Energy extraction from BH

Considering the reservoir

Conclusions

Thermodynamic optimization of a Penrose process

An engineers' approach to black hole thermodynamics [Phys. Rev. D 93, 064070 (2016)]

Christine Gruber

with Alessandro Bravetti & César López-Monsalvo

Black Holes' New Horizons, Oaxaca, May 2016

ICN-UNAM

Energy extraction from BH

Considering the reservoir

Conclusions

History, Motivation & Tools Energy extraction from BH Considering the reservoir Conclusions

Energy extraction from BH

Considering the reservoir

Conclusions

Energy extraction from BH Mechanical perspective

Name	Year	Effic.	Reference
Penrose	1969	121%	Nuovo Cimento 1, 252
Piran	1975	130%	ApJ 196, L107
BZ	1977	143%	MNRAS 179, 433
BSW	2009	∞	PRL 103, 111102
Jacobson	2009	1000%	PRL 104, 021101
Schnittman	2014	1400%	PRL 113, 261102
Piran	2016	1400%	PRD 93, 043015

Mechanical efficiency: $\eta = E_p^{\text{out}}/E_p^{\text{in}}!!$

Physical Applications

History, Motivation & Tools

Energy extraction from BH

Considering the reservoir

Conclusions

• Astrophysics: GRB, AGN (several processes to extract work from BH)

Black holes analogues
 (at hand in laboratory)
 [Linder, Schützhold, & Unruh, 1511.03900]

 AdS/CFT correspondence (processes in BH → in the dual CFT)
 [C. V. Johnson, CQG 31, 205002 (2014)]

Tools

History, Motivation & Tools

Energy extraction from BH

Considering the reservoir

Conclusions

• Black holes thermodynamics (BH are not black)

• Thermodynamics → bounds (limits for processes that extract work from BH)

 Finite-time thermodynamics (more realistic limits)
 ⇒ thermodynamic geometry

Energy extraction from BH

Considering the reservoir

Conclusions

Energy extraction from BH

Energy extraction from BH

Considering the reservoir

Conclusions

Energy extraction from BH Thermodynamic perspective

TD Penrose Process:

 $p_i = (M_i, J_i = M_i^2)$ \downarrow $p_f = (M_f, J_f = 0)$

Energy extraction from BH Thermodynamic perspective

Isolated Kerr BH: $\mathrm{d}S=0$ = M_i $M_f = M_{
m irreducible}$ $W = -\Delta M = \left(1 - \frac{1}{\sqrt{2}}\right)$ M_i $\simeq 0.3 M_i$

History, Motivation & Tools

Energy extraction from BH

Considering the reservoir

Energy extraction from BH Isolated BH

Max. work: $W^{\text{max}} = -\Delta M \simeq 0.3 M_i$ TD efficiency: $\eta_1 = \frac{W^{\text{max}}}{M_i} \simeq 30\%$!! [Dolan, CQG 28, 235017 (2011)]

History, Motivation & Tools

Energy extraction from BH

Considering the reservoir

Energy extraction from BH

Considering the reservoir

Conclusions

Energy extraction from BH considering the reservoir

Energy extraction from BH

Considering the reservoir

Conclusions

Energy extraction from BH Thermodynamic perspective

Non-isolated Kerr BH:

 $dS \neq 0$ $M_f = ?$ dW = ?

Energy extraction from BH BH+Reservoir

Max. work: $W^{\text{max}} = ?$ TD efficiency: $\eta_1 = \frac{W^{\text{max}}}{E_i} = ?$

History, Motivation & Tools

Energy extraction from BH

Considering the reservoir

Energy extraction from BH

Considering the reservoir

Conclusions

Black Hole with Reservoir Maximum work

Availability [Gibbs]: $A = U - T_0 S + p_0 V$ Max. Reversible Work [Landau & Lifshitz]: $W^{\max} = -\Delta A = -\Delta U + T_0 \Delta S - p_0 \Delta V$ Maximum work in finite time: $W^{\max}(\tau) = W^{\max} - (\Delta A)_{dest}$

Energy extraction from BH

Considering the reservoir

Conclusions

Black Hole with Reservoir Maximum work

Availability [Gibbs]: $A = U - T_0 S - \Omega_0 J$ Max. Reversible Work [Landau & Lifshitz]: $W^{\max} = -\Delta A = -\Delta U + T_0 \Delta S + \Omega_0 \Delta J$ Maximum work in finite time: $W^{\max}(\tau) = W^{\max} - (\Delta A)_{dest}$

Black Hole with Reservoir Optimum Penrose process

History, Motivation & Tools

Energy extraction from BH

Considering the reservoir

Conclusions

Non-isolated Kerr BH:

- extremal Kerr \rightarrow Schwarzschild
- $T_i = 0 \rightarrow T_f = 1/8M_f$
- Minimization of dissipation

$$M_f = \frac{1+\sqrt{2}}{2}M_i$$

Black Hole with Reservoir Maximum Work

History, Motivation & Tools

Energy extraction from BH

Considering the reservoir

Black Hole with Reservoir Maximum Work

for $T_0 \sim \text{CMB}$ temperature

History, Motivation & Tools

Energy extraction from BH

Considering the reservoir

Energy extraction from BH

Considering the reservoir

Conclusions

Black Hole with Reservoir Maximum Work

Extracted energy: Stellar mass BH: $M_i = M_\odot \rightarrow W \sim 10^{53} J$

Efficiency:

 $\eta_1^{non-isol.} \simeq 99\%$

Energy extraction from BH

Considering the reservoir

Conclusions

Summary of results

History, Motivation & Tools

Energy extraction from BH

Considering the reservoir

Conclusions

Kerr BH in a reservoir (reservoir = universe, T₀ = T_{CMB})
Optimum Penrose process (optimum = geodesic of TD metric)
Maximum work in finite time W^{max}(τ) = M_i[(1 + √2)T₀M_i - (√2 - 1)(0.5 + 2ε/τ)]

Some Future Directions

History, Motivation & Tools

Energy extraction from BH

Considering the reservoir

Conclusions

• More black holes. Any horizon. $(\Lambda \neq 0?)$

• Black holes analogues (predictions for the laboratory?)

• AdS/CFT correspondence (TD cycles in the dual CFT?)

Energy extraction from BH

Considering the reservoir

Conclusions

Thanks for your attention! Any questions?