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Preface

This book is not meant to be another compendium of select inequalities, nor does it claim
to contain the latest or the slickest ways of proving them. This project is rather an attempt at
describing how most functional inequalities are not merely the byproduct of ingenious guess
work by a few wizards among us, but are often manifestations of certain natural mathematical
structures and physical phenomena. Our main goal here is to show how this point of view
leads to “systematic” approaches for not just proving the most basic functional inequalities,
but also for understanding and improving them, and for devising new ones - sometimes at
will, and often on demand.

Our aim is therefore to describe how a few general principles are behind the validity of
large classes of functional inequalities, old and new. As such, Hardy and Hardy-Rellich type
inequalities involving radially symmetric weights are variational manifestations of Sturm’s the-
ory on the oscillatory behavior of certain ordinary di↵erential equations. Similarly, allowable
non-radial weights in Hardy-type inequalities for more general uniformly elliptic operators
are closely related to the resolution of certain linear PDEs in divergence form with either a
prescribed boundary condition or with prescribed singularities in the interior of the domain.

On the other hand, most geometric inequalities including those of Sobolev and Log-
Sobolev type, are simply expressions of the convexity of certain free energy functionals along
the geodesics of the space of probability measures equipped with the optimal mass transport
(Wasserstein) metric. Hardy-Sobolev and Hardy-Rellich-Sobolev type inequalities are then
obtained by interpolating the above inequalities via the classical ones of Hölder.

Besides leading to new and improved inequalities, these general principles o↵er new ways
for estimating their best constants, and for deciding whether they are attained or not in
the appropriate function space. In Hardy-type inequalities, the best constants are related to
the largest parameters for which certain linear ODEs have non-oscillatory solutions. Duality
methods, which naturally appear in the new “geodesic convexity” approach to geometric
inequalities, allow for the evaluation of the best constants from first order equations via the
limiting case of Legendre-Fenchel duality, as opposed to the standard method of solving second
order Euler-Lagrange equations.

Whether a “best constant” on specific domains is attained or not, is often dependent on
how it compares to related best constants on limiting domains, such as the whole space or
on half-space. These results are based on delicate blow-up analysis, and are reminiscent of
the prescribed curvature problems initiated by Yamabe and Nirenberg. The exceptional case
of the Sobolev inequalities in two dimensions initiated by Trudinger and Moser can also be
proved via mass transport methods, and some of their recent improvements by Onofri, Aubin
and others are both interesting and still challenging. They will be described in the last part
of the monograph.

The part dealing with Hardy and Hardy-type inequalities represents a compendium of
work mostly done by –and sometimes with– my (now former) students Amir Moradifam and
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Craig Cowan, while the “mass transport” approach to geometric inequalities follows closely
my work with my former student X. Kang and postdoctoral fellow Martial Agueh. This is
largely based on the pioneering work of Cedric Villani, Felix Otto, Robert McCann, Wilfrid
Gangbo, Dario Cordero-Erausquin, B. Nazareth, C. Houdré and many others. The chapters
dealing with Hardy-Sobolev type inequalities follow work done with my students Chaogui
Yuan, and Xiaosong Kang, a well as my collaborator Frederic Robert. Finally, much of the
progress on the –still unresolved– best constant in Moser-Onofri-Aubin inequalities on the
2-dimensional sphere was done with my friends and collaborators, Joel Feldman, Richard
Froese, Changfeng Gui, and Chang-Shou Lin. I owe all these people a great deal of gratitude.

I thank my wife Louise and my children Mireille, Michelle and Joseph for their patience
and their support over the years.

Nassif Ghoussoub



Introduction

This book is an attempt to describe how a few general principles are behind the validity
of large classes of functional inequalities, old and new. It consists of six parts, which –though
interrelated– are meant to reflect either the mathematical structure or the physical phenomena
behind certain collections of inequalities.

In Part I, we deal with Hardy-type inequalities involving radially symmetric weights and
their improvements. The classical Hardy inequality asserts that for a domain ⌦ in Rn, n � 3,
with 0 2 ⌦, the following holds:

(0.1)
R

⌦ |ru|2dx � (n�2
2 )2

R

⌦
u2

|x|2 dx for u 2 H1
0 (⌦).

The story here is the newly discovered link between various improvements of this inequality
confined to bounded domains and Sturm’s theory regarding the oscillatory behavior of certain
linear ordinary equations, which we review in Chapter 1.

In Chapter 2, we first identify suitable conditions on a non-negative C1-function P defined
on an interval (0, R) that will allow for the following improved Hardy inequality to hold on
every domain ⌦ contained in a ball of radius R:

(0.2)
R

⌦ |ru|2dx� (n�2
2 )2

R

⌦
u2

|x|2 dx � R

⌦ P (|x|)u2dx for u 2 H1
0 (⌦).

It turned out that a necessary and su�cient condition for P to be a Hardy Improving Potential
(abbreviated as HI-potential) on a ball BR, is for the following ordinary di↵erential equation
associated to P

(0.3) y00 +
1

r
y0 + P (r)y = 0,

to have a positive solution on the interval (0, R). Elementary examples of HI-potentials are
P ⌘ 0 on any interval (0, R), P ⌘ 1 on (0, z0), where z0 = 2.4048... is the first zero of the
Bessel function J0, and more generally P (r) = r�a with 0  a < 2 on (0, za), where za is the
first root of the largest solution of the equation y00 + 1

ry
0 + r�ay = 0. Other examples are

P⇢(r) =
1

4r2(log ⇢
r )

2 on (0, ⇢
e ), but also Pk,⇢(r) =

1
r2

k
P

j=1

�

Qj
i=1 log

(i) ⇢
r

��2
on (0, ⇢

eee
..
e(k�times) ).

Besides leading to a large supply of explicit Hardy improving potentials, this connection
to the oscillatory theory of ODEs, gives a new way of characterizing and computing best
possible constants such as

(0.4) �(P,R) := inf
u2H1

0 (⌦)
u 6=0

Z

⌦
|ru|2 dx� (n� 2)2

4

Z

⌦
|x|�2|u|2 dx

R

⌦ P (|x|)u2 dx
.

1



2 INTRODUCTION

On the other hand, the value of the following best constant

(0.5) µ�(P,⌦) := inf
u2H1

0 (⌦)
u 6=0

Z

⌦
|ru|2 dx� �

Z

⌦
P (|x|)u2 dx

Z

⌦
|x|�2|u|2 dx

and whether it is attained, depend closely on the position of the singularity point 0 vis-a-vis

⌦. It is actually equal to (n�2)2

4 , and is never attained in H1
0 (⌦), whenever ⌦ contains 0 in

its interior, but the story is quite di↵erent for domains ⌦ having 0 on their boundary. In this
case, µ�(P,⌦) is attained in H1

0 (⌦) whenever µ�(P,⌦) < n2

4 , which may hold or not. For

example, µ�(P,⌦) is equal to
n2

4 for domains that lie on one side of a half-space.
In Chapter 3, we consider conditions on a couple of positive functions V and W on (0,1),

which ensure that on some ball BR of radius R in Rn, n � 1, the following inequality holds:

(0.6)
R

B
V (|x|)|ru|2dx � R

B
W (|x|)u2dx for u 2 C1

0 (BR).

A necessary and su�cient condition is that the couple (V,W ) forms a n-dimensional Bessel
pair on the interval (0, R), meaning that the equation

(0.7) y00(r) + (
n� 1

r
+

Vr(r)

V (r)
)y0(r) +

W (r)

V (r)
y(r) = 0,

has a positive solution on (0, R). This characterization allows us to improve, extend, and unify
many results about weighted Hardy-type inequalities and their corresponding best constants.
The connection with Chapter 2 stems from the fact that P is a HI-potential if and only if the

couple (1, (n�2)2

4 r�2 + P ) is a Bessel pair. More generally, the pair

(0.8)

✓

r��, (
n� �� 2

2
)2r���2 + r��P (r)

◆

is also a n-dimensional Bessel pair on (0, R) provided 0  �  n�2. Again, the link to Sturm
theory provides many more examples of Bessel pairs.

Hardy’s inequality and its various improvements have been used in many contexts such as
in the study of the stability of solutions of semi-linear elliptic and parabolic equations, of the
asymptotic behavior of the heat equation with singular potentials, as well as in the stability
of eigenvalues for Schrödinger operators. In Chapter 4, we focus on applications to second
order nonlinear elliptic eigenvalue problems such as

(0.9)

⇢ ��u = �f(u) in ⌦
u = 0 on @⌦,

where � � 0 is a parameter, ⌦ is a bounded domain in RN , N � 2, and f is a superlinear
convex nonlinearity. The bifurcation diagram generally depends on the regularity of the
extremal solution, i.e., the one corresponding to the largest parameter for which the equation
is solvable. Whether, for a given nonlinearity f , this solution is regular or singular depends
on the dimension, and Hardy-type inequalities are crucial for the identification of the critical
dimension.

Part II deals with the Hardy-Rellich inequalities, which are the fourth order counterpart
of Hardy’s. In Chapter 5, we show that the same condition on the couple (V,W ) (i.e, being a
n-dimensional Bessel pair) is also key to improved Hardy-Rellich inequalities of the following
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type: For any radial function u 2 C1
0 (BR) where BR is a ball of radius R in Rn, n � 1, we

have

(0.10)
R

B
V (|x|)|�u|2dx � R

B
W (|x|)|ru|2dx+ (n� 1)

R

B
(V (|x|)

|x|2 � Vr(|x|)
|x| )|ru|2dx.

Moreover, if

(0.11) W (r)� 2V (r)
r2 + 2Vr(r)

r � Vrr(r) � 0 on [0, R),

then the above inequality holds true for all u 2 C1
0 (BR) and not just the radial ones. By

combining this with the inequalities involving the Dirichlet integrals of Chapter 3, one ob-
tains various improvements of the Hardy-Rellich inequality for H2

0 (⌦). In particular, for
any bounded domain ⌦ containing 0 with ⌦ ⇢ BR, we have the following inequality for all
u 2 H2

0 (⌦),

(0.12)

Z

⌦
|�u|2dx � n2(n� 4)2

16

Z

⌦

u2

|x|4 dx+
�(P ;R)

�

n2 + (n� �� 2)2
�

4

Z

⌦

P (|x|)
|x|2 u2dx,

where n � 4, � < n� 2, and where P is a HI-potential on (0, R) such that Pr(r)
P (r) = �

r + f(r),

f(r) � 0 and lim
r!0

rf(r) = 0.

In Chapter 6, we explore Hardy-type inequalities for H1(⌦)-functions, i.e., for functions
which do not necessarily have compact support in ⌦. In this case, a penalizing term appears
in order to account for the boundary contribution. If a pair of positive radial functions (V,W )
is a n-dimensional Bessel pair on an interval (0, R), and if BR is a ball of radius R in Rn,
n � 1, then there exists ✓ > 0 such that the following inequality holds:

(0.13)
R

BR
V (x)|ru|2dx � R

BR
W (x)u2dx� ✓

R

@BR
u2ds for u 2 H1(BR),

and for all radial functions u 2 H2(BR),
Z

BR

V (|x|)|�u|2dx �
Z

BR

W (|x|)|ru|2dx+ (n� 1)

Z

BR

(
V (|x|)
|x|2 � Vr(|x|)

|x| )|ru|2dx(0.14)

+
⇥

(n� 1)� ✓)V (R)
⇤

Z

@BR

|ru|2 dx.

The latter inequality holds for all functions in H2(B) provided (0.11) holds. The combination
of the two inequalities lead to various weighted Hardy-Rellich inequalities on H2 \H1

0 .
In Chapter 7, we investigate some applications of the improved Hardy-Rellich inequalities

to fourth order nonlinear elliptic eigenvalue problems of the form

(0.15)

⇢

�2u = �f(u) in ⌦
u = �u = 0 on @⌦,

as well as their counterpart with Dirichlet boundary conditions. In particular, they are again
crucial for the identification of “critical dimensions” for such equations involving either an
exponential or a singular supercritical nonlinearity.

Part III addresses Hardy-type inequalities for more general uniformly elliptic operators.
The issue of allowable non-radial weights (to replace 1

|x|2 ) is then closely related to the res-
olution of certain linear PDEs in divergence form with either prescribed conditions on the
boundary or with prescribed singularity in the interior. We also include Lp-analogs of various
Hardy-type inequalities.
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In Chapter 8, the following general Hardy inequality is associated to any given symmetric,
uniformly positive definite n⇥n matrix A(x) defined in ⌦ with the notation |⇠|2A := hA(x)⇠, ⇠i
for ⇠ 2 Rn.

(0.16)

Z

⌦
|ru|2Adx � 1

4

Z

⌦

|rE|2A
E2

u2dx, u 2 H1
0 (⌦)

The basic assumption here is that E is a positive solution to �div(ArE) dx = µ on ⌦, where
µ is any nonnegative nonzero finite measure on ⌦. The above inequality is then optimal in
either one of the following two cases:

• E is an interior weight, that is E = +1 on the support of µ, or
• E is a boundary weight, meaning that E = 0 on @⌦.

While the case of an interior weight extends the classical Hardy inequality, the case of a
boundary weight extends the following so-called Hardy’s boundary inequality, which holds for
any bounded convex domain ⌦ ⇢ Rn with smooth boundary:

(0.17)
R

⌦ |ru|2dx � 1
4

R

⌦
u2

dist(x,@⌦)2 dx for u 2 H1
0 (⌦).

Moreover the constant 1
4 is optimal and not attained. One also obtains other Hardy inequal-

ities involving more general distance functions. For example, if ⌦ is a domain in Rn and M
a piecewise smooth surface of co-dimension k (k = 1, ..., n). Setting d(x) := dist(x,M) and
suppose k 6= 2 and ��d2�k � 0 in ⌦\M , then

(0.18)
R

⌦ |ru|2dx � (k�2)2

4

R

⌦
u(x)2

d(x)2 dx for u 2 H1
0 (⌦\M).

The inequality is not attained in either case, and one can therefore get the following improve-
ment for the case of a boundary weight:

(0.19)

Z

⌦
|ru|2Adx � 1

4

Z

⌦

|rE|2A
E2

u2dx+
1

2

Z

⌦

u2

E
dµ, u 2 H1

0 (⌦)

which is optimal and still not attained. Optimal weighted versions of these inequalities are
also established, as well as their Lp-counterparts when p 6= 2. Many of the Hardy inequalities
obtained in the previous chapters can be recovered via the above approach, by using suitable
choices for E and A(x).

In Chapter 9, we investigate the possibility of improving (0.16) in the spirit of Chapters
3 and 4, namely whether one can find conditions on non-negative potentials V so that the
following improved inequality holds:

(0.20)
R

⌦ |ru|2Adx� 1
4

R

⌦
|rE|2A
E2 u2dx � R

⌦ V (x)u2dx for u 2 H1
0 (⌦).

Necessary and su�cient conditions on V are given for (0.20) to hold, in terms of the solvability
of a corresponding linear PDE. Analogous results involving improvements are obtained for
the weighted versions. Optimal inequalities are also obtained for H1(⌦).

We conclude Part III by considering in Chapter 10, applications of the Hardy inequality
for general uniformly elliptic operators to study the regularity of stable solutions of certain
nonlinear eigenvalue problems involving advection such as

(0.21)

⇢ ��u+ c(x) ·ru = �
(1�u)2 in ⌦,

u = 0 on @⌦,

where c(x) is a smooth bounded vector field on ⌦̄.
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In Part IV, we describe how the Monge-Kantorovich theory of mass transport provides
a framework that encompasses most geometric inequalities. Of importance is the concept of
relative energy of ⇢0 with respect to ⇢1 defined as:

(0.22) HF,W
V (⇢0|⇢1) := HF,W

V (⇢0)�HF,W
V (⇢1),

where ⇢0 and ⇢1 are two probability densities, and where the Free Energy Functional HF,W
V

is defined on the set Pa(⌦) of probability densities on a domain ⌦ as:

(0.23) HF,W
V (⇢) :=

Z

⌦



F (⇢) + ⇢V +
1

2
(W ? ⇢)⇢

�

dx.

HF,W
V being the sum of the internal energy HF(⇢) :=

R

⌦ F (⇢)dx, the potential energy HV (⇢) :=
R

⌦ ⇢V dx and the interaction energy HW (⇢) := 1
2

R

⌦ ⇢(W ? ⇢) dx. Here F is a di↵erentiable
function on (0,1), while the confinement (resp., interactive) potential V (resp., W ) are C2-
functions on Rn satisfying D2V � µI (resp., D2W � ⌫I) for some µ, ⌫ 2 R.

In Chapter 11, we describe Brenier’s solution of the Monge problem with quadratic cost,
which yields that the Wasserstein distance W (⇢0, ⇢1) between two probability densities ⇢0 on
X and ⇢1 on Y , i.e.,

(0.24) W (⇢0, ⇢1)
2 = inf

⇢

Z

X

|x� s(x)|2dx; s 2 S(⇢0, ⇢1)

�

is achieved by the gradient r' of a convex function '. Here S(⇢0, ⇢1) is the class of all Borel
measurable maps s : X ! Y that “push” ⇢0 into ⇢1, i.e., those which satisfy the change of
variables formula,

(0.25)

Z

Y

h(y)⇢1(y)dy =

Z

X

h(s(x))⇢0(x)dx for every h 2 C(Y ).

This fundamental result allows one to show that for certain natural candidates F, V and
W , the corresponding free energy functionals HF,W

V are convex on the geodesics of optimal
mass transport joining two probability densities in Pa(⌦). This convexity property translates
into a very general inequality relating the relative total energy between the initial and final
configurations ⇢0 and ⇢1, to their entropy production Ic⇤(⇢|⇢V

), their Wasserstein distance
W 2

2 (⇢0, ⇢1), as well as the Euclidean distance between their barycenters |b(⇢0)� b(⇢1)|,

(0.26) H
F,W

V +c
(⇢0|⇢1) + �+ ⌫

2
W 2

2 (⇢0, ⇢1)�
⌫

2
|b(⇢0)� b(⇢1)|2  H

�nPF ,2x·rW

c+rV ·x (⇢0) + Ic⇤(⇢|⇢V
).

Here PF (x) := xF 0(x) � F (x) is the pressure function associated to F , while c is a Young
function (such as c(x) = 1

p |x|p), c⇤ is its Legendre transform, while Ic⇤(⇢|⇢V
) is the relative

entropy production-type function of ⇢ measured against c⇤ defined as

(0.27) Ic⇤(⇢|⇢V
) :=

Z

⌦
⇢c? (�r (F 0(⇢) + V +W ? ⇢)) dx.

Once this general comparison principle is established, various – new and old – inequalities
follow by simply considering di↵erent examples of internal, potential and interactive energies,
such as F (⇢) = ⇢ ln ⇢ or F (⇢) = ⇢� , and V and W are convex functions (e.g., V (x) = 1

2 |x|2),
while W is required to be even.

The framework is remarkably encompassing even when V = W ⌘ 0, as it is shown in
Chapter 12 that the following inequality, which relates the internal energy of a probability
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density ⇢ on Rn to the corresponding entropy production contains almost all known Euclidean
Sobolev and log-Sobolev inequalities:

(0.28)

Z

⌦
[F (⇢) + nPF (⇢)] dx 

Z

⌦
⇢c? (�r(F 0 � ⇢)) dx+Kc.

The latter constant Kc can always be computed from F and the Young function c.
The approach allows for a direct and unified way for computing best constants and ex-

tremals. It also leads to remarkable duality formulae, such as the following associated to the
standard Sobolev inequality for n � 3 and where 2⇤ := 2n

n�2 :

sup
�n(n� 2)

n� 1

Z

Rn

⇢(x)
n�1
n dx�

Z

Rn

|x|2⇢(x)dx;
Z

Rn

⇢(x) dx = 1
 

(0.29)

= inf
n

Z

Rn

|rf |2dx; f 2 C1
0 (Rn);

Z

Rn

|f |2⇤dx = 1
o

.

This type of duality also yields a remarkable correspondence between ground state solutions
of certain quasilinear (or semi-linear) equations, such as “Yamabe’s”,

��f = |f |2⇤�2f on Rn,

and stationary solutions of the (non-linear) Fokker-Planck equations @u
@t = �u1� 1

n +div(x.u),
which –after appropriate scaling– reduces to the fast di↵usion equation

@u

@t
= �u1� 1

n on R+ ⇥ Rn .

Chapter 13 deals with applications to Gaussian geometric inequalities. We first establish
the so-called HWBI inequality, which follows immediately from a direct application of (0.26)
with paramatrized quadratic Young functions c�(x) = 1

2� |x |2 for � > 0, coupled with a
simple scaling argument:

(0.30) HF,W
V (⇢0|⇢1)  W2(⇢0, ⇢1)

p

I2(⇢0|⇢V )� µ+ ⌫

2
W 2

2 (⇢0, ⇢1) +
⌫

2
|b(⇢0)� b(⇢1)|2.

This gives a unified approach for –extensions of– various powerful inequalities by Gross,
Bakry-Emery, Talagrand, Otto-Villani, Cordero-Erausquin, and others. As expected, such
inequalities also lead to exponential rates of convergence to equilibria for solutions of Fokker-
Planck and McKean-Vlasov type equations.

Part V deals with Ca↵arelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities.
All these can be obtained by simply interpolating –via Hölder’s inequalities– many of the
previously obtained inequalities. This is done in Chapter 14, where it is also shown that the
best constant in the Hardy-Sobolev inequality, i.e.,

(0.31) µs(⌦) := inf

⇢

Z

⌦
|ru|2dx; u 2 H1

0 (⌦) and

Z

⌦

|u|2⇤(s)
|x|s dx = 1

�

,

where 0 < s < 2 and 2⇤(s) = 2(n�s)
n�2 , is never attained when 0 is in the interior of the domain

⌦, unless the latter is the whole space Rn, in which case explicit extremals are given. This is
not the case when ⌦ is half-space Rn

�, where only the symmetry of the extremals is shown.
Much less is known about the extremals in the Hardy-Rellich-Sobolev inequality (i.e., when
s > 0) even when ⌦ = Rn.

The problem whether µs(⌦) is attained becomes more interesting when 0 is on the bound-
ary @⌦ of the domain ⌦. The attainability is then closely related to the geometry of @⌦, as
we show in chapter 15, that the negativity of the mean curvature of @⌦ at 0 is su�cient to
ensure the attainability of µs(⌦).
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In Chapter 16, we consider log-Sobolev inequalities on the line, such as those involving
the functional

(0.32) I↵(g) =
↵

2

Z 1

�1
(1� x2)|g0(x)|2 dx+

Z 1

�1
g(x) dx� ln

1

2

Z 1

�1
e2g(x) dx

on the space H1(�1, 1) of L2-functions on (�1, 1) such that (
R 1
�1(1� x2)|g0(x)|2dx)1/2 < 1.

We then show that if J↵ is restricted to the manifold

G =

⇢

g 2 H1(�1, 1);

Z 1

�1
e2g(x)xdx = 0

�

,

then the following hold:

(0.33) inf
g2G

I↵(g) = 0 if ↵ � 1
2 , and inf

g2G
I↵(g) = �1 if ↵ < 1

2 .

We also give a recent result of Ghigi, which says that the functional

(0.34) �(u) =

Z 1

�1
u(x) dx� log

✓

1

2

Z +1

�1
e�2u⇤(x) dx

◆

is convex on the cone W of all bounded convex functions u on (�1, 1), where here u⇤ denotes
the Legendre transform of u, and that

inf
u2W

�(u) = log(
4

⇡
).

Both inequalities play a key role in the next two chapters, which address inequalities on the
two-dimensional sphere S2. It is worth noting that Ghigi’s inequality relies on the Prékopa-
Leindler principle, which itself is another manifestation of a mass transport context. One can
therefore infer that the approach of Part IV can and should be made more readily applicable
to critical Moser-type inequalities.

In Chapter 17, we establish the Moser-Trudinger inequality, which states that for ↵ � 1,
the functional

(0.35) J↵(u) := ↵

Z

S2

|ru|2 d! + 2

Z

S2
u d! � ln

Z

S2
e2u d!

is bounded below on the Sobolev space H1,2(S2), where here d! := 1
4⇡ sin ✓ d✓ ^ d' denotes

Lebesgue measure on the unit sphere, normalized so that
R

S2 d! = 1. We also give a proof of
Onofri’s inequality which states that the infimum of J↵ on H1,2(S2) is actually equal to zero
for all ↵ � 1, and that

(0.36) inf{J1(u); u 2 H1,2(S2)} = inf{J1(u); u 2 M} = 0,

where M is the submanifold M = {u 2 H1,2(S2);
R

S2 e
2uxd! = 0}. Note that this inequality,

once applied to axially symmetric functions, leads to the following counterpart of (0.33)

(0.37) inf
g2H1(�1,1)

I↵(g) = inf
g2G

I↵(g) = 0 if ↵ � 1.

In Chapter 18, we address results of T. Aubin asserting that once restricted to the submanifold
M, the functional J↵ then remains bounded below (and coercive) for smaller values of ↵, which
was later conjectured by A. Chang and P. Yang to be equal to 1

2 . We conclude the latest
developments on this conjecture, including a proof that

(0.38) inf{J↵(u); u 2 M} = 0 if ↵ � 2
3 .

The conjecture remains open for 1/2 < ↵ < 2/3.
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We have tried to make this monograph as self-contained as possible. That was not possible
though, when dealing with the applications such as in Chapters 4, 7 and 10. We do however
give enough references for the missing proofs.

The rapid development of this area and the variety of applications forced us to be quite
selective. We mostly concentrate on certain recent advances not covered in the classical books
such as the one by R. A. Adams [3] and V. G. Maz’ya [167]. Our choices reflect our taste
and what we know –of course– but also our perceptions of what are the most fundamental
functional inequalities, the novel methods and ideas, those that are minimally ad-hoc, as well
as the ones we found useful in our work. It is however evident that this compendium is far from
being an exhaustive account of this continuously and rapidly evolving line of research. One
example that comes to mind are inequalities obtained by interpolating between the Hardy and
the Trudinger-Moser inequalities. One then gets the singular Moser-type inequalities, which
states that for some C0 = C0(n, |⌦|) > 0, one has for any u 2 W 1,n

0 (⌦) with
R

⌦ |ru|n dx  1,

(0.39)

Z

⌦

exp
⇣

� |u| n
n�1

⌘

|x|↵ dx  C0,

for any ↵ 2 [0, n) , 0  �  �

1� ↵
n

�

n!
1

n�1

n�1 , where !n�1 = 2⇡
n
2

�(n
2 )

is the area of the surface of

the unit n-dimensional ball. See for instance [8, 9]).
The recent developments on these inequalities could have easily constituted a Part VII

for this book, but we had to stop somewhere and this is where we stop.


