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No-hair conjecture



/Ruffini and Wheeler 1969/

All stationary black holes are completely characterized by their
mass M, angular momentum J, and electric charge Q seen
from far away in the form of Gaussian fluxes.

Black holes cannot support hair = any other independent
parameters not seen from far away.

All parameters of stationary black holes are associated with the
Gauss law.

Logic: gravitational collapse breaks all approximative conservation
laws (chemical content, atomic structure, baryon number, etc. –
the black hole looses all the memory of them). Only the exact local
Lorentz or local U(1) can survive – associated to them mass M,
angular momentum J, and electric charge Q – cannot be absorbed
by the black hole but remain attached to it as parameters. They
give rise to the Gaussian fluxes that can be measured at infinity.
Black holes are characterized by only three parameters, and black
holes with the same M, J,Q are identically equal.



Evidence in favour of no-hair

Uniqueness theorems: all electrovacuum black holes are
described by Kerr-Newman metrics. This proves the
conjecture within the electrovacuum theory.

/Israel, Carter, Bunting, Mazur . . . /

Black holes in more general theories should either be
Kerr-Newman, or they should be characterized by their
charges. No-hair theorems

Gµν = 8πGTµν(Φ)

�Φ = F (Φ)

If Φ 6= 0, it diverges at the horizon. No black hole solutions
with a regular event horizon if Φ is massive scalar, spinor,
vector etc. field.

/Chase, Teitelboim, Bekenstein . . ./



A particular example

Conformally coupled scalar field

L =
1

4
R − 1

2
(∂Φ)2 − 1

12
RΦ2

⇒ metric is extreme RN ∈ Kerr-Newman;

ds2 = −
(

1− M

r

)2

dt2+
dr2

(1−M/r)2
+r2dΩ2, Φ =

√
3M

r −M
,

Φ carries no independent parameter = secondary hair ⇒ black
holes is completely characterized by the mass
⇒ no-hair holds.

/Bocharova, Bronnikov, Melnikov 1972/
/Bekenstein 1975/



First non-Kerr-Newman black holes /Gibbons 1982/

Dilaton gravity,

L =
1

4
R − 1

2
(∂Φ)2 − 1

4
e2ΦFµνF

µν

admits exact black hole solutions, not of the Kerr-Newman type,

ds2 = −Ndt2 +
dr2

N
+ e2Φr2dΩ2, N = 1− 2M

r
,

e2Φ = 1− P2

Mr
, Aµdx

µ = P cosϑdϕ

Independent parameters are the M and the magnetic charge P.
The scalar field carries no extra parameters ⇒ secondary hair ⇒
no-hair holds.



First evidence against no-hair

Skyrme model: scalar triplet U = exp{iτ aΦa}

L =
1

2κ
R − α

2
tr
(
∂µU∂

µU†
)
− β

4
tr (FµνFµν)

Fµν =
[
U†∂µU,U

†∂νU
]
. If κ� 1 ⇒ backreaction of Φa is small

⇒ Φa fulfills equations on a fixed Schwarzschild background. One
finds regular solutions for Φa which carry an independent
parameter not seen from infinity = topological charge ⇒
perturbative approximation for hairy black hole solutions in the
limit where the backreaction is negligible.

/Luckock and Moss 1986/



XX-th century – black holes with
non-Abelian hair



Einstein-Yang-Mills black holes

First recognized example of manifest violation of the no-hair

L =
1

4
R − 1

4
F a
µνF

aµν F a
µν = ∂µA

a
ν − ∂νAa

µ + εabcA
b
µA

c
ν

static, spherically symmetric, purely magnetic configuration

ds2 = −σ2(r)N(r)dt2 +
dr2

N(r)
+ r2dΩ2, Aa

i = εaik
xk

r2
(1− w(r))

Non-trivial Yang-Mills field outside the horizon but F a
ik ∼ 1/r3

⇒ no Yang-Mills charge. Solutions are labeled by their mass M
and the number n of oscillations of w(r). For a given M there are
black holes with different n’s ⇒ the Yang-Mills hair is primary, it
carries an independent parameter not visible from far away ⇒
uniqueness is violated. /M.S.V., Gal’tsov ’89/
/Bizon ’90 /Kunzle, Masood-ul-Alam ’90/
Axisymmetric and stationary generalizations /Kleihaus, Kunz ’97/



Solutions



Generalizations

Einstein-Yang-Mills-Higgs (dublet or triplet)

L =
1

4
R − 1

4
F a
µνF

aµν − 1

2
DµΦDµΦ− λ

4
(Φ2 − Φ2

0)2

gravitating monopoles or sphalerons containing a black hole
(horizon inside a classical lump).

Einstein-Yang-Mills-dilaton

L =
1

4
R − 1

2
∇µΦ∇µΦ− 1

4
e2ΦF a

µνF
aµν

Einstein-Skyrme

Einstein-dilaton-Gauss-Bonnet

L =
1

4
R − 1

2
∇µΦ∇µΦ− αe2ΦGGB

Einstein + YM + . . . + cosmological term



XX-th century hairy black holes

Hairy black holes (static and stationary) generically arise for
gravity-coupled non-Abelian gauge fields.

Can support in addition a scalar Higgs field or stringy-inspired
features – dilaton and curvature correction.

Can be static, but not necessarily spherically symmetric, or
stationary and axially symmetric (not necessarily spinning).

Can be unstable, but not necessarily.

Shrinking horizon ⇒ regular gravitating ”lumps” ⇒ ”horizon
inside a classical lump”.

For stable solutions (magnetic monopole, sphaleron,
Skyrmion) horizon size is bounded from above.

A review – /M.S.V., Gal’tsov, Phys.Rep.’98/



XXI-st century – black holes in
modified gravity theories



Cosmic acceleration

Our universe is actually accelerating, which indicates the
presence of a dark energy.

One can explain this in GR by introducing a small
cosmological term or by modifying the GR equations.

Most popular DE models consider a cosmic scalar field. It
couples to gravity, but not necessarily minimally, and its
energy may be not positive.

Such field may violate the condition of back hole no-hair
theorems.

There are other models, for example massive gravity.



A. Models with a scalar field



Violating strong energy condition

L =
1

4
R − 1

2
∇µΦ∇µΦ− V (Φ)

No spherically symmetric black holes if V > 0 (strong energy
condition) /Heussler ’96/

Hairy black holes if V is not positive definite; for example

V (Φ) = 3 sinh(2Φ)− 2Φ [cosh(2Φ) + 2 ]

ds2 = −Ndt2 +
dr2

N
+ R2 dΩ2 , R2 = r(r + 2Q),

N = 1− 4 [Q(Q + r)− R2 Φ], e2Φ = 1 +
2Q

r
.

Many other examples (with more or less the same V (Φ) (!)).
/Bronnikov, Nucamendi, Salgado, Zloschastiev, Mann,
Anabalon, Kolyvaris, Gonzalez, . . ./



Violating weak energy condition

Phantom black holes

L =
1

4
R+

1

2
∇µΦ∇µΦ− V (Φ)

Conditions on V (Φ) are still needed – it cannot be positive definite.
/Bronnikov, Fabris ’05/, /Dzhunushaliev et al ’08/, . . .



Abandoning staticity – spinning black holes with scalar hair

L =
1

4
R −∇µΦ∗∇µΦ− µ2Φ∗Φ

No static black holes with Φ 6= 0 /Pena, Sudarsky ’97/
There are stationary bound states on the Kerr background for

Φ = F (r , ϑ) exp{iωt + imϕ}

with ω = mΩH (scalar clouds) /Hod/. These can be promoted to
fully backreacting solutions with

ds2 = −N dt2 +
1

∆
(dϕ+ W dt)2 + R (dr2 + r2dϑ2)

N,∆,W ,R depend on r , ϑ. Properties:

Characterized by M, J and the global Noether charge Q.

Do not have static limit

Reduce to scalar clouds if Q → 0.

Can have J > M2

Shrinking horizon ⇒ spinning boson star with J = mQ

/Herdeiro and Radu ’14/



Non-minimal couplings – Horndeski theory

Most general theory of a gravity-coupled scalar field with second
order e.o.m. L = L2 + L3 + L4 + L5 with

L2 = G2(X ,Φ), L3 = G3(X ,Φ)�Φ ,

L4 = G4(X ,Φ)R + ∂XG4(X ,Φ) δµναβ∇
α
µΦ∇βνΦ ,

L5 = G5(X ,Φ)Gµν∇µνΦ− 1

6
∂XG5(X ,Φ) δµνραβγ ∇

α
µΦ∇βνΦ∇γρΦ ,

where X = −1
2 (∂Φ)2 and Gk(X ,Φ) are arbitrary.

One might expect interesting results due to the non-minimal
coupling.

If Gk = Gk(X ) ⇒ Galileon shift symmetry Φ→ Φ + Φ0 ⇒ scalar
equation is

∇µJµ = 0 with Jµ =
∂L
∂∂µΦ



A no-go result for Galileons

If Φ = Φ(r) and

ds2 = −Ndt2 +
dr2

N
+ R2dΩ2

then

Jµ = δµr J
r ⇒ (R2J r )′ = 0 ⇒ J r =

C

R2

One should have C = 0 since otherwise JµJ
µ diverges at the

horizon ⇒ J r = 0 everywhere. Therefore, assuming that Φ′ enters
minimum quadratically,

J r = R2 ∂L
∂Φ′

= Φ′F (Φ′,N,N ′,R,R ′,R ′′) = 0.

For asymptotically flat solutions F → const. at infinity ⇒ black
holes must have Φ′ = 0 everywhere. /Hui, Nicolis ’12/
Loopholes in this proof allow one to have hairy black holes.



Galileon black holes

One can choose parameters of the Horndeski theory such that

L =
1

4
R − 1

2
∇µΦ∇µΦ− αΦGGB

GGB = RµνρσR
µνρσ − 4RµνR

µν + R2 = ∇µGµ

⇒ Lagrangian contains linear in Φ′ term ⇒

J r = A + BΦ′ + CΦ′2 + . . .

⇒ J r = 0 does not imply Φ′ = 0 ⇒ there are hairy black holes
/Sotiriou, Zhou ’12/ very similar to

Einstein-dilaton-Gauss-Bonnet black holes

L =
1

4
R − 1

2
∇µΦ∇µΦ− αe2ΦGGB

/Mignemi ’93/, /Torii, . . . Alexeev, . . . Kanti, . . . ’96-97/



Time-dependent scalar

A particular Horndeski model

L = µR − (σ Gµν + ε gµν)∇µΦ∇νΦ− 2Λ .

The no-go does not apply if the scalar is time-dependent,
Φ = Q t + φ(r). Setting µ = ε = Λ = 0 gives an exact solution,

ds2 = −Ndt2 +
dr2

N
+ r2dΩ2, N = 1− 2M

r
,

Φ = Q t ± Q

∫ √
1− N

N
dr

geometry is Schwarzschild. /Babichev, Charmousis/
Various generalizations (complex scalars, vectors, etc.), solutions
are generically unstable.



Non-asymptotically flat Galileon black holes

L = µR − (σ Gµν + ε gµν)∇µΦ∇νΦ− 2Λ .

The no-go does not apply if Φ = Φ(r) but solutions are not
asymptotically flat

ds2 = −Ndt2 +
dr2

H
+ r2dΩ2, H =

(η r2 + 1)N

(rN)′
,

N = η (µ− λ)2r2 + 3(µ− λ)(3µ+ λ)

+ 3(λ+ µ)2 arctan(
√
η r)

√
η r

− 2M

r
, Φ′2 =

η (λ+ µ)r2

σ (η r2 + 1)H
,

where η = −ε/σ and λ = Λ/η. One can adjust the parameters
such this corresponds to a black hole, but Φ becomes
complex-valued either inside or outside. Other solutions – solitons.
/Anabalon, . . . ’14/, /Kolyvaris, . . . ’12/, /Rinaldi ’12/



B. Other modified gravity models



Higher order equations; broken diff.

Higher order in curvature

L =
1

4
R − 1

2
∇µΦ∇µΦ− V (Φ) + f1(Φ)R2 + f2(Φ)RµνR

µν

+ f3(Φ)RµνρσR
µνρσ + f4(Φ)RµνρσR

∗µνρσ

Partial cases – Gauss-Bonnet Gravity; Chern-Simons gravity
/Alexander, Younes ’09/
Black holes in conformal gravity

L = γ R + αR2 + βCµνρσC
µνρσ

/Lu, Perkins, Pope, Stelle ’15/

Horava-Lifshiz black holes /many authors/

R(4) = KikK
ik − K 2 + R(3) →

→ KikK
ik − λK 2 + α1R

(3) + α2(R(3))2 + . . .



Ghost-free massive bigravity
Two dynamical metrics gµν and fµν

S =
1

2κ1

∫
R(g)

√
−gd4x +

1

2κ2

∫
R(f )

√
−f d4x

− m2

∫
U
√
−gd4x

ghost-free interaction /Hassan and Rosen 2012/

U = b0 + b1

∑
a

λa + b2

∑
a<b

λaλb + b3

∑
a<b<c

λaλbλc + b4λ0λ1λ2λ3

where λa are eigenvalues of the matrix γµν =
√
gµαfαν .

Gµν(g) = m2κ1Tµν(g , f )

Gµν(f ) = m2κ2Tµν(g , f )

massive + massless graviton with 7 = 2 + 5 DoF. If gµν = fµν ⇒
Gµν(g) = Gµν(f ) = 0 ⇒ usual vacuum black holes – mildly
unstable.



Hairy black holes

ds2
g = −Q2dt2 +

R ′2

N2
dr2 + R2dΩ2

ds2
f = −q2dt2 +

U ′2

Y 2
dr2 + U2dΩ2

Event horizon at r = rh

N2 =
∑
n≥1

an(r−rh)n, Y 2 =
∑
n≥1

bn(r−rh)n, U = uh+
∑
n≥1

cn(r−rh)n

Horizon is common for both metrics, surface gravities and
temperatures are the same for both metrics.

Black hole support massive graviton hair outside the horizon,
asymptotically approach the AdS. /M.S.V. 2012 /. For
discrete values of rh and uh they can be asymptotically flat
/Brito, Cardoso, Pani ’13/.



Conclusion

There exist plenty of hairy black holes in various
systems.

Is there still any sense in the ho-hair conjecture ?



Answer

Yes

No-hair applies for astrophysical black holes, because
Einstein-Maxwell is valid at the macroscopic scale, but in this
theory the conjecture is proven.

At the microscopic scale, where other theories apply, there
could be stable hairy black holes, but they are always
microscopically small and loose their hair when grow beyond a
certain size.

If there exists a cosmic scalar field, this might perhaps modify
the macroscopic black hole structure, but no stable hairy
black holes are known at present.

In massive gravity black holes are almost Kerr-Newman, apart
from a narrow region in the horizon vicinity where a slow
accretion of massive graviton modes takes place.

It seems the known astrophysically relevant black holes obey the
no-hair conjecture.


