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ON THE EXISTENCE OF HAMILTONIAN PATHS
CONNECTING LAGRANGIAN SUBMANIFOLDS

NASSIF GHOUSSOUB AND ABBAS MOAMENI

ABSTRACT. We use a new variational method—based on the theory
of anti-selfdual Lagrangians developed in [2] and [3]—to establish the ex-
istence of solutions of convex Hamiltonian systems that connect two given
Lagrangian submanifolds in R2Y. We also consider the case where the
Hamiltonian is only semi-convex. A variational principle is also used to
establish existence for the corresponding Cauchy problem.

RESUME.  Une nouvelle méthode variationnelle—basée sur la théorie
des Lagrangiens auto-adjoints developée récemment dans [2] et [3]—est
utilisée pour établir ’existence de solutions de systémes Hamiltoniens con-
vexes, qui connectent deux sous-variétés Lagrangiennes données dans R2V .
On considére aussi le cas des Hamiltoniens semi-convexes, ainsi que le
probleme de Cauchy correspondant.

1. Introduction. We consider the following Hamiltonian System

(1) p(t) € O:H (p(t),q(t))  t€(0,T),
—4(t) € 01H (p(t),q(t)) t € (0,T),

where H: RY x RV — R is a convex and lower semi-continuous function and
T > 0. We develop a new variational approach to establish existence of solutions
satisfying two types of boundary conditions. The first one requires the path
to connect two Lagrangian submanifolds associated to given convex lower semi-
continuous functions 1, and 1 on RY, that is

(2) q(0) € 91 (p(0)) and  —p(T) € M2 (a(T)).

In other words, the Hamiltonian path must connect the graph of dvy; to the
graph of —0s. The second is simply an initial value problem of the form

(3) p(0) =po, q(0) = qo

where py and qq are two given vectors in RV,
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Note that the graphs of 0y and —0- are typical Lagrangian submanifolds
in R?Y | and the first problem can be seen as a Lagrangian intersection problem.
The solutions will be obtained from a novel variational principle developed in full
generality in a series of papers [2], [3] and [6]. It is based on the concept of anti-
selfdual Lagrangians to which one associates action functionals whose infimum is
necessarily equal to zero. The equations are then derived from the limiting case
in Legendre-Fenchel duality as opposed to standard Euler—Lagrange theory.

In the next section, we start with the case of convex Hamiltonian systems
connecting Lagrangian submanifolds. This is then extended to the semi-convex
case in Section 4. The corresponding Cauchy problem is studied in Section 3.
The case of periodic solutions was considered in [5].

2. Connecting Lagrangian submanifolds. Given a time T > 0, we
let X = W2(0,T;R"™) be the one-dimensional Sobolev space endowed with
the norm [[u] = (Jul|2, + [|il|22)? where [lul|z2 = ([ [u]*dt)? stands for the
norm on L? := L?(0,T;RY). For every p,q € RV, p-q denotes the inner
product in RV and (p,q) - (r, s) denotes the inner product in RY x R¥ defined
by (p,q) - (r,s)=p-r+q-s.

Say that a Hamiltonian H on R?N is S-subquadratic for # > 0, if for some
positive constants «, -y, we have,

p
(4) —a < H(p.q) < (" +|a*) + 7 for all (p,g) € R*Y.
We shall prove the following result.

THEOREM 1. Suppose H: R?*N — R is a convexr lower semi-continuous
B-subquadratic Hamiltonian with

1
5) p< 2max(272,1)"

Let 1y and o be two convex lower semi-continuous and coercive functions on
RN such that one of them satisfies the following condition:

¥i(p)

Ipl?

(6) lim inf

[p|—-+o0

>2T fori=1 or?2.

Then the minimum of the functional

T
I(p.q): = / (H (p(t), a(t)) + H*(—d(t), 5(1)) + 2d(t) - p(t)] dt

+ 2 (q(T)) + 5 (=p(T)) + ¥1(p(0)) + ¥ (q(0))
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onY = X x X is zero and is attained at a solution of

p(t) € B2H (p(t), q(t)) te (0,7),
(7) q(t) € 01H (p(t),q(t)) te(0,7),
q(0) € 991 (p(0)), —p(T) € O (q(T)).

Before we proceed with the proof, we note that condition (5) is satisfied as
soon as we have

—a < H(p,q) <B(p["+lqI"+1) (1<r<2)
where «, 3 are any positive constants.
The proof requires a few preliminary lemmas, but first, and anticipating that
at some point of the proof the conjugate H* of H needs to be finite everywhere

(i.e., H coercive), we start by replacing H with the following perturbed Hamil-
tonian H(p,q) = 5(|p|* + |q|*) + H(p, q) for some € > 0. It is then clear that

(8) (l? + 1a1) 7 < H(p,0) < 5-(IpP + 1gf) +0

_
2(8+¢)

LEMMA 1.  For any convex Hamiltonian H, and convex lower semi-continu-
ous functions ¥y, e, we have that I(p,q) > 0 for every (p,q) € X x X.

PrROOF. Use that

2/0 q'-pdt=/0 q-pdt—/o ¢ pdt+ g(T) - p(T) — q(0) - p(0)

to write

T
I(p,q) : :/0 [H (p(t), q(t)) + H* (—q(t), p(t)) +24(t) - p(t)] dt
+ 2 (p(T)) + 95 (—a(T)) + ¥1(p(0) + 7 (4(0))
T
= /O [H (p(t), q(t)) + H* (=q(t), p(t)) + q(t) - p(t) — p(t) - q(t)] dt

+ [1h2(q(T)) + 05 (=p(T)) + p(T) - ¢(T)]
+ [¥1(p(0)) + ¥5 (¢(0)) — p(0) - (0)]

>0

by applying the Legendre—Fenchel inequality three times. O
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LEMMA 2. To a convex lower semi-continuous Hamiltonian H on RN | we
associate the “Functional Lagrangian” L:Y XY — RU {400} defined as

T
D)= [ (=) (0p)+ Y (=5) = ' (=5.) + 20 gl
—p(T) - s(T) + 92(q(T)) — ¥2(s(T)) +7(0) - (0)
+91(p(0)) — 1 (r(0)).
Then we have I(p,q) < SUD (1 )€ X x X L(r, s;p,q) for every (p,q) €Y.

Proor. Indeed, set
¢
A={reX:rt)= [ f(a)da+y, for some y € RN and f € LQ(O,T;RN)}
0
and

T
B:={s€ X :s(t)=— [g(a)da+z, for some x € RN and g € L,(0,T;R")}
t

and note that for every (p,q) € X x X we have
sup L(r, s:p,q)
XxX
> sup  L(r,sp,q)

(r,s)EAXB

T
- { | —g)-<q,p>+H*<—q,p>—H*(—g,f>+2q~p]dt}
RN

— 2 p(T) + o (q(T)) — ta(x) +y - (0) + 11 (p(0)) — %1 (y)}
T
— sup { [ =00 )+ 1 )~ 1 (g 0) + 20 dt}

f,g€eL?
+ sup {—z - p(T)
reRN
+ b2 (q(T)) — ¥a(z)} + sup {y - q(0) + ¥1(p(0)) — ¥1(y)}

yERN
T
0

+ {12 (a(T)) + ¢35 (—p(T)) } + {v1 (p(0)) + ¢7 (¢(0)) }
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T
:/0 H*(~4,p) + H(p.q) +4-p — q- §) dt
4 [2(a(T)) + 43 (—p(T)) + p(T) - o(T)]
+ [¢1(p(0)) + 7 (¢(0)) — p(0) - q(0)]
=1(p,q).

O

LEMMA 3. Under the above conditions, and assuming that € is small enough
so that B+ € < m, we have the following coercivity property:

Lc(0,0;p,9) — 400 as pl| + |lg|| — +oo,

where L. is the functional Lagrangian associated to the perturbed Hamiltonian H..

PRrOOF. Without loss of generality we assume v satisfies (6). An easy
calculation shows that

(9) Ipll 2 < Tlplee + VTIpO), llallzz < Tlldllzz + VTlg(T)].

Also note that mﬂpﬁ + 1q?) — v < HZ(p, q), hence modulo a constant we
have

(10)

0,0 ! " 'th2T' dt T 0
L pq)_wﬂ/(lql +[p[*) dt + /0 G- pdt+ 12 (q(T)) +11(p(0)).

Holder’s inequality and inequality (9) for the second term on the right hand side
of (10) imply
(11)

T
/q-pdt‘ 5 [P ares [lapa<t [P as TP+ 5 [l
0

From (10) and (11), we get

T
20,000 > 5t [ G+ - mexter® 1) [+
+92(a(1)) + 41 (p(0)) — 2T |p(0)?

which together with the coercivity condition on 7 and 5 and the fact that
O+e< m imply the claimed coercivity for L. O

The theorem is now a consequence of the following Ky Fan type min-max
theorem which is essentially due to Brezis—Nirenberg—Stampachia (see [1]).
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LEMMA 4.  Let D be an unbounded closed convex subset of a reflexive Banach
space Y, and let L(x,y) be a real valued function on D x D that satisfies the
following conditions:

(1) L(z,x) <0 for every x € D.

(2) For each x € D, the function y — L(z,y) is concave.

(3) For each y € D, the function x — L(x,y) is weakly lower semi-continuous.
(4) The set Dy = {x € D; L(x,0) < 0} is bounded in Y.

Then there exists zo € D such that sup,cp L(xo,y) < 0.

PROOF OF THEOREM 1. It is easy to see that L., defined by

Le(pa q;T, S) = Le(r7 S P, Q)
= [ 168 (ap) + HE(-d5) = HE (=5 + 20
— pT) - S(T) + 62 (a(T)) — 62 (5(T)) + 7(0) - 4(0)
T 1 (p(0)) — 61 (r(0),

satisfies all the hypothesis of Lemma 4 on the space ¥ = X x X. Indeed,
from (8) it is clear that L.(p,q;p,q) = 0, and Lemma 3 gives that the set
Yo = {(p,q) € Y;L(0,0;p,q) < 0} is bounded in Y. The function (r,s) —
L(r, s;p,q) is concave for every (p,q) while (p,q) — Lc(r, s;p, q) is weakly lower
semi-continuous for every (r,s) € Y. It follows that there exists (pe,¢) such
that sup(, o)ex xx Le(7, 8;pe, ¢e) <0, so that by Lemma 2 we have

I(pe,ge) < sup  Le(r, 8ipe,qe) < 0.
(r,s)eX xX

On the other hand by Lemma 1 we have that I.(pc,g.) > 0 which means that
the latter is zero.

Now let 0 < § < m — (. For each 0 < € < 0 there exist (pe,¢e) €
X x X such that

(12)
T
L(peq.) = / [H, (pe(t), qc(8)) + HZ (— (1), 5o(8)) + 24, (1) - pe (1)) alt
+ P2 (qe(T)) + 05 (—pe(T)) + 11 (pe(0)) + 97 (g(0)) = 0.

We shall show that (pe, g.) is bounded in X x X. Indeed, similar to the proof of
Lemma 3, we get

T T
(13) \2 / q;~pedt]<max<2T2,1> | + a2 )
0 0
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Combining (12) and (13), we obtain
(14)
T T
/O [He(pe(®): qe(t)) + HE (=de(t), e(1))] = mam<2T2,1>/0 (Igel? + Ipe[*) dt

+ d)Q (QG(T)) + 1/’5 (_pe(T)) + d)l (pe(o)) + 1/);‘ (QE(O)) - 2T‘pe(0)|2 < 0.

This inequality and the fact that H and ¢, ¢ = 1,2, are bounded from below
guarantee the existence of a constant C' > 0 independent of € such that

1 T . .
(m — max(2772, 1)) /0 (Ige|? + [pe]?) dt
+ 12 (4e(T)) + ¢1 (pe(0)) — 2T|p5(0)|2 <c.

The coercivity of 11 and ¥ together with the fact that 5 —2max(272,1) >0
then implies the boundedness of (p.,¢.) in X x X. Therefore (Pesqe) — (D, Q)
in X x X, up to a subsequence.

Now we show that

(15) I(p,q) < hmmfI (Pe, qe) = 0.

Indeed, first note that

T T s 2 s 2
[ reida= e[ - 2t B g
0

u,weL2(0,T;RN) Jo 2¢ 2¢

and since H* is convex and lower semi-continuous, there exists ue,ve €
L2(0,T;RY) such that this infimum is attained at (uc,v.), i.e.,

T S 2 . 2
.. —u| llge — vell
H* ey de) = |:H* ey Ue ||p€ £ ]dt
< (Pe, Ge) /O (e, ve) + =5 —— + =

It follows from (14) and the boundedness of (pe, ¢.) in X x X that there exists
a constant C' > 0 not dependent on € such that

T . 9 . )
F[ . . * € _Ue e _Ue
:(p€7QG) - / |:H (U,e’ye) + Hp H + Hq H
0

> - ]dt<c.

Since H* is bounded from below, we have fo [IPe — ucll® + [|de — ve|?] dt < 4Ce
which means that (u,ve) — (p,q) in L? x L?. Hence

T
/H (D, q dt<1nf H*(uﬁ,ve)dt

T

< inf [H*(ug,ve) +
e—0 0

P = uel® |, llge — vell?
+

dt
2¢ 2¢

T
= inf H? (P, g.) dt.

e—0
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We also have

T
/ H(p,q)dt < 1nf/ H (pe(t), qe(t)) dt

T
< inf/o [H (pe(t), qe(t)) + e(Ipe(t)* + lae(t)|)] dt

e—0

T
= lnf/ H, (pe(t)ack(t)) dt.

e—0 0

Moreover, g, — ¢ weakly and p. — P strongly in L?, thus lim._o fOT Ge - pe dt =
fOT q - pdt. Therefore

T
I(p,q) < liminf /0 [He (pe(t), 4 (1)) + HZ (=Ge(), Be(t)) + 24e(t) - pe(1)] dt

92 (qe(1)) + 5 (—pe(T)) + 11 (pe(0)) + ¥ (e (0)) = 0.
Since by Lemma 1, I(p,q) > 0, the latter is therefore zero, and it follows that
0=1(p.q)

-/ C[H (), a0) + B (<600, 50)) + 20(0) - p(0)] de

+92((T)) + ¢35 (=p(T)) + 1 (p(0)) + ¥7 (a(0))
=AﬁH@@a@%HF@dmﬂm+«wmw—ﬂwnmwt

+ [02(a(T) + 45 (=p(T)) +B(T) - a(T)]

+ [v1(p(0)) + ¥ (a(0)) — p(0) - 7(0)].

The result is now obtained from the following three identities and from the
limiting case in Legendre-Fenchel duality:

H (p(t),q(t)) + H* (=q(t), p(t)) + 4(t) - p(t) — p(t) -
Yo (q(T)) + 3 (=p(T)) + p(T) - ¢(T) = 0,
¥1(p(0)) + ¥7 (2(0)) — B(0) - 4(0) = 0.
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3. The Cauchy problem for Hamiltonian systems. Here is our result
for the corresponding Cauchy problem.

THEOREM 2. Suppose H: RN x RN — R is a proper convex lower semi-
continuous function such that H(p,q) — oo as |p| + |q| — oco. Assume that

(16) —a < H(p,q) <B(lp|" +1qI"+1) (1<r<o0)

where o, B are positive constants. Then the infimum of the functional

T
J(p,q) :=/O [H (p(t), q(t)) + H* (=q(t), p(t)) + q(t) - p(t) — p(t) - q(t)] dt

on the set D := {(p,q) € X x X;p(0) = po,q(0) = qo} is equal to zero and is
attained at a solution of

p(t) € 2H (p(t),q(t))  t e (0,T),
(17) —q(t) € 91 H (p(t),q(t)) te(0,T)

(r(0),4(0)) = (po, q0)-

To prove Theorem 2, we first consider the subquadratic case (1 < r < 2).
PROPOSITION 1. Assume H is a proper convex and lower semi-continuous

Hamiltonian that is subquadratic on RY x RN. Then the infimum of the func-
tional

T
(18) J(p,q) ::/0 [H (p(t), q(t)) + H* (=q(t), p(t)) + q(t) - p(t) — p(t) - a(t)] dt

on D = {(p,q) € X x X,p(0) = po,q(0) = qo} is zero and is attained at a
solution of (17).

PRrROOF OF PROPOSITION 1. As in the proof of Theorem 1, it is clear that
J(p,q) > 0 for every (p,q) € X x X. For the reverse inequality, we may as
in Section 1 consider a perturbed Hamiltonian H. to insure coercivity, and then

pass to a limit when € — 0. We therefore can and shall assume that H is coercive.
We then introduce the following Hamiltonian

T
L(r,s:p.q) ::/O (7, =8) (g, p)+H" (=4, p)— H (=5,7)+4(t)-p(t)—p(t)q(t)] dt,

and we show that I(p,q) < sup(, syep L(7,5;p, q). Indeed, setting

A::{( syeD:r(t /f )da + po, s(t) = /Otg(a)dourqo,

for some f,g € L2(0,T; RN)}.
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‘We have

sup L(r,s;p,q)
(r,s)eD

> sup L(r,s;p,q)
(r,s)€EA

— sup { [ =) @+ 1 ip) — )+ = e dt}

f,geL?
T
:/ (B (=, ) + H(p.q) + 4 -p—p-qldt
0

=1(p,q)

The rest follows in the same way as in the proof of Theorem 1; that is, the
subquadraticity of H gives the right coercivity for L, and we are able to apply Ky
Fan’s min-max principle as in Theorem 1 to find (p,q) € D such that J(p,q) = 0.

O

Now, we deal with the general case, that is when (16) holds with r > 2. For
that we shall use an unusual variation of the standard inf-convolution procedure
to reduce the problem to the subquadratic case where Proposition 1 applies. For
every A > 0, define

. Ilp—ully | llg—vls
19 Hy(p,q):= inf {H , s S}
(19) A(p,q) oot (u,v) + SUEESY

where s = 5. Obviously, 1 < s < 2, and since H is convex and lower semi-

continuous, the infimum in (19) is attained, so that for every p,q € RY there
exist unique points i(p), j(¢) € RY such that

(20) Hy(p.0) = H(i(p). i(0)) + 12 ;f\(sp)”g 1 la _Siiqmz.

LEMMA 5. The reqularized Hamiltonian Hy satisfies the following properties:

(i) Hi(p,q) — H(p,q) as A\ — 0*.

lalls + llplls
SAS '

(iii) Hx(p,q) = H*(p,q) + 7(||p||r+ llgllr)-

(ii) Hx(p,q) < H(0,0) +
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PROOF. (i) and (ii) are easy. For (iii), we have

Hi(p,q) = sup {u-p+v-q— Hx(u,v)}

u,vERN

= sup {u~p+v-q— inf {H(z,w)+|Z‘“”s+||w—vlls}}

u,vERN z,wERN SA\S
— s _ s
— sup sup {uptveg- Hizw) - U el
u,vERN z,weRN SA Sx,

= sup sup {(U—Z)-p+(v—w)-q+z-p+w~q

z,wERN y,veRN

Iz = wll§ + [lw — lf3
_H , _ S 5}
(z,w) o
_ [ualls _ [lvall3
= sup sup {ul p+uv-q 5 Y

z,wERN uq,v1 ERN

+z-p+w~q—H(z,w)}

_ [[ua |13 ||vllli}
B u1,i111£]RN{U1 p tu a4 SAS SAS
+ sup {z-p+w- q— H(z,w)}

z,wERN

AT r r *
—Upllz +llallz) + H (p, q)-
O

Now consider the Cauchy problem associated to Hy. By Proposition 1, there
exists (px,qxn) € X x X such that px(0) = po, ¢r(0) = go and

T
(21)  0=I(pr,qn) = / [Hx(px, qx) + HYX(=dx,pa) +dx - pa — D - qn] dt
0
yielding
Dx € O2HA(px, q0)
—q4x € O1Hx(px, qn)
PA(0) = po, qx(0) = qo.

From (20), we have

lox —ix(pa)|3 n llax — dx(an)ll3
SAS SAS '

(22)  Ha(px,qx) = H(ia(pa), ix(qn)) +

We now relate (py, ¢x) to the original Hamiltonian.
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LEMMA 6. For every A > 0, we have
{ px € 02H (ix(pr), 4a(qr))
—gx € 01H (ix(pn), jx(ar))-

PrROOF.  From (21) and the definition of Legendre-Fenchel duality we can
write

(23) Ha(px,ax) + HX(=@x,px) +dx-px—Pa-gx =0 V€ (0,T).
Part (iii) of Lemma 5, together with (22) and (23), give

n lpx — ix(@)ls + llax — dx(@)lls

(24) 0= H(ix(pr),5r(q2)) B5Y

. AT, . ) )
+ H (=43, 53) + = (IAIF + 167117) + - pa = B - o
Note that
(25)
padx = (Pa—in(pa))-@r+in(pa)-gn  and  pa-ga = (ax—ja(qrn))-Pat+(Br-dr(an))-

By Young’s inequality, we have

loa —ix(ea)ll | A"

(26) |(px —ix(pa)) - dn| < B v 7||¢b||:-
. . i@l A
(27) |(ax — da(ar)) - pa] < W + 7||p,\”r.

Combining (24)—(27) gives

2NN CEV il 2N X OV

0= H(ixr(px),sx(ar)) BT

e .. AT ) ) .
+H™ (=42 03) + —=(IBall7 + laxlly) + (px —ia(pa)) - da

+ix(Pa) - dx — (ax — 3x(a0)) - Bx — Pa - dalan)

)+ [px = ix(@)l5 + llax — dx(g)ll;

> H (ix(px), jx(ax Y

.. AT ) ) . ..
+ H*(—gx,pr) + 7(||P/\||: +llaally) +ix(ea) - gn — P - dalgn)
AT ) [lox = ix(@)E + llgx — dalan)|I2
- 7(”?/\”; +[lgally) — SSAS 5

= H (ix(px),da(ax)) + H*(—=dx,p2) + ix(pr) - G — Pa - dalan).
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On the other hand, by the definition of Fenchel-Legendre duality
(28) H (ix(pr), ja(ax)) + H* (=gx,px) +ia(pr) - G — Pa - jalgr) =0
which means we have equality in (28), so that

{ Px € O2H (ia(pr), jr(ar)),
—x € O1H (ix(pr), ja(ar))-

LEMMA 7. With the above notation we have:

(1) SUPye(0,1) [ax — dx(@n)] + [px —ix(pa)| < e, where ¢ is a constant.
(2) If H(p,q) — o0 as |p| + |g| — oo then

sup |gal + [ (@)] + [pal + [ix(pa)] < oo
t€(0,T),A>0

PrROOF.  For every A >0 and t € (0,7, we have
ﬁA = thA(p)\,q)\)a
—qn = O1ha(pa, @)

Multiplying the first equation by ¢, and the second one by py gives

Padr = Gr02Hx(pxr, qn),
—@px = DA01HA(pa, q0)-

So g Ha(pasax) = 0 and Hx(pa(t), ax(t)) = Hx(p(0),9(0)) < H(p(0),q(0)) :=
¢ < +o00. Hence, it follows from (22) that

H(ix(px(t)),jx(qx(t))) n 112} —ix(pA)Hi;HQA = ix(@)lls <ec

which yields
sup [gx — Ja(@n)] + [pa —ixpa] < A
te (0,7

and
sup H(U(Px(t))’jx(%(t))) < +-o00.
te (0,7
Since H is coercive the last equation gives sup;e(o 1z [7x(ax)| + liapa| < oo,
which together with part (i) prove the lemma.
(|
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LEMMA 8. We have the following estimate:

sup  [PA(B)] + [ga(F)] < +o0.
te[0,T7],A>0

PROOF. Since —a < H(p,q) < Blp|" + Blg|" + B where r > 2, an easy
calculation shows that if (p*, ¢*) € OH(p, q) then

r—1

(29) bl + 1"l < {s28)% ( )+ 1}

Since by Lemma 6 we have (px, —¢x) = aH(i,\(pA),j,\(q,\)), it follows from (29)
that
. . T i r—1
Al 4 1da] < {5(26)= (lix(ea)] + a(ar)] + a + 5) + 1}

which together with Lemma 7 prove the desired result. O

END OF PROOF OF THEOREM 2. From Lemma 6, we have

30 [ [Hlialon)da(a)) + H (<dn.n) + - ixon) = - ()] e = 0,

while px(0) = po and ¢»(0) = ¢o. By Lemma 8, p) and ¢, are bounded in
L?(0,T;RY), so there exists (p,q) € X x X such that py — p and ¢\ — ¢
weakly in L2(0,T;RY) and py — p and g — ¢ strongly in L. (0,T;RY). So
by Lemma 7, ix(px) — p and ja(qn) — ¢ strongly in L., (0,T;R”Y). Hence by
letting A — 0 in (30), we get

T
/ [H(p,q) + H*(=¢,p) +4-p—p-qldt <0,
0
which means p(0) = po and ¢(0) = go and

{ p(t) = 02H (p(t), q(t))

q(t) = 01 H (p(t),q(1)).
O

4. Semi-convex Hamiltonian systems. In this section, we consider the
following system:

p(t) € 9H (p(t), (1)) + 61q(t) t € (0,7)
(31) ) € 0 H (p(t),q(t)) + dap(t) te€(0,T)
q(O) € Oy (p(O)) —p(T) € 02 (q(T))

where 61,2 € R. Note that if §; > 0 then the problem reduces to the one studied
. . . . . r 6 6

in Section 1 with a new convex Hamiltonian H (p, q) = H(p, q) + % |q|* + 2 p|*.
The case that concerns us here is when §; < 0.



ON THE EXISTENCE OF HAMILTONIAN PATHS 79

THEOREM 3. Suppose H: RN x RN — R is a proper convex lower semi-
continuous Hamiltonian that is B-subquadratic with

1 1 — 472|652 1 — 472|655
2 > mi .
(32) A<y mm{max(zT?, 1) — 26,72 max(2T2,1) — 262T2}
Assume
1
(33) |0;| < == fori=1,2,

2T

and let 11 and 1y be convex lower semi-continuous functions on RY satisfying

(34)

. i(p) _ T)6o)?
lim inf >
lpl—+o0 |p|? B

Then the minimum of the functional
T
I.0) = [ [H((0).a(0) + 5 (=it6) = aplt). ) ~ ra(®)

+ 61lq|* + S2p? +24(t) - p(t)] dt
+ 12 (q(T)) + 3 (=p(T)) + 11 (p(0)) + 17 (¢(0))

onY = X x X is equal to zero and is attained at a solution of (31).

2
+27T(1—43) and liminf ¥a(p) > Tlon]

lpl—+oco  |p|? 54

—2T5,.

By considering a perturbed Hamiltonian H,, then passing to a limit when
€ — 0 as in Section 1, we can and shall assume that H is coercive. Also, note
that for every (p,q) €Y,

T
I(p.q) = / [H (p(t), a(t)) + H* (—(t) — 62p(t), p(t) — 14(1))

+ 01]q|? + G2lpl* + G(t) - p(t) — p(t) - q(t)] dt
+ [2(p(T)) + 5 (—q(T)) +p(T) - q(T)]
+ [11(p(0)) + 5 (¢(0)) — p(0) - q(0)]
>0,

by three applications of Legendre inequality.
For the reverse inequality, we introduce the following functional Lagrangian
L:Y xY — R defined by

T
L(rsip.q) i= / (H*(— — 62p,p— 61q) — H*(—4 — bar, i — 615)
0
+ (7 — 618, —§ — 827) - (q,p) + 61]q|* + d2|p|* + 24 - p] dt

=p(T) - s(T) + 2 (q(T)) — a2 (s(T))
+7(0) - q(0) + 91 (p(0)) — 1 (r(0)).

In order to apply the anti-selfduality argument, we need the following lemma.
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LEMMA 9. For any f,g € L*(0,T;RY) and x,y € RY, there exists (r,s) €
X x X such that

i(t) = 025(t) + f(t)
—5$(t) = 01r(t) + g(t
(35) (t) = d1r(t) +9(t)
r(0) ==
s(T) =y
PROOF. This is standard and is essentially a linear system of ordinary

differential equations. Also, one can rewrite the problem as follows.

—i(t) + f(t) = —0.G(r(t),s(t))
5(t) + g(t) = —01G(r(t), s(t))
r(0) ==z
s(T)=vy
where G(r(t),s(t)) = ——fo |r(t)|? dt — fo |s(t)]? dt. Hence
G (3(0) + 9l0), ~#(0) + 1) =~ [ 150 +9OF = 5= [ =0+ FOP ar.

One can show as in Theorem 1 that whenever |§;| < 5=, coercivity holds and

the following infimum is achieved at a solution of (35):

0= (ns)eglé)(xxG* (8(t) +g(t), =7 (t) + f(1)) + G(r(t), s(t))

+/0 f(t)~s(t)dt—/0 é(t)-r(t)dt—/o (f(t)-s(t)+r(t) - g(t)) dt,

where D = {(r,s) € X x X | r(0) = z,s(T) = y}. O

LEMMA 10. For every (p,q) € X x X, we have

I(p,q) < sup  L(r,s;p,q).
(r,s)eX xX
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Proor. Use the above lemma to write

sup  L(r,s;p,q)
(r,s)eXxX

T
= sup sup / [(ﬁ 9) - (¢,p) + H* (=G — d2p,p — 619)
f,g€L? z ycRN Jo

— H*(9.f) + 8ilgl? + Salpl +24 - p| dt
= p(T) -y + 2 (a(T) = aly) + - 9(0) + 91 (p(0)) — ¥ ()
T
= /0 [H*(—d — 0op,p — 019) + H(q,p) + 01lql* + dap[* + 24 'p] dt

+ 2 (¢(T)) + ¢35 (=p(T)) + ¥1(p(0)) + ¥5 (q(0))
=1(p,q).
O

In order to again apply Ky Fan’s lemma, it remains to establish the following
coercivity property.

LEMMA 11. Under the above hypothesis, we have
L(0,0;p,q) — +oo as |lpll + llg]| — +o0.

PROOF. Since H, 7,13 are bounded from below and m(|p|2+\q|2) -7 <
HZ(p,q), modulo a constant we have,

1 T
36 L(0,0;p,q) > ———— i+ Gop|® + |p — S1q|?) dt
(36) (0,0;p,9) 2(ﬁ+6)/0 (Ig + d2p|* + |p — d1q|7)

T
+/ (61q* + b2|p|* + 2¢ - p) dt
0

+ ¥2(q(T)) + ¢1(p(0)).

It is easily seen that

1B — 161]* |al*.

DN =

g — |62*|p|*>, and |p— d1q|® >

N =

(37) |+ dapf* >

It follows from (9) that
T T
| o< 2(T2 | o+ T|p<o>|2) and
0 0

(38) ) '
[ wtoar<2(12 [ iars mign).
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Combining (36) and (37) gives
T
@) [ b+l g
0
n
> [ 500 + 1) = 6of I = 161 ]
n
> [ (G001 = 2725 5 + 161 4P|
~27(8 IpO)? + 151 o(T) )
1
> [0 310 = AT PR + (- 47?6 )
0
—27(152 p(0)? + 812 (7))
1
= [ laldP + el = 27 (5 O + 16 la(T)P)

where ¢; := 1 — 4T?|5;/* > 0 since |§;| < 5. Also, similarly to the proof of
Theorem 1, we get

T
/ 2¢ - pdt
0

Hence, combining (36)—(39) yields

T
(40) < max (272, 1) /0 (11> + 1p|?) dt + 2T |p(0)>.

1 T T
L(0,0;p,q) > ——— 1>+ '2—A5,T/ i|? dt
0.00.0)> 7 [ el + clifl - 460.7) [ 14

~ Tlaf?
B+e

T
A5, T) / P2 dt + ¥ (o(T) g(T)[2 + 28, T]g(T) 2

_ Toef?
B+e
where A(5;,T) = max(2T?%,1) — 25,T2. This inequality together with the co-

ercivity condition on v; and 9, and the fact that § < %min{ﬁ, ﬁ}
yields the claimed result.

+ 1 (p(0)) [p(0)]* = 2T(1 — 6,)|p(0)|?
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