au — %‘;r)u =0 in Dl’Q(Q)loc,O

6.27 |]
(6.27) u=0 on Bys(0) N0,
for some T > 0 with v < "72. Then, there exists £ € R such that

. u(z)
| = /.
Y a0 a0

Proof of Lemma 6.6: First, we assume that u € DLQ(Q)ZOC,O, satisfies (6.27) and
u >0 on Bs(0) N Q. Tt then follows from Lemma 6.3 that there exists Cy > 0 such
that

d(x,00)

1 d(x,090)

FO |x‘0¢7(7) -

Since u > 0, this estimate coupled with Lemma 6.5 yields Lemma 6.6 for u > 0.

for all x € QN B;(0).

Now we deal with the case when w is a sign-changing solution for (6.27). We define
ug, ug : Bs(0) NQ — R as in the proof of Lemma 6.3. The first part of the proof
yields that there exist l1,lo > 0 such that

. uy () . ug(x)
25 d(z, o)z M N A o)z 2
Therefore, we get that
u@) h—leR.

li =
250 d(xr, 0[] ~o- 0
This completes the proof of Lemma 6.6. O
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Proof of Theorem 6.1: We let here u € D'?();000 be a solution to (6.1), that is

_ 1 +0(=[")

2 —-A
(6.28) u FE

u = f(z,u) weakly in D"2(0);0c.0

for some 7 > 0. We shall first use the classical DeGiorgi-Nash-Moser iterative
scheme (see Gilbarg-Trudinger [28], and Hebey [32] for expositions in book form).
We skip most of the computations and refer to Ghoussoub-Robert (Proposition A.1
of [24]) for the details. We fix §p > 0 such that (i) there exists 7 € C°°(Bys,(0))
such that 7j(x) = 1 for @ € Bas,(0), (ii) 77u € DY?(Q) and (iii) u is a weak solution
to (6.28) when tested on 7j¢ with ¢ € DY2(Q) (see the definition of weak solution
given in the introduction).

The proof goes through four steps.

Step 1: Let 5 > 1 be such that % > 4. Assume that u € LO+1(QN By, (0)).
We claim that
(6.29) uwe L7z Qn By, (0)).

Indeed, fix 8 > 1, L > 0, and define G, Hy, : R — R as

|t|5—1¢ if [t| <L
(6.30) Gp(t):={ BLA Y (t—L)+L°P ift>1L
BLA=Y(t+ L)~ LP ift<—L
and
It| "=t if |t| < L
(6.31) Hp(t):==< ZH 0% - L)+ L% ift>1L
BHLS (t+ L) - L ift <L
As easily checked,
4
(6.32) 0 <GL(0) < Hylt) and G (t) = 5 (T4 )

for all t € R and all L > 0. We fix § > 0 small that will be chosen later. We let
n € C(R™) be such that n(x) = 1 for x € Bs/2(0) and n(x) = 0 for € R™\ B;(0).
Multiplying equation (6.28) with n?G(u) € DY2(Q), we get that

v+ O(2]")

/(VU,V(T}QGL(U)))d$ — / 5 nuGp(u) de
Q Q ||
(6.33) = /Q f(z,w)n*Gr(u) de.

Integrating by parts, and using formulae (6.30) to (6.32) above (see [24] for details)
yield

48
[uveren i = =P [ (IWGm@)E =Mt w?) dr

(6.34) + /Q ~A(n*)Jp(u) dz
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where J,( fo Gr(7)dr. This identity and (6.33) yield
B 7+ 0(z[7) »
ﬂ—!— I / IV(nHr(u / 7|x|2 N uGr(u) dx

< [ 1=863) )] da

C(6.9) / H () de
QNB;s(0)

|u|2() 2

(6.35) +C / (nHp (u))? da.

Holder’s inequality and the Sobolev constant given in (1.12) yield

|u|2 (s)—2 5
/ e L (u))? de
Q

|z[*

2
< / |U|2*( (/ |nHp (u)* ) ) 7©
~ \ansso) 17l el

2% (s)—2

2@ =)
< / da / IV (nHy (u)? da.
onBs0) |7l uo s(

Plugging this estimate into (6.35) and defining v := max{~y, 0} yields

o [ (nHL(u))?
5‘1'1 /|V nH(u 2de — (v+ +Co >/97|m|2 dz

CE8) [ (P + | w)) ds
QNBs(0)

el

+a(d) Q\V(UILIL(U))IZdﬂU,

where
2*(*5();2
2% (s) 2% (s 1
a(8) ==C / [l — do T
anBs0) |zl 1o,s(£2)

so that

lim a(d) = 0.

§—0
It follows from (4.5) that

7/ ”Iﬁzp dz < (1+ €(9) /|v nHy(w)? da,

where lims_,o €(0) = 0. Therefore, we get that

((45 —a(0) = (v +C7) %(1 + 45))) A IV (nH(w)]” dz

B+1)2
<CE0) [ (P @) de<0E0) [
QNBs(0) Bs(0)NQ
Let 6 € (0,00) be such that
45

4
B+1)?2 —a(0) = (y+ +C6 )ﬁ(l—i-e(é)) > 0.

35
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4
n2

This is possible since wiﬁﬁlﬁ > —5. Using Sobolev’s embedding, we then get that

2
3

(/ |HL<u>|2*dx> < ([ wmor )"
B(;/Q(O)HQ n
< oo@)" [ IV@HL) do
< ooy [

Bs(0)NQ
Since u € LP(Bs,(0) N Q), let L — +oco and use Fatou’s Lemma to obtain
that u € L%(B‘H)(B(;/Q(O) N Q). The standard iterative scheme then yields that
u € CH(QN Bs, (0)\ {0}). Therefore u € L%(ﬂ+1)(B50 (0) N §2), which proves claim
(6.29).
Step 2: We now show that
(6.36) if v <0, then u € LP(2N Bs(0)) for all p > 1,
(6.37) if v > 0, then u € LP(QN Bs(0)) for all p € (1, ni2an('y)) .
The case v < 0 is standard, so we only consider the case where v > 0. Fix p > 2
and set 8 :=p — 1. we have

43 4 n n
G2~ w2 T o) ST aqy
Since a4 (y) > n/2 and p > 2, then
44 4 n
7(64—1)2 >ﬁ'y = p<04_7(’)/)'
Therefore, it follows from Step 1 that if uw € LP(Q N By,), with p < n/a_(7), then
u € L7#2P(QN Bs,). Since u € L*>(QN By,), (6.37) follows.

Step 3: We claim that for any A > 0, then
(6.38) 2|7 Ju(z)| = O(|z| 7 (B —maxfa—(0}=3) 455 .

Take p € (2*, m) if v >0, and p > 2* if v < 0. This is possible since

2* = 2n/(n —2) and a_(y) < n/2. We fix a sequence (¢;); € (0,+00) such that

lim;, {00 £; = 0 and we fix a chart ¢ as in (5.5) to (5.10). For any i € N, we define
u;(x) = si%u(gp(si:c)) for all z € B(g/ai.

Equation (6.28) then rewrites

2 Tx|T _
(6.39) —Ag,ui — a |—<;(?(;;||2x| ))Uz = fi(x,u;) ; u; = 0 on ORY} N By,

where g;(z) := ¢*Eucl(e;2) and

*(g)— n-2_n .
i, u)] < O] + Ce O TT T8 sy 2901

in B(;/Ei. We fix R > 0 and we define wg := (BR \ BR—I) NR?%. With our choice
of p above and using (6.37), we get that
(6.40) [uill e (wr) < C,



HARDY-SCHRODINGER OPERATOR 37

and
(6.41) | filz,u;)] < Crlui| + Crlui|* &)1 for all z € wg.
Fix ¢ > p > 2*. It follows from elliptic regularity that
[ill L () < €7 i g < 5(2%(s) = 1)
luillLawgr) < C = willLr@p,e) < €' forallr > 1if g = 3(2%(s) — 1)
will oo (o) S €7 if g > 5(2%(s) = 1)

where 4 = 2=l % and the constants C,C’ are uniform with respect to 7. It

q
then follows from the standard bootstrap iterative argument and the initial bound
(6.40) that [[u;| Lo (wy,,) < €. Taking R > 0 large enough and going back to the
definition of u;, we get that for all i € N,

2] % |u(z)| < C for all z € QN Bac, (0) \ B, /2(0)

Since this holds for any sequence (g;);, we get that |z|? |u(z)| < C around 0 for any
y vields (6.38) when

2 . 'r7,2
2% < p < (”_QSLT(’Y) when v > 0. Lettlngp go to m

v > 0. For v <0, we let p — 400. This ends Step 3.
To finish the proof of Theorem 6.1, we rewrite equation (6.28) as

—Au — Mu =0
|2

where

a@) = v+ 0(al) + Olfaf?) + O (Jof*~*[u* )-2)

n—2 2*(8)_2
* Ju(a)])

7+ O(Je]") + O(|af?) + O (Jo]

for all z € Q. Since a_(7y) < %, it then follows from (6.38) that there exists 7/ > 0

such that a(z) = v+ O(|z|”) as  — 0. Therefore we are back to the linear case
in Lemma 6.6 and we are done. (]

Here are a few consequences of Theorem 6.1.

Corollary 6.7. Suppose v < vu () and consider the first eigenvalue of the oper-
ator L., that is

Jo (|Vu\2 - #13) dx

A1 (Q,y) = i 0
1( 7’7) ueDleQI%Q)\{O} fQ w2 dr > U,
and let ug € DY2(Q)\ {0} be a minimizer. Then, there exists A # 0 such that
d(x,00)

uo(T) ~z—0 AW.
Proof of Corollary 6.7: The existence of a ug that doesn’t change sign is standard.
The Euler-Lagrange equation is —Au — #u = ku for some k € R. We then apply

Theorem 6.1. O
Corollary 6.8. Suppose u € DV2(R"}), u >0, u# 0 is a weak solution of

5 u2*—1
J— o n
—Au — Wu— |1‘|5 m R+
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Then, there exist K1, Ko > 0 such that

T

(6.42) u(z) ~p0 K1 andldx)”wxr++mAKEEaa:?5-

T
|m|a—(’)’)
Proof of Corollary 6.8: Theorem 6.1 yields the behavior when x — 0. The Kelvin
transform 4(z) := |z|*~"u(x/|z|?) is a solution to the same equation in D*?(R%),
and its behavior at 0 is given by Theorem 6.1. Going back to u yields the behavior
at oo. a

7. A CLASSIFICATION OF SINGULAR SOLUTIONS OF L.u = a(z)u

In this section we describe the profile of any positive solution —variational or
not— of linear equations involving L.. Here is the main result of this section.

Theorem 7.1. Let u € C%(Bs(0) N (Q2\ {0})) be such that

_Au_%l\;\*)u:o in QN B;(0)

(7.1) >0 inQnNBs0)
u=0 on (002N B;s(0))\ {0}

Then, there exists K > 0 such that
d(x,00)

O™ |zle-()

d(x,00)

either u(x) ~y_, 0 W

or  u(x) ~py

In the first case, the solution u € DV?(Q)0c0 is a variational solution to (7.1).

It is worth noting that Pinchover [43] proved that the quotient of any two positive
solutions to (7.1) has a limit at 0.

The proof will require the following two lemmas. The first gives a Harnack-type
inequality.

Proposition 7.2. Let Q be a smooth bounded domain of R™, and let a € L ()
be such that |(a||oc < M for some M > 0. Assume U is an open subset of R" and
consider u € C%(U N Q) to be a solution of

—Agut+au=0 nUNQ
u>0 nUNQ
u=0 onUNOAN.

Here g is a smooth metric on U. If U' CC U is such that U' N is connected, then
there exists C > 0 depending only on Q,U’, M and g such that

(7.2) LG RCLLC)

U
(w09 = Cdty,00) forall xz,y € U' N Q.

Proof of Proposition 7.2: We first prove a local result. The global result will be the
consequence of a covering of U’. Fix xg € 9. For § > 0 small enough, there exists
a smooth open domain W such that

(7.3) Bs(xo) N2 C W C Baos(xo) NQ and Bs(xg) N OW = Bs(x) N ON.
Let G be the Green’s function of —Ag, + a with Dirichlet boundary condition on

W, then its representation formula reads as

(74)  ulz) = /8 (o) (=0, G ) do = / w(0) (=B, Gz, 0)) do

aW\oQ
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for all x € W, where 0, ,G(x, o) is the normal derivative of y — G(x,y) at o € OW.
Estimates of the Green’s function (See Robert [46] and Ghoussoub-Robert [24])
yield the existence of C' > 0 such that for all z € W and o € OW,

1

1 d(z,0W) < _0,.G(x,0) < Cd(ac,aW)
C |z —ol? ’
It follows from (7.3) that there exists C'(6) > 0 such that for all 2 € Bj/(w9) NQ C
W and o € OW \ 09,

1
——d(z,0W) < =0, ,G(z,0) < C(§)d(x,0W)
C(d) ’
Since u vanishes on d(2, it then follows from (7.4) that for all x € Bs/o(20) N €,
1
i, o) / w(o)do < u(z) < C(0)d(x, OW) / (o) do.
C(9) ow ow
It is easy to check, that under the assumption (7.3), we have that d(z,0Q) =
d(z,0W). Therefore, we have for all 2 € Bs/s(z0) N,

L ulo g ﬂ ulo g
C) o 109 < 5y SO0 [ uio)a

These lower and upper bounds being independent of x, we get inequality (7.2) for
any x,y € Bj/a(xo) N Q.

The general case is a consequence of a covering of U’ N Q by finitely many balls.
Note that for balls intersecting 0f), we apply the preceding result, while for balls
not intersecting 0S2, we apply the classical Harnack inequality. This completes the
proof of Proposition 7.2. ]

Proof of Theorem 7.1: Let u be a solution of (7.1) as in the statement of Theorem
7.1. We claim that
(7.5) u(z) = O(d(z, 8Q)|z| =) for 2 — 0, z € Q.

Indeed, otherwise we can assume that

| u(a)
7.6 1 = .
(7.6) 0P A 0)fal e T T

In particular, there exists (z)r € €2 such that for all &k € N,

. u(xy)
. = >
(7.7) kgrfoo x =0 and Ao D e = k,
We claim that there exists C' > 0 such that
(7.8) W > Ck for all x € QN B, (0), with ry := |zg| — 0.

We prove the claim by using the Harnack inequality (7.2): First take the chart ¢
at 0 as in (5.5), and define

ug(z) :=wo p(ryx) for 2 € R N B3(0) \ {0}.
Equation (7.1) rewrites

(7.9) —Ay, up + aru, = 0 in R N B3(0) \ {0},
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with ag(x) := —rz%. In particular, there exists M > 0 such that |a ()] <
M for all z € R% N Bs(0) \ By3(0). Since up > 0, the Harnack inequality (7.2)

yields the existence of C' > 0 such that

(7.10) “’;(ly) > c“’;—(f) for all z,y € R? N By(0) \ By 2(0).

Let Zr € R"} be such that xp = ¢(rxZ). In particular, |Tx| = 1+0(1) as k — +o0.
It then follows from (7.7), (7.9) and (7.10) that
uo p(rry)
d(p(rry), 09)
In particular, (7.8) holds.

>C -k forall y € R? N By(0)\ Byys(0).

We let now W be a smooth domain such that (6.11) holds for » > 0 small enough.
Take the super-solution u'? _ defined in Proposition 6.4. We have that

at(v),
C-k 4
u(z) > Tuizm_(ax) for all z € W N8B, (0).
Since ugdl (7),— vanishes on W, we have

u(z) > ﬂu(d) (x) for all x € O(W N B, (0)).

92 Toar(n),-
Moreover, we have that
_ A, (D _ y+0(z|7) _ (d) A _ 2+O(=]7)
Aua“%_ BE as () < 0=—-Au T u on w.

Up to taking r even smaller, it follows from the coercivity of the operator and the
maximum principle that

C-k
(7.11) u(z) > ?ugdj(v)’f(x) for all z € W N B,, (0).

For any « € W, we let kg € N such that r; < |z| for all k¥ > k. It then follows

from (7.11) that u(z) > SGEul® ' (x) for all k > ko. Letting k — +oo yields that
(d)

a+(,y)7_(x) goes to zero for all z € W. This is a contradiction with (6.14). Hence
(7.6) does not hold, and therefore (7.5) holds.
A straightforward consequence of (7.5) and Lemma 6.5 is that there exists [ € R
such that

. u(z) _
(7.12) o 3t o) e

We now show the following lemma:

Lemma 7.3. If lim,_.q W =0, then u € DLQ(Q)zoc,o and there exists
L d(2,09)
|r|07(’v) .

K > 0 such that uw(z) ~p—0 K

Proof of Lemma 7.3: We shall use Theorem 6.1. Take W as in (6.11) and let
n € C°(R") such that n(x) = 0 for x € Bs/4(0) and n(x) =1 for x € R™ \ Bs/3(0).
Define

f(z) = (—A . %ﬂx”) (nu) for z € W.
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The function f € C°°(W) and vanishes around 0. Let v € D*?(€) be such that

fAv—%v:f in W
v=0 on JdW.

Note again that for r > 0 small enough, —A — (7 + O(|z|7))|z| =2 is coercive on W,
and therefore, the existence of v is ensured for small r. Define

U= U —nNu-+v.
The properties of W and the definition of n and v yield
{ A - 22U G—0 i W
=0 in W\ {0}.
Moreover, since —Av—(y+O(|z|7))|z|~2v = 0 around 0 and v € DY2(W), it follows

from Theorem 6.1 that there exists C' > 0 such that |v(z)| < Cd(x, W)|z|~*- )
for all x € W. Therefore, we have that

(7.13) }1_% 1 00 a0 =0.
It then follows from Lemma 6.5 that
(7.14) lim ||| Va(z)| = 0.

z—0

Let ¢ € C2°(W) and w € DY2(W) be such that

—Aw — 7y+?;|‘fmw =4y inW
w=0 on JdW.

Since 1 vanishes around 0, it follows from Theorem 6.1 and Lemma 6.5 that
(7.15) w(z) = O(d(z,dW)|z|=*=)) and |Vw(z)| = O(|lz|~*-)) asz — 0.
Fix € > 0 small and integrate by parts using that both 4 and w vanish on W, to

get
[ (ane 0L
W\ B.(0) |z|

O T
/ (—Aw _ ww> wdx + / (—wd, 0 + ud,w) do
W\ B (0) |z| D(W\B.(0))

/ Yadr — / (—wd, b + ud,w) do.
W\ B.(0) QNIB.(0)

Using the limits and estimates (7.13), (7.14) and (7.15), and that 1) vanishes around
0, we get

0

0 = / Yudr + o (e”—l(el—a—(“f)e—a+(“/) + 61—a+(7)6—a—(7))>
W\B.(0)

/ Yadr+o(l), ase—0.
WA\B.(0)

Therefore, we have [, Yader = 0 for all ¢y € C°(W). Since & € L is smooth

outside 0, we then get that @ = 0, and therefore v = nu + v. In particular,

u € DY2(Q)10c,0 is a distributional positive solution to —Awu — %u =0 on
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W. It then follows from Theorem 6.1 that there exists K > 0 such that u(x) ~,_0

K I‘i(‘ﬁ’?gz . This proves Lemma 7.3. O
Combining Lemma 7.3 with (7.12) completes the proof of Theorem 7.1. O

As a consequence of Theorem 7.1, we improve Lemma 6.2 as follows.

Proposition 7.4. Let u € C*(R7 \ {0}) be a nonnegative function such that

(7.16) —Au—#uzo in R} ; u=0 on JRY.
Then there exist A_, Ay > 0 such that
w(z) = A_aq|z| 7D 4 Apzi|z|7 D) for all x € R?.

Proof of Proposition 7.4: Without loss of generality, we assume that u % 0, so that
u > 0. We consider the Kelvin transform of u defined by @(x) := |x[>~"u(x/|z|?)
for all x € R}. Both u and @ are then nonnegative solutions of (7.16). It follows
from Theorem 7.1 that, after performing back the Kelvin transform, there exist
a1, a2 € {aq (), a—(v)} such that

lim u(@)

> 0and lim u(z)
0 2 |x| "

|z|— 00 CE”(E|7O‘2

=13 >0.

If a1 < ag, then u(z) < Cxy|z|~* for all x € R}, The result then follows from
Lemma 6.2. If a1 > ag, then oy = a4 () and as = a_(y). We define

a(x) == u(z) — Ly |z| 72+ for all z € R .

to obtain that
—Aa—#azomm; i =0 on OR",

and @(z) = o(x1]x|~*+()) as & — 0. Arguing as in the proof of Lemma 7.3, we get
that @ € DV2(R% )00 and @(z) = O(x1]z|~*=()) as z — 0. Moreover, we have
that @(x) = (I + o(1))z1]z|~*~ ) as |x| — +oo, therefore @(x) > 0 for |z| >> 1.
Since @ € D1’2(Ri)10c,0, the comparison principle then yields u > 0 everywhere.
We also have that @(z) < Czy|z|~* () for all 2 € R™. It then follows from Lemma
6.2 that there exists A_ > 0 such that @(z) = A_zq|z|~*- ) for all z € R". We
then get the conclusion of Proposition 7.4. ]

n?—1
4

8. THE HARDY SINGULAR B-MASS OF A DOMAIN IN THE CASE vy >

We shall proceed in the following theorem to define the mass of a smooth bounded
domain 2 of R™ such as 0 € 9€2. It will involve the expansion of positive singular
solutions of the Dirichlet boundary problem L,u = 0.

Theorem 8.1. Let Q be a smooth bounded domain 2 of R™ such as 0 € 0%0, and
assume that ”2471 <y <vu(). Then, up to multiplication by a positive constant,
there exists a unique function H € C*(Q\ {0}) such that

(8.1) “AH- L H=0nQ, H>0inQ, H=0 ondQ\ {0}.

|z[?

Moreover, there exists ¢; > 0 and co € R such that

(8.2) H(z) = ¢, 2200 (., dwdd) |, (Id(z’am ) as z — 0.

||+ ) || () z|o—()
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The quantity m~(Q) = i—f € R, which is independent of the choice of H satisfying
(8.1), will be called the Hardy b-mass of Q associated to L. .

Proof of Theorem 8.1. First, we start by constructing a singular solution Hj for
(8.1). For that, consider u,, (,) as in (5.12) and let n € CZ°(R"™) be such that
n(xz) =1 for € Bs/2(0) and n(z) =0 for z € R™ \ B;5(0). Set

g .
= =AMua, (v)) — W(nua“w)) in '\ {0}.
It follows from (5.17) and (5.3) that f is smooth outside 0 and that
fle)=0 (d(m,aﬂ)|x|_a+(7)_l) =0 (|x|—a+<7>) in QN B 2(0).

Since «y /> ”24_1, we have that a(y) < %t and therefore f € L%(Q) =
(L (Q)) C (DLQ(Q))/. It then follows from the coercivity assumption v < v (£2)
that there exists v € D12(Q) such that

—Av — = fin (DI’Q(Q))/.

ER |2
Let vy, ve € DY2(Q) be such that

(8.3) —Avy — #vl = fy and — Avgy —

In particular, v = v; — v and v1,v2 € C1(Q\ {0}), and they vanish on 99\ {0}.
Assume that fi # 0. Since fi > 0, the comparison principle yields v; > 0 on

0\ {0} and J,v; < 0 on 00\ {0}. Therefore, for any § > 0 small enough, there
exists C'(6) > 0 such that

vi(z) > C(8)d(z,09) for all x € dBs(0) N Q.

Let tq_(y),— be the sub-solution defined in (5.2). It follows from the asymptotic
(5.3) that there exists C’(d) > 0 such that

v1 > C'(0)uq_(+),— in Bs(0) N Q.
Since this inequality also holds on 9(B;s(0) N Q) and that
(A = ) (v = C'(0)ua_(y),-) 20 in B5(0) N L,

=f_in (D1’2(Q))/.

|\2

coercivity and the maximum principle yield v1 > C'(8)uq_(),— in Bs(0) N Q. It
then follows from (5.3) that there exists ¢ > 0 such that

vi(x) > ¢ d(z,0)|z|~* ) in B5(0) N Q.

Therefore, we have that

fo(z) < Cd(x,aﬂ)|x|*a+(7)*1 < g|x‘a7(v)fa+(v)flvl(x) |x|a (M- a+(7)+1|(|2)
& x

in Bs(0) N Q. Therefore, (8.3) yields

v+ O(|x|a—(v)—a+(v)+1)
|z

Since —(v) —ax(y) +1>0. Since v; € D¥2(Q), v1 >0

and v; # 0, it follows from Theorem 6.1 that there exists K7 > 0 such that

(8.4) vy (z) = K 4299, (M> as x — 0.

||~ Tola— () |r‘07(’v)

—Avy + v1 =0 in B[;(O) N Q.
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If f+ =0, then v; =0 and (8.4) holds with K; = 0. Arguing similarly for f_, we
then get that there exists Ky, Ko > 0 such that for any ¢ = 1,2, we have that

vi(z) = K; 429 4 (‘d(%am ) when z — 0.

1 ‘$|a7(7) w|“*(7)

Since v = v; — vy, we then get that there exists K € R such that

(8.5) v(@) = —KALEY 4o (A22) asw 0.
Set
(8.6) Ho(x) := n(x)uq, (1) (x) — v(z) for all 2 € Q\ {0}.

It follows from the definition of v and the regularity outside O that

-
|z[?
Moreover, the asymptotics (5.3) and (8.5) yield Hy(x) > 0 on QN By (0) for some
6" > 0 small enough. It follows from the comparison principle that Hg > 0 in .
We now perform an expansion of Hy. First note that from the definition (5.12) of
Uq, (), the asymptotic (8.5) of v and the fact that ay(y) —a_(y) < 1, we have

C d(x,09) d(,00) [ d(z,09)
Ho(z) = W(“FO(WD)*KWO_(W)JFO |z|o-()

_d(x,00) | d(z,09) +O(d(m,6§2))

|x|a+(’Y) |x|a7(7) |x‘a7(V)

—AH, Hy=01in Q; Ho(z) =01in 00\ {0}.

as x — 0. In particular, since in addition Hy > 0 in €2, there exists ¢ > 1 such that

(8.7) Ldw0 < fo(z) < 229D for all 2 € Q.

C g™ = [+ )

Finally, we establish the uniqueness. For that, we let H € C%(Q \ {0}) be as in
(8.1) and set

)\0 = max{)\ Z 0/ H Z )\Ho}
The number \q is clearly defined, and so we set H:=H- MoHp > 0. Assume that

H # 0. Since —AH — y|z|"2H = 0, it follows from Theorem 7.1 that there exists
a € {at(y),a—(y)} and K > 0 such that

d(x,00)

[

(8.8) H(z) ~ps0 K

If « = a_(7), then H € D?(Q) is a variational solution to —AH — #ﬁ[ =0in
Q. Then coercivity then yields that H = 0, contradicting the initial hypothesis.

Therefore v = vy (7). Since H > 0 vanishes on 99 \ {0}, then for any § > 0, there
exists ¢(d) > 0 such that

(8.9) H(z) > ¢(0)d(x,00) for z € Q\ Bs(0).

Therefore, (8.8), (8.9) and (8.7) yield the existence of ¢ > 0 such that H > ¢Hy, and

then H > (Ao+c)Hy, contradicting the definition of Ag. It follows that H =0, which

means that H = A\gH{ for some A\g > 0. This proves uniqueness and completes the

proof of Theorem 8.1. O
Now we establish the monotonicity of the mass with respect to set inclusion.
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Proposition 8.2. The Hardy b-mass is strictly increasing in the following sense:
Assume Qq,Q9 are two smooth bounded domains such that 0 € 9021 N 0Ny, and

n2471 <7 <min{yg (1), v (Q2)}, then
(810) Ql g QQ = m’Y(Ql) < m’y(QQ)~

Moreover, if @ C R’ and ol oy o ”72, then m () < 0.

-~
Proof of Proposition 8.2: 1t follows from the definition of the mass that for i = 1,2,
there exists H; € C?(€2; \ {0}) such that

(8.11) —AHZ-—%HZ- =0inQ, H; >0inQ;, H; =0 on 9,
X

with
d(l‘,an)

(8.12) H;(x) mo ()

asx — 0, x € Q;. Set h:= Hy — Hy on ;. Since 7 C €5, we have that

—Ah — #h =0 in Ql
(8.13) h>0 on oy
h ié 0 in an

dw,00) (d(x,&))

= zfer ™) |z[o= () |z[o=()

First, we claim that h € H%?(Q;). Indeed, it follows from the construction of the
singular function (see (8.6)), that there exists w € H2(;) such that

d(CE, 892) - d((t, an)

|z[o+ ()

(8.14) h(z) =

+ w(z) for all z € Q.

Since 1 C 5 and 0 is on the boundary of both domains, then the tangent spaces
at 0 of 27 and s are equal, and one gets that

d(x,001) — d(x,002) = O(|z|*) as x — 0.
Since ay () — a—(y) < 1, we then get that

= d(x,@QQ) - d(x,é)(ll)

— - l1—a-(7)
h(z) == ) = O(|z| ) as x — 0.

Similarly, |VA(z)] = O(jz|~*~)) as & — 0. Therefore, we deduce that h €
HY2(Qy). Tt then follows from (8.14) that h € HY2(Qy).

To prove the monotonicity, note first that since v < vg(Q1) and h € HY2(Qy),
it follows from (8.13) and the comparison principle that A > 0 in 7 (indeed,
this is obtained by multiplying (8.13) by h_ € D?(Q) and integrating: therefore,
coercivity yields h_ = 0). Since h # 0, it follows from Hopf’s maximum principle
that for any § > 0 small, there exists C'(§) > 0 such that

h(z) > C(0)d(x,08y) for all z € Bs(0) N Q.

We define the sub-solution u,_ (), as in Proposition 5.1. It then follows from the
inequality above and the asymptotics in (5.3) that there exists ey > 0 such that

h(x) > 2€0uq_ (v),— () for all z € OB5(0) N Q.

This inequality also holds on Bs(0) N 99 since Uq_(v),— Vvanishes on 0€;. It
then follows from the maximum principle that h(x) > 2€puq_(4),— () for all z €
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B;s(0) N Q. With the definition of h and the asymptotic (5.3), we then have that

for 6’ > 0 small enough

d(.’E, an)
|;Zj|0‘—('Y)

We let ¢ be the inner unit normal vector of 9Q; at 0. This is also the inner unit
normal vector of 9y at 0. Therefore, for any ¢ > 0 small enough, we have that
d(tv,09;) =t for i = 1,2. It then follows from the expressions (8.12) and (8.15)
that

(8.15) Hy(z) — Hi(z) > € for all x € By (0) N Q.

(1m0 () — () xbesy +o( . m) > oty ast L0,

We then get that m.(Q2) — m, (1) > €, and therefore m.(Q2) > m.(Q). This
proves (8.10) and ends the first part of Proposition 8.2.

The proof of the second part is similar. Indeed, we take 23 := R’} and we define
Hy(x) = Iw\jﬁ Arguing as above, we get that 0 > m,(Q), which completes the

proof of Proposition 8.2. O
In Section 10, we will prove that one can define the mass m, (R’ ) of R}, and that
m~(R) = 0.

9. TEST FUNCTIONS AND THE EXISTENCE OF EXTREMALS

Let © be a domain of R™ such that 0 € 9. For v € R and s € [0, 2), recall that
(9.1) fiy,s(Q) == inf IS (u),

uweDL2(Q)\{0} °

where

Jo (|Vu|2 - %‘213) d:v'

(Jo b aa)

Note that critical points u € D%2(Q) of Jﬁs are weak solutions to the pde

Q -
Js(u) =

QBN (7 e
(9.2) Au FE =A EOR
for some A € R, which can be rescaled to be equal to 1 if A > 0 and to be —1 if
A < 0. In this section, we investigate the existence of minimizers for Jfﬁs. We start
with the following easy case, where we don’t have extremals.

Proposition 9.1. Let Q& C R™ be a smooth domain such that 0 € 9Q (No bound-
edness is assumed). When s =0 and v < 0, we have that po(Q) = W (where

K(n,2)72 = pg o(R™) is the best constant in the Sobolev inequality (1.14)) and there
s no extremal.

Proof of Proposition 9.1: Note that 2*(s) = 2*(0) = 2*. Since v < 0, we have for
any u € C(Q) \ {0},

Ja (‘VU\Q *’Y%) dx N Jo IVul? dx o1
(Joy > dx)l* T (Jo luf? da) K27

and therefore p, () >

(9.3)

m. Fix now zo € Q and let n € C°(2) be such that

n—2

n(x) = 1 around zg. Set u.(z) := n(zx) (m) * forallz € Qand e > 0.
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Since xg # 0, it is easy to check that lim._,q fQ % dx = 0. It is also classical (see
for example Aubin [2]) that

y Jo [Vuc|? da 1
1m 5 = .
e—0 (fﬂ |U5|2* d‘r)? K(n, 2)2

It follows that fi,0(Q2) < m This proves that j,,0(Q2) = 7,«,1 5y

Assume now that there exists an extremal ug for p,o(2) in DV3(Q) \ {0}. The
inequalities in (9.3) and the fact that
fQ |Vug|? da _ 1
(o fuof?* dw)* - K2

means that ug € D2(Q2) C DY2(R™) is an extremal for the classical Sobolev

inequality on R™. But these extremals are known (see Aubin [2] or Talenti [52])

and their support is the whole of R™, which is a contradiction since ug has support

in Q # R”. It follows that there is no extremal for 11,,0(€2). This proves Proposition

9.1. [
The remainder of the section is devoted to the proof of the following.

Theorem 9.2. Let Q be a smooth bounded domain in R™ (n > 3) such that 0 € 99
and let 0 < s < 2 and v < %2. Assume that either s > 0, or that {s =0, n > 4

and v > 0}. There are then extremals for p, (1) under one of the following two
conditions:

(1) v < "2;1 and the mean curvature of O at 0 is negative.

(2) v> "24_1 and the mass m~ () of Q is positive.
Moreover, if v < yu(Q) (resp., v > vu(QY)), then such extremals are positive
solutions for (9.2) with A > 0 (resp., A <0).

The remaining case n = 3, s = 0 and v > 0 will be dealt with in section 11.

According to Theorem 4.4, in order to establish existence of extremals, it suffices
to show that 11, s(Q) < py,s(R’}). The rest of the section consists of showing that
the above mentioned geometric conditions lead to such gap.

In the sequel, ho(0) will denote the mean curvature of 92 at 0. The orientation is
chosen such that the mean curvature of the canonical sphere (as the boundary of
the ball) is positive. Since {s > 0}, or that {s = 0, n > 4 and y > 0}, it follows from
Theorem 12.1 in Section 12 of the appendix (see also Bartsch-Peng-Zhang [3] and
Chern-Lin [10]) that there are extremals for s, 4(R"). The following proposition
combined with Theorem 4.4 clearly yield the claims in Theorem 9.2.

Proposition 9.3. We fiz v < ”72. Assume that there are extremals for p., (R'}).
There exist then two families (ul)eso and (u2)eso in DY2(Q), and two positive
constants ¢t . and 2 , such that:

] Y,
(1) Forvy < %, we have that
(9.4) J(ul) = py,s(RY) (1 + C}ns ~ha(0) - €+ o(e)) when e — 0.

(2) For~y= ”24_1, we have that

1 1
(9.5)  J(ul) = pys(RY) <1 + c,lyys ~hq(0)-eln - +o <€ln 5>) when & — 0.
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(3) For~ > "24_1, we have as € — 0, that

(9.6)  J(u?) = iy o(R?) (1 — 2 my(Q) e (a0 O(Eoch(’Y)—ocf(’Y))) .

Remark: When v < ”24_ L this result is due to Chern-Lin [10]. Actually, they

stated the result for v < %, but their proof works for v < "24; L
when v > #, we need the exact asymptotic profile of U that was described by
Corollary 6.8.
Proof of Proposition 9.3: By assumption, there exists U € DV2(R7) \ {0}, U > 0,
that is a minimizer for ., (R’). In other words,

. 2 (VU = 2U?)
Tt (U) = Je (' "~ e v

e |U)2* (=) =)
*(s 2% (s

n — dx

(fR+ = )

Therefore (see Corollary 6.8), there exists A > 0 such that

. However,

= M'y,S(Ri)'

SAU - U =20 Ry

ElN
(9.7) U>0 inR"
U=0 indRY
and there exist K7, Ko > 0 such that
1 T1
9.8 U(x) ~ps0 Ki—— and U(x) ~z| 400 Ko———,
( ) (.Z‘) —0 1‘$|a* an (.’13) |z|—+ 2|x|0‘+

where here and in the sequel, we write for convenience

ay =ay(y) and a_ = a_(7).
In particular, it follows from Lemma 6.5 (after reducing all limits to happen at 0
via the Kelvin transform) that there exists C' > 0 such that

(9.9) U(z) < Cxi|z|~** and |[VU(x)| < Clz|~*+ for all € R7}.

We shall now construct a suitable test-function for each range of v. First note that

n? -1
4
n? -1
4
Concerning terminology, here and in the sequel, we define as in (5.4)

B, := (—r,7) x B"V(0) c R x R"7},

r

v < & ay—oa_>1

vy = & oy —oa- =1

for all » > 0 and
Vi:=VnRY
for all V' C R™. Since ) is smooth, up to a rotation, there exists § > 0 and
0o : B"71(0) — R such that ¢(0) = [V (0)] = 0 and
. Bss — R"
(9.10) { 14 (ml,m/) — ($1 + 900($/);$/)a
that realizes a diffeomorphism onto its image and such that

©(Bss N R%Y) = ©(Bss) NQ and op(Bss N ORY) = ©(Bss) N Q.
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Let 7 € C°(R") be such that 5(z) = 1 for all 2 € B;, n(x) = 0 for all z ¢ Ba;.

Case 1: v < %. As in Chern-Lin [10], for any € > 0, we define

n—2

ue(z) = (UE_T U(e_lx)) o L(z) for z € p(Bas) N and 0 elsewhere.
This subsection is devoting to give a Taylor expansion of J,?,s(ua) ase — 0. In
the sequel, we adopt the following notation: given (ae)eso € R, ©4(a.) denotes a
quantity such that, as € — 0.

[N

o(ae if 4 < n2=1
0, (a) = | oL LS
O(ac) ify= "5

Estimate of [, [Vu.|* dx:

It follows from (9.9) that
(9.11) |Vue(z)] < Ce®+~ % |z|~2+ for all x € Q and € > 0.

Therefore,

f@((Bsa\éa)ﬁRi) Vu|? dz = ©,(e) as € = 0.

It follows that
/Q \Vu|? do = /35 ) |V (ue o <p)|i*EuC1|Jac(ap)| dr+0,(ec) ase—0,

where Bsy := Bs N R%. The definition (9.10) of ¢ yields Jac(y) = 1. Moreover,
for any 6 € (0,1), we have as x — 0,

Fud = [ 1 djpo _ 140
¢*Eucl := < Bigo Gis + Dipodspo > =Id+ H+ O(Jz|™)

where

._ 0 9Jjpo
i = ( Oipo 0 ) '

It follows that

[vuka = [ Veoolbgde- [ B0 0000 do
5,4+

Bs.

(9.12) +0 (/ |2V (u. o (p)Qdm> +0,(e) ase—0.
Bg,+
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We have that
/ H90;(uz 0 )0 (ue o @) dz
Bg +

=2 H" 81 (ue 0 9)0;(ue 0 p) dz

i>2 7/ Bs+
=23 [ Oen(a)0s(uz 0 @)0uc o 9) do
i>2 7 Bs+
=23 [ @ Pl o 9k o 0)ds
i,j>27 Bs+
(9.13) +0 / 22|V (ue 0 @)|? d as e — 0.
Bg,+

We let I be the second fundamental form at 0 of the oriented boundary 0€2. By
definition, for any X,Y € Ty02, we have that

II(X,Y) := (diio(X), Y)Eyel
where v : 92 — R" is the outer unit normal vector of ). In particular, we have
that 7(0) = (—1,0,-,0). For any 4, j > 2, we have that

ITij = I1(9;(0), 9;¢(0)) = (0:(V 0 ¢)(0), 9;(0)) = —(i7(0), 9;;(0)) = 030 (0).
Plugging (9.13) in (9.12), and using a change of variables, we get that

/\Vu5|2dx = / |VU|? dx — 21T;; Z/ 2V o UdU da
Q Bs*16,+ i,j>2 *15-%—
(9.14) +0 (/ 1:|1+9|V(uso<p)2dm> +0,(e) ase—0.
Bs,+

We now chozose 0:

(i) Ify <22 then choose 0 < 0 < ap —a_ —1;
(i) Ify= (0,1).

In both cases, We get by using (9.11), that

(9.15) / 2"V (e 0 @) dz = O, (¢) as & - 0.
Bs +

Moreover, using (9.9), we have that

(9.16) st—la,Jr VU2 dz = fm |VU?dx + ©,(c) as e — 0.

Plugging together (9.14), (9.15), (9.16) yields

/|Vu5|2dx = / \VU|? da
Q n

+

(9.17) —orry Y / LY RUU de + 6., ().

1,7>2 —15+

2% (s)
Estimate of [, qul‘xls dz:
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Fix o € [0,2]. We will apply the estimates below to o = s € [0,2) or to o := 2.
The first estimate in (9.9) yields

(9.18) luc ()] < Ce®~2d(x, 0N)|z| =+ < Ce™ % ||t~

for all e > 0 and all z € . Since Jac p = 1, this estimate then yields

2* (o) 2* (o)
/ %d:ﬁ = / _ %dl’"‘ @7(5)
o |zl o(Bs.+) ||

(9.19) fBM%dm—k@y(a) as € — 0.
Ify < =L orif y = 2= and o < 2, we choose 0 € (0, (oz+—oz_)QT(a)—1)ﬂ(0,1).

n2

If v = 7 Land 0 = 2, we choose any 6 € (0,1). Using the expression of ¢(z1,2’),
a Taylor expansion yields

(9.20)
—0 __ —0o g I3 \Jj 146 )
p(x)|77 = |z BEFE > 9ipo(0)(@) (@) + O(|z|") | ase — 0.
1,j>2
The choice of 8 yields
(9.21) f35 ) %MHQ dr =0,(e) ase—0.

Plugging together (9.19), (9.20), (9.21), and using a change of variable, we get as
e — 0 that

2% (o) U2 (@)
7|UE|U daj:/ ||Jdm
o [a] 5.,
U@ 21
-2 Z eny [ @) @ ot 0, ).
1,j>2 =1+
Moreover, (9.9) yields
2% (o) 2%(o)
/ Y] dac:/ Y] de+04(c) ase—0.
5., T T
Therefore, we get that
2% (o) 2% ()
/LEI —dzr = / Y] —dx
o [4l . Jal
|U|2*(U) T p .
(9.22) —= Z II”/ 2] W(x/) (2") dz + ©,(e).

0,7>2 e—1s5,+

We now compute the terms in U by using its symmetry property established in
Chern-Lin [10] (see also Theorem 13.1 in the Appendix). Indeed, it follows from
(9.7) that there exists U : (0,400) x R such that U(zy,2’) = Uz, |2']) for all
(x1,2") € R}. Therefore, for any i, j > 2, we get that

U 2% (o) ) ) ;i U 2% (o)
| | ﬁ(x/)z(xl)] dr = J ‘ | L1 | |
; P -

— 2
5., 17 n1Jp_,, . |27 [af?
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and that

/ (Y U dz — Lfl / 01U, VU) da
B

Bs*16,+ e—1ls,4+

where x = (x1,2’) € R’}. Therefore, the identities (9.17) and (9.22) rewrite as

(9.23)/ |Vuc|*de = / |VU|2dnc—2:LLL(O)E/~ U (2", VU)dz + O,(¢)
Q - B

Ri 1 e—1ls,+
and
2% (o) 2% (o)
921y [ e / U
o lzf7 |zl
a0 f U@ 21
—— ¢ —=|2'|*dz + ©,(¢)
-0 Jp . Jal7 aP "

as € = 0, where hqo(0) = Y, I1;; is the mean curvature at 0.

An intermediate identity. We now claim that as € — 0,

/12 U2"(s) U?
/ U, VU)dr = / vl (A T HQ) dz
5 5, 2eP 'ZE w7
712 U 2
(9.25) —/ PO 1 v 6.1
8R1035715 4

where A > 0 is as in (9.7). This was shown by Chern-Lin [10], and we include it
for the sake of completeness. Here and in the sequel, v; denotes the i** coordinate
of the direct outward normal vector on the boundary of the relevant domain (for

instance, on R’ , we have that v; = —d1;). We write
/ U (', VU) dx—Z/ U (') 0;U da
Bo-1s4 j>2Y Pemls 4
—Z/ 81U8j<x| )ade
ji>2 e—1s,4
|J}/|2 /|2
-y [ avtauy, do—Z/ 0, (WU da
j>270(B—151) j>2/ Bo-1s 4
|2'[? 210772
=> . 0U-0;Uvjdo + 0O 2 PIVUP(x) do
i>2 QR"QB e—1s 2 R1m835715

/|2

(9.26) Z/

]>2 e—1ls,+

(01;U0;U + 01U;,;U) da
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Since U(0,2') = 0 for all 2/ € R"! using the upper-bound (9.9) and writing

= (0a,...,0n), we get that

/ 81U(IL'/, VU) dx

B e—1s,+
/‘2
81jU8jU + 81U8jjU) dx + @«/(1)

=—Z/ -

j>2
/‘2

= —/: |‘T4 81 (|V/U|2) dx

Bo-154

/|2
=] U (—AU + 011U) dz + ©,(1)

<,
Bs*15,+
72 /U2 /|12
L TNVUE, 4 +/ |$2‘ U (~AU) dz
B

=—/ udx
/8(36_15#) 4
2

(9.27) +/él ) (W) dz + ©,(1).

5_1(5,4»

4
Using again that U vanishes on R’} and the bound (9.9), we get that
/|12 /|12 LU 2
1 o (=AU da +/ POU7, 4,
ORTNB,_1, 4

/ U2, VU)dz = / 5
Ba_18,+ Ba_16,+
+0 (/ ~ |m’|2|VU|2dx> +0,(1)
A(B._15)NR?
|2/ [?
= [ —0U(—AU) dx
Ba*15,+

/(2 2
OO 40 o)

(9.28) - /
8Riﬁé5715 4

as € — 0. Now use equation (9.7) to get that

/12 2 U2 (s)—1 U

| alU(fAU)dx:/ = o0 ( Sty 2) dz.
5 EE

(9.29)

h."
Bsflé,«k

Integrating by parts, using that U vanishes on R} and the upper-bound (9.9), for

o €10,2], we get that
U2 (o)—1 U2*(U)
/ o 200U d:c—/ o 2|~y () do
35_15,4— | | Bs_lé,+ 2 (U)
U2 (o) U2 (o)
:/ |a:’\2|a:| i %) dx—/ 81(|x'|2|x_")( - ) dx
2(0) 5 2(0)
/12
g | 2"(0) ¢

(B,
227U @ do | + - / [z
anaB 154 2*(s) B, 1g,

g

|33/\2951 2°(9) d
(9.30) = ()/ U dz + 0,(1)

|$|0+2
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Putting together (9.28) to (9.30) yields (9.25).

Estimate of J$(uc): Since U € DV?(R™), it follows from (9.7) that

2 Y 72 U
/ (VU — WU ) do = )\/ 7|$|S dz.
R R

n n
+ +

This equality, combined with (9.23) and (9.24) gives
Jo (|Vu5|2 - #ug) dx

Q _
J%S(us) N e 2% () 2%@
Jo (IVUP? = 2502) da ha(0
(9.31) = + " 2 1+e€ ( RU‘Q*(S) C: +0,(¢)
(Joy 1 )™ (= DA Jyy T do
i x
where for all € > 0,
/2 2
C. = —2/ 31U($’,VU)dx+fy/ il flU—de
B.o1y, B.oay, |2 2|
[ e,
2*(s) J3 > [xf*

e—1ls,+

The identity (9.25) then yields

712 2
06:/ PO 1 v 6.1
ORTNB__1, 2

as € = 0. Therefore, (9.31) yields that as ¢ — 0,
hQ(O) faRimBsfla |SU/‘2(81U)2 da’
D
2(n — 1)\ f]R1 L do

(032)J2,(u.) = pyo(®Y) |14 +0,()

We now distinguish two cases:

Case 1: v < =L, The bound (9.9) yields |2/[2|8,U]> = O(|2'|>~2+) when
|2’/| = +oo. Since IRT = R™', we then get that 2’/ — [2/[*|01U(2')]? is in
L'(8R%), and therefore, (9.32) yields

(9.33) I8 (ue) = pay s (RY) (14 Co - ha(0) - €+ 0(¢)) as e = 0,

with

Jomn |2 2(00U)2 da’
"

Cp := > 0.
U|2*(s)
2(n — 1)\ fRi | ||x|s dx
Case 17: v = "24_1 . It follows from (9.8), Lemma 6.5 and a Kelvin transform that
lim |JL‘/|CUr \81U(O,x')\ =Ky > 0.
|z’ | =400

Since 2ay —2 =n — 1, we get that

/B]M nB,

1 1
I"I}'/‘Q(alU)z dﬁE/ = wn71K22 In g +o0 <1n 5)

—15



HARDY-SCHRODINGER OPERATOR 55

as € — 0. Therefore, (9.32) yields
(9.34) J$ (ue) = piy,s(RT) (1 + Coha(0)eInt +0(Inl)) ase—0,

where )
wn_1K2
C(') = T > 0.
2(n—1)A fR" dx
+

=]

n?—1

Cases 1 and 2 prove Proposition 9.3 when v < #—

Case 2: v > #. In this case, the test-functions are more subtle. First, use
Theorem 8.1 to obtain H € C%(Q\ {0}) such that (8.1) holds and

(9.35) H(z) = d‘(:l’f?) +m () d=.09) 4 (d‘(fl’f?f)» when z — 0.

[z]™=

As above, we fix 7 € C2°(R") such that n(z) =1 for all z € Bs, n(x) = 0 for all
x € Bos. We then define 8 such that

H(z) = (77;;> o M(x)+ B(z) forallz e .

Here ¢ is as in (5.5) to (5.10). Note that 8 € D?(Q) and
(9.36) B(z) = m4(2) d‘(zl’aafz) +o0 (dl(‘flv‘??)) as ¢ — 0.

Indeed, since ay — a— < 1, an essential point underlying all this subsection is that
|z| = o (|z|*+~%-) asx — 0.
We choose U as in (9.7). Ny multiplying by a constant if necessary, we assume that
Ky =1, that is
1

(9.37) U(x) ~zs0 KIW and U(2) ~|z/—4o00

T
]+

Now define

(9.38)  wuc(z):= (ne_nTﬁU(e_L)) op Hx) + T B(x) for x € Q and € > 0.
We start by showing that for any k& > 0

(9.39) lim ——=— = H in CF_(Q2\ {0}).

e—0 é_a ;a_

Indeed, the convergence in CP (2 {0}) is a consequence of the definition of wu.,
the choice K, = 1 and the asymptotic behavior (9.37). For convergence in C*, we
need in addition that V(U — zq|z[~2+) = o (Jz|'7*+~%) as = +oo for all i > 0.
This estimate follows from (9.37) and Lemma 6.5.
In the sequel, we adopt the following notation: 6% will denote any quantity such
that there exists 6 : R — R such that

lim lim 6 = 0.

c—0e—0
We first claim that for any ¢ > 0, we have that

/ <Vu€|2 - ’y2u§> dx
NG (Be(0)+) ||

_ sap—a o n72a+wn—1
(9.40) € <(a+ 1)e ™ +m,(Q) 5

— 2)Wn— _
(n Jw 1>+92€O‘+ a-
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Indeed, it follows from (9.39) that
(9.41)

. Ve — gpuz) de
. oot ((V0el” = F2) :/ <|VH|2_72H2> da.
2\ (B. <o>+>

e—0 eq+ - |£L“

Since H vanishes on 90\ {0} and satisfies —AH — B |2 = 0, integrating by parts
yields

/ <|VH|2 - 2H2) de = —/ HO, H do
N\ p(B:(0)4) |z »(R?NIB.(0))

(9.42) = —/ Hop0,,,(Hop)de o),
R?NOB.(0)

where in the two last equalities, v(z) is the outer normal vector of B.(0) at = €

0B.(0).
We now estimate H o ¢y, H o ¢. It follows from (9.35) that

(9.43) Hop(x)= % + m(£2) ‘Cj‘i’ +o Q;T; ) as x — 0.
It follows from elliptic theory and (9.36) that for any ¢ = 1,...,n, we have that
(9.44) (B o@) =0 (my(Q)pfi=) +o(le]=) asz -0,
Therefore,

Oi(Hop) = 6plr| ™ —apxya|a| o+ 2
(9.45) +my (Q) (6i1]z) ™% — azyz|2z|7 ) + o (Jz|7*)

as ¢ — 0. Moreover, p,v(z) = 5 +O(|x]) as ¢ — 0. Therefore, the estimate (9.45)
yields

T1
(9.46) Op,v(H o p) = —(ay —

o
1)—|%|a++1 — (

- — 1)m7(Q)W

+o(|z7*)
as ¢ — 0. By using that ay + o =n and oy —a_ < 1, (9.43) and (9.46) yield
—H o @0,,,(Hoy)= (ﬁéa% + (n — 2)m () = |z\n+1 +o0 (|9U|1 ") as ¢ — 0.

Integrating this expression on B.(0); = R’ N9dB.(0) and plugging into (9.42) yield

-1 n—2o4 i B
/ (IVHF—QHZ) ar = T DO T gy (o)t
N\ (Be(0)1) ] 2n

2n

where lim,. .o 0. = 0. Here, we have used that

1 1 Wh—
/ 2 do = f/ 22do = — |z|? do = n—l, Wph_1 1= / do.
st 2 Jsn—1 2n Jon—1 2n §n—1

This equality and (9.41) prove (9.40).

We now claim that

U2 (s)
/ <|Vu€2 — —Qu ) de = )\ dx
Q | R |z

(947) +m7(Q) (n—2)nwn Lo —a +O( ourfoc,) as € — 0.

Oc
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n—2

Indeed, define U.(z) :== e~ "2z U(e 'z) for all z € R}. The definition (9.38) of u.
rewrites as:

ue o p(x) = Ue(x) + € e Bop(x) forall ze RN Bs.

Fix ¢ € (0,4) that we will eventually let go to 0. Since dyg is an isometry, we get
that

(9.48) / (Vu€|2 - 2u8> dx
(B.(0)+) ||

- Ue © —T u 0 p)? ac T
Lc(o)+ <V( € 90)| o*Eucl — | (3;‘)|2( € 80) ) |J ((p)|d

2 2
- VUL gt~ Tgl? ) Mol do
/BC(O)+ ( erBucl = o (z)2 7

T ° L Ue © ac T
/BC(O)+ <(VUE’V(ﬁ (’D))w*Eucl lp(2)]2 Ue( ‘P>) |Jac(p)|d

#2057 [ (0 (092 Bacto

Since p*Eucl = Eucl + O(|z]), |p(x)| = |z| + O(|z|?) and 8 € D}2?(Q), we get that

9.49/ (vuﬁ—us) dx—/ <VUE2 U2) dx
(949 (Bo(0)+) Vel |z[? Bu(0)+ Vel - > |

U2
+0 / x (VU + > dx
Bc(0)+| (! |Eucl |22 |

ay —a

4927 2 /BC(O) ((VUE, V(ﬂ o @))Eucl - #Us(ﬂ © 90)) dz

vo 5= [ i (vl 9Bo )+ TI2E) 4r ) 4 cormon
2
Bc(0)+ |x|

as € — 0. The pointwise estimates (9.37) and (9.44) yield

Y 2
Vu)? — —Lu ) dx _/ <|VUE|2 - —U, ) dx
/g;(Bc(om ( |lz?* B.(0)4 Euel — |g27¢

= / ((VUs, V(B°¢)Eucl — %Us(ﬂ o so)) dx
B:(0)+ ]

ap—a_ e
+e 0

+2¢

+2¢

as € — 0. Integrating by parts yields

/ (|Vu8|2 — —QU ) dx
(B.(0)4) ||

:/ (—AUE '72U)U5dx+/ U.0,U. do
B.(0)4 |z O(B.(0)1)

+2€o¢+;a_ / <—AUE PYQU)ﬁOQde—’—/ Bopd, U, do
B.(0)4 || D(B.(0)+)

oy —a_ e
+e 0c
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as € — 0. Since both U and 3 o ¢ vanish on dR"} \ {0}, we get that

(9.50) / <|Vu5|2 -, ) do
(B.(0)4) ||

:/ (—AUE VZU)UdeJr/ U.0,U, do
Bo(0)4 |z| R NOB,(0)

+25a+;a7 / (—AUE ’72U ) Bopdr+ / B owd, U, do
Bo(0)+ |z| R7 0B, (0)

ayp—a_ e
+e 0

as € — 0. The asymptotic estimate (9.37) of U and Lemma 6.5 yield (after a Kelvin
transform)

0, U = —(ay — 1)5%;“7 zylz) 7 4o <5a+;L |x|_°‘+)

as € — 0 uniformly on compact subsets of R} \ {0}. We then get that

—a

BopdU.=e 7 (=my () (ay — Daf|a| " + o (Jz['"))
and
U.0,Uc = e+~ (=(ag — Daf|z| >+ + o (|z|' 7))

as € — 0 uniformly on compact subsets of @\ {0}. Plugging these identities in
(9.51) and using equation (9.7) yield, as ¢ — 0,

U2 (s) W1
/ <Vug|2 - —2u > de = / P —dz — (ay — 1) o= 2 g o
P(B(0)+) ] B.(0)y |2 2n

oo 2% (s)—1
262 / e b pda
oy P

Wn—1

(9.51) —(ay —1) My ()t 74 4 ¥+ 7262

Note that as ¢ — 0,

Uz*(s) U2*(5) U2*(5)
/ A— . de = / A— . dx + O / = . dx
B.(0)+ 2| v || R7\Bc(0) + ||

2% (s)
(9.52) :/ A———dz+o0 (")

|z[*

The expansion (9.36) and the change of variable x := ey yield as ¢ — 0,
(9.53)

2%(s)—1 o —a U2*(s)—1 ay—a_
/ A————Bopdr = Am,(Q)e = / SA—) dy +¢ aE 0
B.(0) : nofylso fyle-
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Integrating by parts, and using the asymptotics (9.37) for U yield

/ U2*(s)—1 n ) U2*(s)—1 n
—— ———dy = lim ————dy
R

wolylt fyles Rotoo Jpa), WISyl

—  lim <AU”2U> Iy
R—+00 JBp(0), |y ly|*-

— lim U(-A—72>< Ll >d
R—+00 JBL(0)4 ly] |y~

dBR(0)4 |y|*-

(9.54) = (a4 —1) w;:.

Putting together (9.52), (9.53) and (9.54) yield

2 (s)
/ <|Vu52 - ’y2u§> de = /\/ Ldaz
Q Ed Ry |T[°

:L—
(n - 2)wn—1€a+—a, +o (Eour—a,)

+m,(Q2) on

as ¢ — 0. This finally yields (9.47).

We finally claim that

2% (s) 2% (s) ox -1
/ Ye gz = / U " e + (5) mW(Q)Mga#*af
Q

|z[*

(9.55) 4o (947%7) as € — 0.

Indeed, fix ¢ > 0. Due to estimates (9.36) and (9.37), we have that

X0 W2
/75(1:5 = / 7sdm+o(5a+_o‘*)
o |z p(B.(0)1) 7]

—o_

B.(0)1 ()]s

|Jac(p)| dz + o (e*+ )

U +e 7 2*(s)
-/ et em = 500l ™) 4 (faf)) do + o (%)
Be(0)+

as € — 0. One can easily check that there exists C' > 0 such that for all X,Y € R,
(9.56)

HX + Y|2*(s) . |X|2*(s) . 2*(S)|X‘2*(s)_2XY| <C (|X‘2*(S)_2|Y|2 + |Y|2*(s))
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Therefore, using the asymptotics (9.36) and (9.37) of U and 3, we get that

2*(s) 2%(s)

Ue 5
dex = / 14+ O(|x|)) dx
/Q ‘$|q BC(O)Jr |x|q |( (| D)

ot o 2*(s)—1
2 (s)e /B(O) Y Bow(l+O(|z)) dz
c +

|z|®
e tE 0
U2*(s) .o 2% (s)—1
- / L dr+ 2 (s)e / Z—Bogpds
B.(0), |7l B.(0), |7l
Ot+7047

+e— 2 02 ase—0.

Then (9.55) follows from this latest identity, combined with (9.52), (9.53), and
(9.54).

We can finally use (9.47) and (9.55), and the fact that

2% (s)
/ (WP - Lvtae=x [ U,
R? || R |z
to get
Q R} (O[+ — %) Wn—1 ap—o_ oy —o_
I (ue) = T, 5(U) (1 - m~(Q)e +o(e ) as e — 0,

Uz ()
n\ fRi U= 2 dx

|[*

which proves (9.6). This ends the proof of Proposition 9.3, and therefore, as already
mentioned, of Theorem 9.2.

10. EXAMPLES OF DOMAINS WITH POSITIVE MASS

We now assume that v € ("2;1, ’2—2) We have seen in Proposition 8.2 that the
mass is negative when  C R7}. In particular, m,(©2) < 0 if Q is convex and

v < v (). In this section, we give examples of domains 2 with positive mass.

For any xo € R™\ {0}, we define the inversion

. L 92 T — o

ixe(T) 1= To + |20 EEEE

for all z € R™ \ {x}. The inversion i, is the identity map on 0B, |(zo) (the ball
of center xy and of radius |z¢|), and in particular i(0) = 0.

Definition 10.1. We shall say that a domain Q@ C R™ (0 € 02) is smooth at
infinity if there exists xo ¢ Q such that i,,(2) is a smooth bounded domain of R™
having both 0 and xo being on its boundary O(iz,(2)).

One can easily check that R’} is a smooth domain at infinity (take zo := (—1,0,...,0)).
We now state and prove three propositions that are crucial for the constructions
that follow. The first one indicates that the notion of mass defined in Theorem 8.1
extends to unbounded domains that are smooth at infinity.
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Proposition 10.2. Let Q be a domain that is smooth at infinity such that 0 €
0N. We assume that yg () > "2;1 and fix v € (#,VH(Q))- Then, up to a
multiplicative constant, there exists a unique function H € C*(Q\ {0}) such that

—AH — #H =0 inQ

H>0 inQ

H=0 onodQ\{0}
H(z) < Clz|'~*+0)  for all 2 € Q.

(10.1)

Moreover, there exists ¢c1 > 0 and co € R such that

d(x,00) d(x,00) d(z,00)
Lglar® T 2 gamm |z]o- ()

H(z)=c¢c > as x — 0.

We define the mass m () := &, whach is independent of the choice of H in (10.1).

With this notion of mass, we will be in a position to prove the following continuity
result.

Proposition 10.3. Let Q C R™ be smooth at infinity such that 0 € 0Q2. We assume
that vy () > "24_1 , and fixy € ("24_1771{(9)). For any R > 0, let Dy be a smooth
domain of R™ such that
° BR(:C()) C Dr C BQR(IEQ),
e QN Dpg is a smooth domain of R™.
Let @ € C*°(R x R™,R™) be such that
b, := ®(t,-) is a smooth diffeomorphism of R™,
®y(x) =z for all |x| > 1/2 and all t € R,
®,(0) =0 for allt € R,
(I)O - Ian.

Set Qg = D4,(Q) N Dpr. Then

t_}lé%glﬁoo v (Q,R) > YH(Q).

Therefore, for t — 0, R — 400, we have that yg(Q r) > ”2471 and m~(Qy r) is
well defined. In addition,
ool ) = (9,

As a consequence of the above, we shall be able to construct smooth bounded
domains with positive or negative mass with any behavior at 0.

Proposition 10.4. Let w be a smooth open set of R™. Then, there exist Oy, Q_

two smooth bounded domains of R™ with Hardy constants > n’-1

ro > 0 such that

, and there exists

Q4 N B, (0) =Q_N B, (0) =wn By, (0),

n?—1

and for any v € ("=, min{yg (Q4), vu(2-)}), we have that

m(Q4) > 0> m,(Qo).
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The remainder of this section will be devoted to the proof of these three proposi-
tions. As a preliminary remark, we claim that if Q is a domain of R™ such that
0 € 092 and 2 is smooth at infinity, then

(10.2) liminf vy (Q.r) > va(Q),

t—0,R—oc0

where )y p are defined as in Proposition 10.3. Indeed, by definition, vz (Q r) >
v () = Y (D(R)). Inequality (10.2) then follows from the limit (3.7) of Lemma
3.2. We shall proceed in 7 steps.

Step 1: Reformulation via the inversion. For convenience, up to a rotation
and a dilation, we can assume that z¢ := (=1,0,...,0) € R™ and we define the
inversion

i(z) == 330—1—% for all © € R™\ {zo}.

For any u € C?(U), where U is a domain of R” we define its Kelvin transform
4 :U — R by
W(x) == |z — xo|> "u(i(x)) for all z € U := i (U \ {20}).
The Kelvin transform leaves the Laplacian invariant in the following sense:
(10.3) —Ad(z) = |z — 20| " (= Au)(i(z)) for all z € U.

Define Q := (), ®(t, x) := io®(t,i(z)) for (t,z) € RxR", and D, := R™\i(D,-1)
(i.e., the complement in R™). Here, note that R — +oo in Proposition 10.3 is
equivalent to r — 0 in here. We then have that
0,20 € 8Q and Q is a smooth bounded domain of R™.

Note that ® € C°°(R x R”,R") is such that

e For any t € (—2,2), &, := ®(t,-) is a C°—diffeomorphism onto its open

image ®,(R™).

e &y =1Id,

e ©,(0) =0 forall t € (-2,2),

o &,(x) ==z for all t € (—2,2) and all z € Bys(x) with § < 1/4.
We define ~ o

Q= 0(Q).

The sets D, satisfy the following properties:

o B, /s(x0) C D, C B, (x0),

. Qt,r =Q, \ D, is a smooth domain of R™.
In particular, we have that

Qt,r = i(Qt,rl)-

Let u € C2(Q,. \ {0}) be such that

(10.4) —Au — |7|21L—01nf2”,u>01thT,u—Oon89tr

The existence of u follows from Theorem 8.1. Consider the Kelvin transform of u,
that is

a(x) := |z — w0 "u(i(z)) for all z € Q.

(10.

3) that
~AG—Vi=0in Q,,

It then follows from
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where

v

10.5 V(z) = —55——> fi R™\ {0 .
( ) (‘T) |.CL'|2|.I'—J)0|2 orzr € \{ 71'0}
It is easy to check that

O(lx —
asac—>OandV(x):7+|(|x|2xO|)asx—>mo
Tr — X

The coercivity of —A — ylz|72 on Q (since v < vz (Q)) yields the coercivity of
—A —V on £, that is there exists ¢y > 0 such that

[ (IVul* = V(2)u?) do > co/~ |Vu|? dz for all u € DY2(Q).
9) Q

From now on, we should be able to transfer the analysis to the bounded domain €.
Step 2: Perturbation of the domain via the two singular points 0 and z.
We shall need the following.

Proposition 10.5. For any t € (—1,1), there exists u;, € CQ(E\ {0,20}) such
that

—Aut — V’U,t =0 in @t

u >0 n Qt

10. -
(10.6) ug =0 on 9 \ {0, 20}

ui(z) < Olz|'=2+) £ Clo — zo['=*-)  for z € Q.
Moreover, we have that

d(z, (V) —ax
(10.7) u(z) = W(l + O(|z|*+ == ()

as © — 0, uniformly wrt t € (—1,1).

Proof of Proposition 10.5. We construct approximate singular solutions as in Sec-
tion 5. For all t € (—2,2), there exists a chart ¢, that satisfies (5.5) to (5.10) for
Q. Without restriction, we assume that lim;_,g ¢; = @g in Ck<BQ§, R™). We define
a cut-off function 7s such that ns(x) = 1 for 2 € Bs and ns(x) = 0 for & & Bas. As
in (5.12), we define uq_ (y)+ € C2(Q, \ {0}) with compact support in ¢;(Bas) such
that

(10.8) wa, tope(z1, ") :=ns(z1, 2" )21 |z| %+ (14O (2)) for all (z1,2) € Bas\{0},
where Oy(z1,a') := e~ 271 H:(@) _ 1 for all # = (21,4') € By and all ¢ € (—2,2).

Here, H,(z') is the mean curvature of dQ; at the point ¢;(0,2'). Note that
lim; 0 ©; = O¢ in C*(U). Arguing as is Section 5, we get that

(=A = V)ua, + = O(d(z,00)|x|~*+M=1) in S:)t N 35

Uyt > 0 in Qt~m Bs
U,y =0 on 08 \ {0},
and R
d(z, 08)
U, ¢ (T) = W(l + O(Jz|) as x — 0.

The construction in Section 5 also yields

(109) }E)I(l) ua+,t © @t = uour,O in C?oc(ﬁ\ {0})



64 NASSIF GHOUSSOUB AND FREDERIC ROBERT

Note also that all these estimates are uniform in ¢t € (—1,1). In particular, defining

(10.10) Jt = =Dug, ¢t — Vg,

then there exists C' > 0 such that

(10.11) |fi(@)] < Cd(x, 0Qy)|| =+~ < Cla| 72+

for all t € (—1,1) and all 2 € Q; N B;s. Therefore, since v > ”24*1, it follows from
(10.9) and this pointwise control that f; € L%(Qt) for all t € (—1,1) and that
(10.12) tn 0 %0 — foll, 20, o =

For any t € (—1,1), we let v, € DV2(€2;) be such that

(10.13) —Av, — Vu, = f, weakly in DV2(€),).

The existence follows from the coercivity of —A —V on €, which follows itself from
the coercivity on Q = y. We then get from (10.12) and the uniform coercivity on
Q, that B

}i_r}rtl) vy 0 &y = v in DV2(Q) and CL(Q\ {0,z0}).
It follows from the construction of the mass in Section 8 (see the proof of Theorem
8.1) that around 0, |v;(z)| is bounded by |z['*=*-(). Around xg, —Av; — Vo, =0

and the regularity Theorem 6.1 yields a control by |z — zo|'~*= (). These controls
are uniform with respect to ¢ € (—1,1). Therefore, there exists C' > 0 such that

[ve(@)] < Cd(, 0%) (|27~ + o = m| =)
for all t € (—1,1) and all 2 € ;. Now define
() = Ua, () — ve(x)
for all t € (—1,1) and = € Q,. This function satisfies all the requirements of
Proposition 10.5. O
Step 3: Chopping off a neighborhood of zy3: We now study Qt’r =Q, \ D,.

For r € (0,6/2), note that €, N Bs(0) = QN Bs(0). We shall now define a mass
associated to the potential V', and prove its continuity.

Step 3.1: The function f; : Q; — R defined in (10.10) has compact support in
Bss(0), therefore, it is well-defined also on Q;,. We define v;,, € DV?(€2;,.) such
that

(10.14) —Avy, — Vup, = fr weakly in DLQ(QW).

Since the operator —A — V' is uniformly coercive on €, it is also uniformly coercive
on ), , with respect to (¢,7), so that the definition of v, via (10.14) makes sense.
The uniform coercivity and (10.10)-(10.11) yield the existence of C' > 0 such that

verllpre, ) < Cforallt, r. Since zg & 4r, (10.10)-(10.11) and regularity theory

yield v;,. € C1(Q, \ {0}) and for all p > 0, there exists C(p) > 0 independent of
and 7 such that

(10.15) ||,Ut’r||Cl(Qt,r\(Bp(O)UBP(IO))) < C(p)
Step 3.2: We claim that there exists C' > 0 such that
(10.16) v ()| < Cd(z, O) (|x|—a7(w> 4o — x0|—a7(7))
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forall t € (—1,1) and all z € Qt,r. Indeed, around 0, Qt,r coincides with Q;, and
the proof of the control goes as in the construction of the mass in Section 8 (see
the proof of Proposition 8.1). The argument is different around zy. We let 79 > 0
be such that Q; N Bay, (o) = QN Bay, (x0). Therefore, for r € (0, 1), we have that

Qi N Bayy (o) = (\ D,) N Bay,y (z0).

Arguing as in the proof of Proposition 5.1, there exists 4, € C* (6\ {0}) and
7/ > 0 such that

Uoq_ >0 in Q rj BQTO (l’o)
’ELa_ = O iIl (5?9) n BQTO (l‘o)
—Aﬂo_ — Vi, >0 in QN BQTO (SC())

Moreover, we have that

d(z,00)

= T = 2o (1+O(|lz — zo|)) as z — x0, z € Q.

(10.17) o ()

Therefore, since vy, vanishes on Ba,, (o) N d(Q\ D,.), it follows from (10.15) and
the properties of 4,_ that there exists C' > 0 such that

v < Clig_ on 0 ((Q N D,) N Bay, (xo)) :

Since in addition (—A — V)v,, =0 < (A = V)(Ci,_), it follows from the com-
parison principle that v, < Ct,_ in (Q \ DT) N Bay, (x0). Arguing similarly with
—vy - and using the asymptotic (10.17), we get (10.16).

Step 3.3: We claim that

(10.18) Jim v, 0y = vy in D2 (Q)100, {zo1e N Cloo(2\ {0, 70}),

where vy was defined in (10.13) and convergence in DLQ(Q)lOC’{wO}C means that
limg 0 7vs,-0®; = nug in DV2() for all € C°°(R™) vanishing around . Indeed,
ver 0@ € DV2(Q\ D,) € DY2(). Uniform coercivity yields weak convergence in
D'2(Q) to & € D“?(Q). Passing to the limit, one gets (—A — V)& = fo, so that
# = vg. Uniqueness then yields convergence in C1._(Q\ {0,20}). With a change
of variable, equation (10.14) yields an elliptic equation for v;, o ®;. Multiplying
this equation by n? - (vs,. o ®; — vg) for n € C°°(R™) vanishing around z¢, one gets
convergence of nu; , o ®; to nup in Dl’Q(Q). This proves the claim.

It follows from the construction of the mass (see Theorem 8.1) and the regularity

Theorem 6.1 that there exists Ky € R and for all (¢,7) small, there exists K;, € R
such that

L d(x, 0%) d(x, d)
(].0].9) 'Ut,r(x) = Kt,T |:L‘|a*(7) +o ( |:C‘o¢,('y)
and

o d(@,09) | [ d(x,00)
(10.20) vo(z) = Ko e +o (I:vl‘””’

as z € Q) goes to 0. Note that around 0, Qt,r coincides with Qt.
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Step 3.4: We claim that
(10.21) limO K, = K.

t,r—

We only give a sketch. Noting ¥, := vy, o ®4, the proof relies on (10.18) and the
fact that

~D g el — Vo &by, = fr o ¢ in QN B;(0).
The comparison principle and the definitions (10.19) and (10.20) then yield (10.21).
Step 4: Proof of Proposition 10.2. We define Hy(z) := Uq, (v),0(x) —vo(x) for
all z € Q\ {0, 20}, and consider its Kelvin transform
(10.22) Hy(z) = | — xo|> " Ho(i(z)) = |z — xo|> ™ (Ua, (4),0 — vo) (i(z))

for all z € Q. It follows from (10.3), the definitions of u_ (y),0 and vy that Hy
satisfies the following properties:

7AH0 - #H@ =0 in Q
(10.23) Hy >0 in®
Hy =0 1in0Q\{0}.
Concerning the pointwise behavior, we have that

w0 i = AT - o ()

asx — 0, z € Q, and
(10.25) Ho(z) < Clz|*~* for all x € Q, 2| > 1.

This proves the existence part in Proposition 10.2. We now deal with the unique-
ness. We let H € C*(Q\ {0}) be as in Proposition 10.2, and consider its Kelvin
transform H(z) := |z — xo|> " H(i(x)) for all z € Q\ {0, z0}. The transformation
law (10.3) yields

~AH—-VH =0 inQ
(10.26) H >0 inQ
H =0 inoQ\{0,z0}.

Moreover, we have that H(z) < Clz|'=+() + Clz — zo|' =) for all z € Q. It
then follows from Theorem 7.1 that there exist Cy,C5 > 0 such that

10.27 H () ~oy g Cy D7) _ ;)
( ) (Cﬂ) —0 Y1 |.’I,'|a ‘x — x0|a_(,y)

and H(x) ~asz C2
where a € {a_(7), ax(y)}. We claim that a« = a4 (y). Indeed, otherwise, we would
have H € D'2(Q) (see Theorem 7.1) and then (10.26) and coercivity would yield
H = 0, which is a contradiction. Therefore a = a4 (). By the same reasoning,
the estimates (10.27) hold for Hy (with different constants C1,Cy). Arguing as in
the proof of Theorem 8.1, we get that there exists A > 0 such that H = AHy, and
therefore H = AHy. This proves uniqueness and completes the proof of Proposition
10.2.

As a consequence of (10.24), the mass m.,(£2) is well-defined and we have that

(10.28) m(Q) = —Ko.
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Step 5: convergence of the mass: We claim that
(10.29) lim  m,(Qr) = my(Q).

t—0,R—o00
We define I}t,r = Uq, t — Vs, 5O that
—AﬁtJ‘ - VHt’r =0in Qt,r'

It follows from (10.7) and (10.19) that H;, > 0 around 0. From the maximum
principle, we deduce that H;, > 0 on €, , and that it vanishes on 99, \ {0, zo}.

It follows from (10.7) and (10.19) that
2, 00,,) d(@,00,) (d(x, aQty,ﬁ)>

- d(
Ht,r(m) = t,r |.’IJ|O‘*

el T Tl

asr — 0, x € Qtﬂ.. Coming back to Q; g with R = r~! via the inversion i with

H; g(z) := |z — 20> " H; . (i(x)) for all z € Q g, we get that
_AHt,R - #Ht,R =0 in Qt,R
Ht,R >0 in Qt,R
Ht,R =0 in 8Qt,R \ {O}
and

Hi g(z) = d(z,00,r) Kt,rd(‘rvﬁﬂt,R) ‘o <

|x|a,

d(ﬂ?, aQth) >
|.’L"O‘*

as  — 0, z € Q¢ r. Therefore, it follows from the definition of the mass (see

Theorem 8.1) that m,(Qr) = —Ky, for all t,r, R = r~1. Claim (10.29) then

follows from (10.21) and (10.28).

This ends the proofs of Propositions 10.2 and 10.3.
Step 6: In order to prove Proposition 10.4, we need to exhibit prototypes of

unbounded domains with either positive or negative mass.

Proposition 10.6. Let Q be a domain such that 0 € 9Q and Q is smooth at
infinity. Assume that v (€2) > ”24_1 and fiz v € (”24_1,71{(9)), Then m~(€2) >0
if R € Q, and m,(Q) <0 if Q CRY.

Proof of Proposition 10.6 : With Hy defined as in (10.22), we set
U(z) :== Ho(x) — xq|z|”** for all z €
We first assume that R C 2. We then have that
AU - LU=0 inR”
10. l=[* g
(10-30) { U0 in OR™ \ {0}.

We claim that
(10.31) / |VU|? dz < +oc.
R

T
Indeed, at infinity, this is the consequence of the fact that |VU|(x) < Clz|~*+
for all x € R’} large, this latest bound being a consequence of (10.25) combined
with elliptic regularity theory. At zero, the argument is different. Indeed, one
first notes that d(z,0Q') = z1 + O(|z|*) for # € R close to 0, and therefore,
U(z) = O(|z|t=*-) for z — 0. The control on the gradient |VU|(z) < Clz|~%-
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at 0 follows from the construction of Hy. This yields integrability at 0 and proves
(10.31).

We claim that ¢/ > 0 in R?. Indeed, it follows from (10.30) and (10.31) that
U_ € DY*(R%). Multiplying equation (10.23) by U_, integrating by parts on
(Br(0) \ Bc(0)) NR%, and letting ¢ — 0 and R — +o00 by using (10.31), one gets
U_ =0, and then U > 0. The result follows from Hopf’s maximum principle.

We now claim that

(10.32) m- () > 0.

Indeed, since U > 0 in R}, there exists cg > 0 such that U(x) > cox1|xz|~*~ for all
x € 9(B1(0)1). It then follows from (10.31), (10.30) and the comparison principle
that U(z) > coxy|z|~% for all z € B1(0)1. The expansion (10.24) then yields
—Ko > ¢g > 0. This combined with (10.28) proves the claim.

When Q C R, the argument is similar except that one works on 2 (and not R"})
and that & < 0 in 0Q \ {0}. This ends the proof of Proposition 10.6.

Step 7: Proof of Proposition 10.4: Let w be a smooth domain of R™ such
that 0 € 9. Up to a rotation, there exists ¢ € C°(R"1) such that ¢(0) = 0,
V(0) = 0 and there exists dg > 0 such that

w N Bs, (0) = {z1 > ¢(a’)/ (x1,2") € Bs, (0)}.
Let n € C°(Bs,(0)) be such that n(x) = 1 for all z € Bs,/2(0), and define
ta'
Py(x) = (m +n(x)‘p(t )
and @ := Idg~. It is easy to see that ¥, satisfies the hypotheses of Proposition
10.3. Moreover, for 0 < t < 1, we have that
w
7N ®4(Bs,/2(0)) = ®¢(R%} N By, /2(0))-

,x’) for all t > 0 and z € R",

We let 2 be a smooth domain at infinity such that
n?—1
4
(for example, R"), and let Q; r be as in Proposition 10.3. It is easy to see that
wn t‘bt (B50/2 (O)) = tQth N t(I)t (B50/2 (O))
Therefore, for ¢ > 0 small enough, we have that
wn Bt60/3 (0) = tQt,R n Bt50/3 (O)
Moreover, yg (tQ4: r) = v (Q.r) > (n?> —1)/4 as t — 0 and R — +oo (see (10.2)).
Concerning the mass, we have that
tor == (40 ) = m (U ) — m(Q) as t — 0, R — +o0.

We now choose ) appropriately.

To get a negative mass, we choose 2 smooth at infinity such that Q N B;(0) =
R N B1(0) and © C R%. Then vy () = n?/4, (10.33) holds and Proposition 10.6
yields m.,(€2) < 0. With this choice of Q, we take Q_ := Q, g for ¢ small and R
large.

To get a positive mass, we choose R C  such that (10.33) holds (this is possible
for any value of vy (§2) arbitrarily close to 721—2, see point (5) of Proposition 3.1). Then

(10.33) QN By (0) = R? N By (0) and () >
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Proposition 10.6 yields m.(€2) > 0. With this choice of Q, we take Q4 = Q; p for
t small and R large.

This proves Proposition 10.4.

11. THE REMAINING CASES CORRESPONDING TO s =0 AND n =3

The remaining situation not covered by Proposition 9.1 and Theorem 9.2 is s = 0,
n =3 and v € (0, %2) Note first, that if v > v (Q2), we have from Proposition
4.1 and Theorem 4.4 that ji,0(€2) < 0 < 1,0(R’) and the existence of extremals
is guaranteed. Another situation is when fi,0(R) does have an extremal U. In
this case, Proposition 9.3 provides sufficient conditions for p,0(Q) < py,0(R%),
and hence there are extremals by again using Theorem 4.4. The rest of this section
addresses the remaining case, that is when v € (0,75 (2)) and when s, o(R? ) has
no extremal, and therefore ju, o(R%) = K(3,2)~2 according to Theorem 12.1.

We first define the “interior” mass in the spirit of Schoen-Yau [49].
Proposition 11.1. Let Q C R3 be an open smooth bounded domain such that
0€09Q. Fizxzoge Q. Ifye (0,vu(R)), then the equation
—AG—#G:O in Q\ {zo}
G>0 inQ\{xzo}
G=0 ondQ\ {0}

has a solution G € C*(Q\{0,20}) N D?(Q2\ {20 })ioc,0, that is unique up to multipli-
cation by a constant. Moreover, for any xo € Q, there exists a unique Ry(xg) € R
independent of the choice of G and cqg > 0 such that

G(z) = cg (|x1$0 + Ry(xo)) +0(1) as © — zo.

Proof of Proposition 11.1. Since v < vg(£2), the operator —A — ~|x|~2 is coercive
and we can consider G to be its Green’s function at xg on {2 with Dirichlet boundary
condition. In particular, for any ¢ € C°(£2), we have that

p(x) = /QGw(y) (—Aw(y) - vﬁ?) dy for x € Q,

where G, := G(z,-). Fix zp € Q and let n € C°(Q2) be such that n(x) = 1 around
xo. Define the distribution 8, : & =+ R as

Gy (1) = L ( n(x) +ﬁw0(x)> for all z € Q,

wa |z—x0]

where wy := 47 is the volume of the canonical 2—sphere. Set

f(z) :=— (—A — #) (I:ﬁfc)o\) for all x # xo.

In particular,
(A — |7|2> Bzo = f in the distributional sense.
x

On can easily see that there exists C' > 0 such that
|f(z)] < Clx —xo|~t forall z € Q.

Therefore f € L%(£2) and, by uniqueness of the Green’s function (since the operator
is coercive), we have that 8., € DV2(Q). It follows from standard elliptic theory
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that 8., € C*°(Q\{0,z0})NC%?(Q\ Bs(0)) for all @ € (0,1) and § > 0. In addition,
for any 6 € (0,1) and 6 > 0, there exists Cyp > 0 such that

(11.1) |V By (7)] < Cplz|?~1 for all z € Q\ Bs(0).

Since f vanishes around 0, it follows from Theorem 6.1 and Lemma 6.5 that
(11.2)
Bao (@) = O(|z[*=2=)) and  |VB4, (@) = O(Jz|7*-))  when z — 0.

We can therefore define the mass of € at zy associated to the operator L. by

R, (Q,z0) 1= By (x0).

One can easily check that this quantity is independent of the choice of 7.

The uniqueness is proved as in Theorem 8.1. The behavior on the boundary is
given by Theorem 6.1 and the interior behavior around z is classical. This ends
the proof of Proposition 11.1. O

Lemma 11.2. Let Q C R? be an open smooth bounded domain such that 0 € OS2
and o € Q. Assume that v € (0,7u(Q)) and that p,o(R3) = K(3,2)72. Then,
there exists a family (uc)e in DY2(2) such that

wa Ry (x
(11.3) JPo(ue) = K(£,2)2 (1 - 3[;3 ;J(Q*Oc)lzs + 0(5)) as e — 0,

where U(z) == (1 + |z|?)~Y2 for all z € R and 2* = 2*(0) = %

Proof of Lemma 11.2: We proceed as in Schoen [48] (see Druet [15,16] and Jaber
[34]). The computations are similar to the case v > %% performed in Section 9.

For € > 0, define the functions

1
us(z) := n(z) (m) o £2B,,(z) for all z € Q.

One can easily check that u. € D'?(Q). We now estimate J3(ue).

In the sequel, O©.(g) will denote any quantity such that

lim lim GCi(g) =0.
c—>0e—0 £
We first claim that
u2
(11.4) / (|Vu5|2 - 52> dr = wac e + wo R, (w0)e + O.(e).
Q\B.(x0) |z

Indeed, it is clear that e 3u. — Gl = walGy, in CZQOC
Lebesgue’s dominated convergence theorem yields

2 _ . ul
(11.5) lim Jons. o) (IWE\ —wP) e :/ (|VG’ 2—7(%)2) da
\B. (o) w

=0 € ||

(2\ {0,20}). Therefore,
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Integrating by parts and using (11.2), as 6 > 0 goes to 0, we have that

G/ 2

/ (VG;OIQ—W( x‘;) ) dx

0\ B, (o) 2|

G/ 2
:/ (VG;0|2 —v( ””“2) ) dz + o(1)
O\(Be(20)UBs (0) 2|

G/
/ (—AG;O . 2) G do _/ G.0,G, do

O\(B (20)UBs (0) |z OB (x0)

—/ G, 0.G, do+o(1)
9B5(0)

= —/ Gl 0,Gl, do + O(5" 16 =57 =M) 1 5(1) as § — 0.
OB (xo)

Since a_(y) < n/2, we then have that

Gl 2
/ <|VG;O|2 - ’y( m°2) ) dx = —/ G, 0,G, do.
Q\B.(z0) |z 9Bc(z0)

With the definition of R, (zo) and (11.1), we have that G, = ¢~ + Ry () + O(c?)
and 8,G,, (x) = —c72 + O(c"7) on 8B.(xg) as ¢ — 0. Therefore

- fch(wO) G, 0,Gly do = wac™ + waRy (w0) + O(c?)  as ¢ — 0.

Combined with (11.5), this proves (11.4).
Now define for each € > 0, the function

o=

Ue(@) = (zrpisp) forallz € RS,

and set U(x) := (1 + |z[?)~'/2 for all z € R®. It is clear that AU = 3U% ~1. We
claim that

2
(11.6) / (vu5|2—7|;‘|€2> dz:?)/ U? dx — wae 'e + O, (e).
Be(zo) R3

Indeed, note first |u.(z)| < Cy/lx — x| 7! for all € > 0 and all z € Q close to xg.
Therefore, for ¢ > 0 small enough, we have that

(11.7) /B Uy = 0.(e).

(o) 717
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Using that 3., € D?(2) and integrating by parts, we get that

/ V|2 da :/ V(U. + V2B, )2 da
Be(zo) Be(@o)
= / |VU.|> dx + 2v/2 VUV B, dx
Bc(mo) BC($O)
+€/ |V Ba | daz
BC(JEo)

. / UE(—AUS)dm—k/ U.0U. do
BC(IO)

OB (xo)
+2VE Boo (—AUL) dz
Bu(wo)
(11.8) +2¢/e BroOuUe do + O.(¢)
BBC(CE())
Since e71/2U, — |- —xo|~! in OL (R?\ {0}), we get that

(11.9) / U.0,U.do = —wsc re 4+ 0(e) ase — 0.
330(3)0)

Using in addition that §,, € C%? around zg, we get as ¢ — 0 and for ¢ > 0 small,
that

(11.10) / Bro 0y U do = —/2wa R, (20) + O(c?\/2)
OBc(z0)
Plugging (11.9) and (11.10) into (11.8) yields

(11.11)/ |Vuc|?*dz = 3/ U? dz — wye e + o(e)
Bc(x(l) Bc/s(o)

+2¢/e Buo (—AU,) dx — 2ews R (z0) + Oc(€).
BC(I())

It is easy to check that [, ) U2 dx = Jzs U? dz+o(e) ase — 0. For 0 € (1/2,1)
we have that
(11.12) fBu(wo) |AU.| - |z — x0|® dz = o(¢) as e — 0.

Integrating by parts and using that e~1/2U.(z) — |z — 20| ~' in C} (R \ {0}), we
get that as ¢ — 0,

/ —AU.dx = —/ 0,U. do
Bc(zo) aBC(Zo)

= —e |z — x|t do + o(e)
ch(zo)

(11.13) = wave+o(e)

Plugging (11.12) and (11.13) into (11.11) and using that 8,,(z) = R (zo) + O(Jz —
z9|%), we get (11.6).

Putting together (11.4) and (11.5) yields

(11.14) [, (|Vu€|2 — le%) dz =3 [os U? dz 4+ wo Ry (20)e +0(e) ase — 0.
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‘We now claim that

(11.15) Jou? do = [os U do+ L waR,(20)e +o(c) ase — 0.

Using (9.56), the boundedness of §,, around xg, and the above computations, we

get that
/ u? de = / u?" dz + o(e)
Q BC(CE())

/ Ue + VeBay > dz + o(c)
BC(:E())

/ U2 dw + 2V BaoUZ ! da
Be(wo) Be(wo)

+0 (/Q (EUEQ*_Q 2+ \\/Eﬂwolz*) dm) + o(e)

* 2
= / U? dx + =wa R (0)e + o(e)
Be;.(0) 3

" 2%
= / U? dx + §WQR'Y(930)€ +o(e) ase—0,
R3

which proves (11.15).
Putting together (11.14) and (11.15) yields

2 _ Lg *
* 2 2 *
(Jou2" dw)™ (o U da) ™\ 3 Jea U da
as € — 0. Since AU = 3U? ~! and U is an extremal for the Sobolev inequality
to,0(R3), we have that

Jo(ue) = W (1 — %5 + o(s)) as e — 0.

This proves Lemma 11.2. (I
We finally get the following.

Theorem 11.3. Let Q be a bounded smooth domain of R® such that 0 € O5).

(1) If v > yu (), then there are extremals for . o(£2).

(2) If v <0, then there are no extremals for - o(£2).

(3) If 0 < v < vyu(Q) and there are extremals for . o(R7), then there are
extremals for . o(2) under either one of the following conditions:

n?—1

o v <

and the mean curvature of 02 at 0 is negative.

n?—1

°v> and the mass m~(SY) is positive.
(4) If 0 < v < v (Q) and there are no extremals for i o(R"), then there are
extremals for i o(S2) if there exists xg € Q such that R, (2, x¢) > 0.

Proof of Theorem 11.8: The two first points of the theorem follow from Proposition
9.1 and Theorem 4.4. The third point follows from Proposition 9.3. For the fourth
point, in this situation, it follows from Theorem 12.1 below that s, o(R" ) = W,
and then Lemma 11.2 yields j,0(Q) < p,,0(R"), which yields the existence of
extremals by Theorem 4.4. This proves Theorem 11.3. (]



74 NASSIF GHOUSSOUB AND FREDERIC ROBERT

12. APPENDIX 1: EXISTENCE OF EXTREMALS FOR fi, ¢(R"}) AND OTHER CONES

The following result is used frequently throughout this memoir in the case of
R?. In this appendix we give proofs for any open connected cone of R", n > 3,
centered at 0, that is

(12.1) C is a domain (that is open and connected)
' VreC,Vr >0, re €C.

Fix v < v (C), then by the Hardy-Sobolev inequality, there exists i s(C) > 0 such
that

Je (|Vu|2 - 7%) dx
(12.2) fry,s(C) 1= n S E
ueD1:2(C)\{0} (f [u|2* () dm) 25 (5)
c

|®

We consider the question of whether there is an extremal ug € DV2(C) \ {0}
for p,s(C), that is if the latter achieves its infimum in (12.2). The question
of the extremals on general cones has been tackled by Egnell [17] in the case
{y = 0and s > 0}. Theorem 12.1 below has been noted in several contexts by
Bartsch-Peng-Zhang [3] and Lin-Wang [10]. We sketch an independent proof for
the convenience of the reader.

Theorem 12.1. We let C be a cone of R™, n > 3, as in (12.1), s € [0,2) and
v < ~vu(C). Then,
(1) If{s >0} or {s=0,v>0 and n > 4}, then extremals for . s(C) exist.
(2) If {s =0 and vy < 0}, there are no extremals for i o(C).
(3) If {s = 0 and v = 0}, there are extremals for poo(C) if and only if there
exists z € R™ such that (1+ |z —z|?)'="/2 € DV2(C) (in particular C = R™).

Moreover, if there are no extremals for po(C), then piy0(C) = po,0(C), that is

1 | Vul? de
py0(C) = 5 = inf fR|—|z~
K(n,2) ueDL2(R™)\{0} (fR" |u|2” dCC)F

(12.3)

Remark: Note that the case when {s = 0, n = 3 and v > 0} remains unsettled.
We isolate two corollaries. The first one is essentially what we need in our context

(C =R?%). The second deals with the case C = R™. There is no issue for n = 3 in
the second corollary.

Corollary 12.2. We let C be a cone of R™, n >3, as in (12.1) such that C # R".
We let s € [0,2) and v < yg(C). Then,
(1) If {s > 0} or {s =0, v > 0 and n > 4}, then there are extremals for

Hy,5(C).
(2) If {s =0 and vy < 0}, there are no extremals for i o(C).

Corollary 12.3. We let C be a cone of R™, n > 3, as in (12.1). We assume that
there exists z € R™ such that (14 |z — z|>)'="/2 € DY2(C) (in particular C = R™).
We fiz s € [0,2) and v < vg(C). Then,

(1) If {s > 0} or {s =0 and v > 0}, then there are extremals for . s(C).

(2) If {s =0 and v < 0}, there are no extremals for po(C).
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Proof of Theorem 12.1: This goes as the classical proof of the existence of extremals
for the Sobolev inequalities using Lions’s concentration-compactness Lemmas ([40,
41], see also Struwe [51] for an exposition in book form).

We let (ay), € DV?(R'}) be a minimizing sequence for j ;(C) such that

/dezland lim |V |2—lﬂ2 dx = ©)
N koo Jo \V DT Tt forst™)

We use a concentration compactness argument in the spirit of Lions [40,41]. For
TMEMO!
any k, there exists rj, > 0 such that [, ©)nc Lol = gy = 1/2. We define ug(z) :=
Tk

|a]*
v —2

r,;Tﬂk(rk:c) for all x € C. Since C is a cone, we have that u; € D%2(C). We then
have that

12.4 li Vg2 — w2 dz = uy 4(C
(12.4) i [ (19w = k) do= )
and
2°(s) 2 (s) 1
(12.5) wdzzl,/ fu" 7 L
c |zl Bo)nc  |T[* 2

We first claim that, up to a subsequence,

2" (s)
(12.6) lim  lim e 2
R—+00 k—+o00 Br(0)NC |IE|S

dr =1.
Indeed, for £ € N and r > 0, we define
|uk\2*<5)

Qr(r) ::/ 7sdz.
B,.(0)nC ||

Since 0 < Q < 1 and r — Q(r) is nondecreasing for all k& € N, then, up to a
subsequence, there exists @ : [0, +00) — R nondecreasing such that Qx(r) — Q(r)
as k — 4o0 for a.e. 7 > 0. We define

a:= lim Q(r).

r—-+4oo
It follows from (12.4) and (12.5) that 2 < a < 1. Up to taking another subsequence,
there exist (Rj)x, (R})x € (0,+00) such that

2R), < R, < 3Ry, for all k € N,
limk_H_oo Ry = limk_H_oo R?C = +00,
limk*)Jroo Qk(Rk) = limk*)+oo QK(R;C) = Q.

In particular,

(12.7)
lim M dxr = o and lim |u;€|2*(5) dr=1-—«a
k=+oo Jp (e |]° h=rtoo J(mn\ By (0))nC |z[*
We claim that
(12.8) lim R;? uj dr = 0.

koo (Bry (0\Br, (0))nC
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Indeed, for all z € Bg, (0) \ Bg,(0), we have that R < |z| < 3Rj. Therefore,
Holder’s inequality yields

IN

ui dx

(/ d“’) ( / 29 dx)
(Bry (O\Br, (0))NC (Bry (0\Br, (0))NC

2
2% (s) Ee)
CR} / |ur] i
(Bry (\Br, ()nc ||

for all k € N. The conclusion (12.8) then follows from (12.7).

/<BR; (0\Br, (0))nC

IN

We now let ¢ € C°(R™) be such that p(z) = 1 for z € B1(0) and ¢(x) = 0 for
x € R™\ By(0). For k € N, we define

|| R, — 2Ry,
= for all R™.
or(z) ¢<R;§_Rk+ R;—Rk or all x €

One can easily check that grug, (1 — ¢r)ur € D2(C) for all k € N. Therefore, we

have that
2*(s) 2% (s
/de > / [ue| dx = a+o(1),
c =l Br, (Onc  |7[®
1— 127() 2% (s)
1= enun” 2 @k)?ﬂ de > / | —dr=1-a+o(l)
c |z R\ B/ (0))NC ||

as k — +o00. The Hardy-Sobolev inequality (12.2) and (12.8) yield

2
2% (s) 2% (5)
PrUL Y
o (C) ( / 'Sd:c> </ <|v<sokuk>|22wiui) da
S ; ]
< /soi (|Vuk2 — |’y|2ui> dx + O (sz/ up dx)
c z (By (0\Br, (0)nC
.
< [t (v - ) de+ott)

as k — +oo. Similarly,

2
17¢kuk2(s) 2% (5)
(@) ([ 107205200 ) ™ < [ (19wl = ) dot ot
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as k — 4o00. Therefore, we have that

5 (€) (7@ + (1= )7 +0(1))

2
U 2% (s) 2*(9) 1 _ U 2% 2% (s)
< t1y.5(C) < i |90k kl ) Jr( i | o)k dx)

el
/(SﬁkJr(l*SDk) )(|VUk|2 U > dz + o(1

< [a-2a0-0) (Wum - |j|uk) dz + of1)

.

<1000 +2 [ oul1 = o) gt o + o)

< 11y(€) + 0 (R,:Q / u? dx) +0(1) < j1,,0(C) + ol1)
(Bgr/ (0)\Br, (0))NC

as k — +oo. Therefore, QT + (1 - oz)”i(s) < 1, which implies o = 1 since
0 < a < 1. This proves the claim in (12.6).

‘We now claim that there exists us, € DLQ(C) such that ur — us weakly in DLQ(C)
as k — 400, and xy # 0 such that, in the sense of measures,

*(s *(s 2% (s)
12.9) either limp_ oo |“’“‘25( )lc dxr = ‘”“’li( )lc dr and % de =1
+ [z] [ |z|
z z T
*(s)
(12.10) or limy oo 10 di = 5, and oo = 0.

Arguing as above, we get that for all z € R™, we have that

|Uk |2*(s)

lim lim dr = a, € {0,1}.

r—=0k—+o0 /B (0)nC ||
It then follows from the second identity of (12.5) that ag < 1/2, and therefore
oo = 0. Moreover, it follows from the first identity of (12.5) that there exist at
most one point g € R™ such that oy, = 1. In particular x¢ # 0 since a9 = 0.
Therefore, it follows from Lions’s second concentration compactness lemma [40,41]
(see also Struwe [51] for an exposition in book form) that, up to a subsequence,
there exists u., € DV2(C), 7o € R™\ {0} and C € {0,1} such that uy — u., weakly
in DY2(C) and

2% (s) 2*(s)
lim [ ledr = Lm'

1e dz + C6,,.
e Ja]? o Lede+ Cos

In particular, due to (12.5) and the compactness (12.6), we have that
oo |2 ()

2% (s)
1= i [T g [l
kotoo Joo |zl c |zl
Since C € {0,1}, the claims in (12.9) and (12.10) follow.

We now assume that uo, #Z 0, and we claim that limg_, o up, = U strongly in
D'2(C) and that ue is an extremal for p, 4(C).
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Indeed, it follows from (12.9) that fc |“°‘°JLTS(S) dx = 1. It then follows from the
Hardy-Sobolev inequality (12.2) that

@) < [ (1 = )

Moreover, since up — U, weakly as k — +o00, we have that

/ (|Vuoo|2 _ ’Y2’U,OO) do < hmmf/ <|Vu;€|2 72 ) dz = pys(C).
1 || k—+oo |z

Therefore, equality holds in this latest inequality, uo is an extremal for p, s(C) and
reflexivity yields convergence of (ux) to us in DY2(C). This proves the claim.

We now assume that u., = 0 and show that as k — +oco in the sense of measures,

2
(12.11) s=0, lim / Uk gz = 0 and |Vug|? doz — piy 5(C)s,-
k=400 Jo |2|? *

Indeed, since u — Uy = 0 weakly in DY2(C) as k — +oo, then for any 1 < ¢ <

2* 1= 20y, — 0 strongly in Lj. (C) when k — +o00. Assume by contradiction

n—2’

that s > 0: then 2*(s) < 2* and therefore, since xo # 0, we have that

2%(s)
lim Juel” ™2 0
k=+o0 /g (zo)ne  17[°

for 6 > 0 small enough, contradicting (12.10). Therefore s = 0 and the first part of
the claim is proved.

For the rest, we let f € C*°(R") be such that f(z) = 0 for x € Bs(xzg), f(z) =1

for z € R™ \ Bas(z0) and 0 < f < 1. We define ¢ := 1 — f2 and ¢ := f1/2 — f2.
Clearly ,9 € C*°(R") and ¢? + 12 = 1. Inequality (12.2) yields

@) [l dx) < [ (IWtow - Zztou)?) as

Integrating by parts, using (12.10), using that uy — 0 strongly in L? (R") as
k — +o0, and that ©? = 1 — 2, we get that

@) (Iel@)?* +o(1)) ™ < K (|Vuk|2—||2 )dx+o< A . Mﬂidx)
@) 001) < [ (19wl = 2t ) do = [ (19w = ) oot

as k — +oo. Using again (12.4), we then get that

/JPOVWF—P )dx<qn

as k — +oo. Integrating again by parts and using the strong local convergence to
0, we get that

/C (W(wuk)ﬁ - m“gwuky) iz < o(1)
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as k — +00. The coercivity (12.2) then yields limg_ 4 ||V (®ug)||2 = 0. Therefore,
the Hardy inequality yields convergence of ||~ (vug)x to 0 in L?(C). Therefore,

u2
lim — dx = 0.
k——+oo (Bas (z0))eNC ‘(E|
Taking § > 0 small enough and combining this result with the strong convergence
of (ug)g in L?  around xq # 0 yields

loc

u2
lim —k_ dz = 0.
k—+oo Jo |z|?

Combining this equality, limg_, o0 ||V (ug)|l2 = 0 and (12.4) yields the third part
of the claim. This proves the claim.

We now show that if u,, =0, then s = 0 and
1
s(C) = R") = ——.
ey, ( ) ,UO,O( ) K(TL,2)2

Indeed, since uy, € DV2(C) € DV2(R™), we have that

2
po.0(R™) (/ |uk|2*dx> g/ \Vuy|? da.
Rn Rn

It then follows from (12.11, (12.4) and (12.5) that po,0(R"™) < s s(C). Conversely,
the computations of Proposition 9.1 yield p, s(C) < p0,0(R™) = K(n,2)~!. These
two inequalities prove the claim.

Note now that if s =0, v > 0 and n > 4, then necessarily

(12.12) () < pon(B) = .

Indeed, consider the family u. as in the proof of Proposition 9.1. Well known
computations by Aubin [2] yield

JS’S(ug) = K(n, 2)_2 — ’y|$0|_2695 +o0(6:) ase — 0,

where ¢ > 0, 0, = €2 if n > 5and 0, = e2lne~ ! if n = 4. It follows that if v > 0
and n > 4, then p, (C) < K(n,2)~!. This proves the claim.

As in Proposition 9.1, even if the cone is nonsmooth, it is easy to see that if s =0
and v < 0, then

1
12.1 s(C) = R") = —.
( 3) Hey, (C) /1’070( ) K(?’I,, 2)2
Moreover, is no extremal if v < 0.
If now s =0 and v = 0, then
1
12.14 C)= R") = —
(12.14) (€)= po0B") = oo

and there are extremals iff there exists z € R” such that (1+|z—2|?)!="/2 € D?(C)
(in particular C = R").

Again, the proof goes essentially as in Proposition 9.1, even if the cone is nonsmooth.
The potential extremals for pg ¢(C) are extremals for pg o(R™), and therefore of the
form x + a(b + |z — 20]?)'~™/2 for some a # 0 and b > 0 (see Aubin [2] or Talenti
[52]). Using the homothetic invariance of the cone, we then get that there is an
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extremal of the form z — (14 |z — 2|2)'=™/2 for some z € R". Since an extremal
has support in C, we then get that C = R™. This proves the claim.

Finally, assume that s = 0 and that there exists z € R™ such that x — (1 +
|z — 2[%)1="/2 € DY2(C). Then p,(C) < W for all v > 0. For that it
suffices to consider U(z) := (1 4 |z — 2|2)'="/2 for all 2 € R, and to note that
JSo(U) = JE,(U) < J§o(U) = K(n,2)72.

7,0
This ends the proof of Theorem 12.1 and Corollaries 12.2, 12.3.

13. APPENDIX 2: SYMMETRY OF THE EXTREMALS FOR i, (R’ )

The symmetry of the nonnegative solutions to the Euler-Lagrange equation for
fiy,s(R7) is proved in Chern-Lin [10] for v < (n—2)?/4. The proof of the symmetry
carried out by Ghoussoub-Robert [24] in the case v = 0 extends immediately to the
case 0 < v < n?/4. For the convenience of the reader, we give here a general and
complete proof inspired by Chern-Lin [10], which includes the case where v < 0.

For v < n?/4, s € [0,2) and 2*(s) := 2(::25), we consider nontrivial solutions
u € DV2(R%) to the problem

~Au— Zpu = “\if_ weakly in D2(R")
(13.1) w>0 in R"
u=~0 on JR"

and prove the following.

Theorem 13.1. If u is a solution to (13.1) in D*(R’), then uoo = u for
all isometries of R" such that o(Rt) = R%. In particular, there exists v €
C>((0,+00) x R) such that for all x1 > 0 and all ' € R"™!, we have that
u(zy, ') = v(xy, |2']).

Remark: Unlike the case of the extremals for the full space R™, there is no
symmetry-breaking phenomenon in the case of the half-space R”}. However, the
price to pay is that the best constant when restricted to the functions with best
possible symmetry is unknown, contrary to the case of R™. We refer to the histor-
ical reference Catrina-Wang [5] and to Dolbeault-Esteban-Loss-Tarantello [14] for
disussions and developments on the symmetry-breaking phenomenon.

We adapt the moving-plane method of Chern-Lin [10] that was made in the case
2
v < @. Given any 6 € [0, 7], we define the hyperplane and the half space:

Py :={x € R"/z1cos6 = zsinb},
Py :={x € R"/x1cosf < xasinb}.

We define sg : R™ — R™ as the orthogonal symmetry with respect to Py. As one
checks, we have that

(13.2)

—1x1 cos(20) + x4 sin(20) cosd
sg(x) = | x1sin(20) 4+ x5 cos(20) | and sg(x)—x = 2 (w9 sinh — x1 cosf) | —sind
Note that it follows from Theorem 6.1 that there exists K7 > 0 such that

Z1

The proof of Theorem 13.1 relies on two main Lemmas:
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Lemma 13.2. For all j =1,...,n, we have that

. a_ T1X5 -
g i (o) - K (51— ) ) <0,
and
(13.5) 2|2~ O FL | d?u, || < C for all z € RY, |2| < 1.

Proof of Lemma 13.2: We proceed by contradiction and assume that there exists
()r € RY such that z — 0 and

Tp 1Tk
(13.6) <|xk|°“(7)8ju(xk) ~ K (5j - a_(y)w» /0
as k — +00. We define ug(z) = |z~ V= u(|zy|z) for all z € R?. It follows from
(13.3) that
T

(13.7) kgr}rloo ug(z) = KlW for all 2 € R \ {0}.

Moreover, this convergence holds in Cf (R7 \ {0}). Equation (13.1) rewrites as

2*(s)—1
—Auy, — %uk = |22 @2 (5 o) Lk
] |z]°
for all k£, and u vanishes on OR’. It then follows from elliptic theory that the
convergence in (13.7) holds in C? _(R7 \ {0}). Therefore,

: n
in RY

. X —a_
im0y (257 ) = 0y ol )(X)

k——+o00

where X = limg_, 1o % Coming back to ug contradicts (13.6). This proves

(13.4). The proof of (13.5) is similar. This ends the proof of Lemma 13.2.
The second Lemma is a general analysis of the difference u(sg(x)) — u(x).

Lemma 13.3. We let (0;); € R and (z;) € R% be such that x; € R} N Py for all
1 € N. We assume that 0; = 05 and ©; — To as i — 400, and that

(13.8) s, (z;) — x; = o(|z;]) as i — +o0.
Then,
o If xoo # 0 then

. u(sg, (z:)) — u(w;)
13. 1 .
(13.9) z—>1+moo 2(z; 280 6; — ;1 cosb;)

o I[fx, =0, then

= €08(0o0 ) 01U(T o) — SIN(Oog ) Dotu(T oo )-

(13.10) lim u(sg, (@) — u(@s) = K, cos(0a0).

i—+00 2(581'72 sinf; — 1 COS 01‘)‘13“70‘*(7)

Proof of Lemma 13.3: Taylor’s formula yields
(13.11)

[u(so, (2:)) — ulwi) — dug, (so, (2:) — zi)| < ||so, (2:)—4|* Sup 6%t (50, (@) )
€10,
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for all 7. It follows from (13.5) that

SUp || A%, 41(sp, ()—co)ll < C sup ||z + t(sg, (2;) — ;)| " H-0)
te[0,1] tel0,1]

x; + Sp, ()
2

—(1+a-(7)

)

and therefore

(13.12) m%um=umww%me%w»+0meiﬁiﬁ[m),

and then, we get with (13.8) that

(13.13)  ulon o) = ulos) 4, (s (o0) ) + 0 (1202000
:L.’L o —

as i — +o00. With the expression (13.2), we get that

(13.14) Iso, (z:) — x;|| = 2(z; 28i06; — ;1 cosb;) >0

and that

U(Sei (7)) — u(z;)
2(x;2sin6; — x;1 cosb;)

(13.15) = dyu(x;) cos 0; — Dau(x;)sinb; + o (|xi|_a—(7))

as i — +oo. If o # 0, then we get (13.9) and we are done. We assume that
Too = 0. It then follows from Lemma 13.2 that

24| O (u(se, (1)) — ul(x;)) _ K <1 Ca () (1‘1,1) > cos b,

I6: (i) — il

Zi1 T2 sin 91 — X1 COS (91'
- fomir a5 )

+o(1) as i — +oo0.
Using (13.8) and (13.14), we get that

i * = (u(so, (1)) — u(z:))

13.16 lim = K7 cosf.
(13.16) D o @) — ]
This ends the proof of Lemma 13.3. O

We are now in position to initiate the moving plane method.

Proposition 13.4. There exists 6y > 0 such that

(13.17) for all 6 € (0,6y), then u(sg(x)) > u(x) for all x € Py NRY

Proof of Proposition 13.4: We argue by contradiction and we assume that there
exists (6;); € (0,+00), there exists x; € P,  NRY such that

(13.18) lim 6; =0 and u(se, (z;)) < u(x;) for all .

1—+00
We first claim that without loss of generality, we can assume that (z;); is bounded in
R™. For that we define the Kelvin transform a(z) := |z[*~"u(z/|z|?) for all z € R”.
As one checks, @ € D'2(R%) satisfies (13.1) and (13.18) rewrites @(sg, (Z;)) < @(Z;)
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for all i, where &; := x;/|7;]? € P, NR%. Therefore, up to changing u into , we
can assume that (x;); is bounded. This proves the claim.

Now define lim; ;o0 T; = oo. We claim that

(13.19) zi1 = o(wiz2) as i — +00 and r4 € IR’}

Indeed, since z; € Py, NRY, we have that z;; > 0 and x;1 cos6; < z;2sin6; for all
i. Letting i — oo yields x;1 = o(x;2) as i — +00, and therefore z,, € OR}.

We now show that

(13.20) so; (x;) — x; = o(|z;i]) as i — +o0.

Indeed, it suffices to note that the expression (13.14) and (13.19) yield sy, (z;) —2; =
o(|zs2]) = o(|x;]) as i — +o0.

We now conclude the proof of Proposition 13.4. If 2o, = 0, it follows from (13.10)
that u(se, (z;)) —u(x;) > 0 for i — 400, contradicting (13.18). If zo # 0, it follows
from (13.9) and (13.18) that 0u(zs) < 0: this contradicts Hopf’s strong maximum
principle since zo, € OR"}. This ends the proof of Proposition 13.4. (]

Define now
By :=sup {0 <f< g/u(st(w)) > u(x) for allz € P NRY} and all 0 <t < 9}

It follows from Proposition 13.4 that 8y > 0 exists. Our objective is to prove that
o = 5. We argue by contradiction and assume that

(13.21) 0< 6 < g
For any 6 > 0, we define

vo(x) :=u(sgp(z)) — u(x)
for all z € Py NR’ . Since sy is an isometry for all § > 0, we have that
(13.22) —Avg — #Ue = cp(x)vy

2% (s)—1__ 2% (s)—1

where ¢ () = ||~ HCelE eI ifu(sg(2)) # u(w), and co(z) = [2] 7 (2*(s)-
Du(z)? *)=2 otherwise. In particular, ¢g > 0. It follows from the definition of 6y
that vg, > 0. It then follows from (13.22) and Hopf’s maximum principle that
either vg, > 0 in ) NRY or vg, =0 in Py NRY. In the latter case, taking points
on IR}, we would get that u(xz) = 0 on Pap, N R’} : this is impossible since 0y <
and v > 0. Therefore

(13.23) vg, > 0 in P;, R

It follows from the definition of §y that there exists (6;); € (6y, +00) such that

(13.24) liin 0; = 0y and Vi there exists x; € P, NR’} such that vy, (z;) < 0.
1—+00 i i

Arguing as in Step 1 of the proof of Proposition 13.4, we can assume with no loss
of generality that (x;); is bounded, and, up to a subsequence, that there exists
Too € R™ such that lim; 400 T; = Too.

We claim that
(13.25) Too € P, ﬂ@.
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Indeed, it follows from (13.24) that zoc € Py, NRY and vg, (zoc) < 0. It then follows
from (13.23) that 2o, € P, NRY} = (Ps, NRY) U (IR N Py and vg, (To0) = 0.
We argue by contradiction and assume that (13.25) does not hold. Therefore,
Too € ORY and u(sg,(Too)) = V6, (To0) = 0, and then sy, (2c) € OR’,. We then get
with (13.2) and (13.21) that sp,(Zoo) = Too and then zo € Py,, which contradicts
our initial hypothesis. This proves (13.25) and therefore the claim.

We claim that

(13.26) sp; (x;) — x; = o(|z;]) as i — +o0.

It follows from (13.25) that sg, (o) = Zoo, and therefore (13.26) holds if zo, # 0.
We now assume that zo, = 0. Dividing (13.26) by |z;| and passing to the limit
i — 400, one gets that (13.26) is equivalent to proving that s, (Xoo) = Xoo where
Koo = lim; 1o \%\ Since x; € Py, we have that x; 2 sin6; > x; 1 cos8; for all <.
Dividing by |z;| and passing to the limit i — +oo yields

(13.27) Xoo,28in6p > Xoo 1 cosbp.

Since u(sg, (z;)) < u(x;), the asymptotic (13.7) yields

(50, ()1 41
_ W01 g K, bl
! se, (xi)|a7(7) < (1+o(1)k, |xl—|a7(7)

as i — +oo. Dividing by |z;| and passing to the limit, we get that
(13.28) (56, (Xs0) — Xoo)1 < 0.

Plugging (13.27) and (13.28) into (13.2) yields sp,(Xoo) = Xoo- As already men-
tioned, this proves the claim.

Here goes the final argument. We apply Lemma 13.3. If xo, = 0, (13.10), (13.14)
and (13.24) yield Kj cos(fp) < 0: a contradiction since K3 > 0 and 0 < 6y < 7/2.
If xoo # 0, (13.9) and (13.24) yield

(13.29) O1u(Too) cos(fy) — O2u(Tso) sin(fp) < 0.

If 2o € ORY}, then ou(rs) = 0 and d1u(rs) > 0 (Hopf’s Lemma), contradicting
(13.29). So zo € Py, \ OR%. It then follows from (13.22), (13.23), (13.25) and
Hopf’s Lemma that 0gvg,(7s) < 0 with N = (cosfg, —sinfy,0). However, one
can easily see that 0gve,(Too) = —2(01u(2o0) cos(p) — Oou(zo)sin(fp)), which
again contradicts (13.29).

In all cases, we get a contradiction, and therefore (13.21) is not valid, which means
that 0p = 5. It follows that

uw(xy, —2,...) > u(x1,22,...) for all z € RY, z3 > 0.

Since the equation satisfied by u is invariant under the action of isometries fixing
OR", we get the reverse inequality and therefore u(x1,x2,...) = u(x1, —2,...) for
all z € R’. So w is invariant under the action of the symmetry wrt {x = 0}. This
argument works for any hyperplane orthogonal to OR’}: then u is invariant under
the action of the symmetries fixing OR!. This completes the proof of Theorem
13.1.
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