Interval numbers in point-free topology: localic suplattices and positivity relations

Francesco Ciraulo

Interval Analysis and Constructive Mathematics November 14-18 2016, Oaxaca

イロト イヨト イヨト イヨト

- 2

Objectives: • Describe some possible topologies on interval numbers...

• ... and their point-free counterparts.

Motivations:

- "Always topologize!"
- "I want to break *point*-free..." (see Tychonoff thm,..., Alex Simpson's measure)
- ... after all, point-free topology it's the topic I know best!

Francesco Ciraulo (Padua)

What is point-free topology?

Example: the reals $\Omega \mathbb{R} = \{A \subseteq \mathbb{R} \mid A \text{ is open}\} \text{ is a frame w.r.t. } \subseteq (\text{frame = complete lattice s.t. } \land \text{ distributes over } \lor)$

(CLASS) $\mathbb{R} \cong \{ \text{completely prime filters of } \Omega \mathbb{R} \}$

More generally:

locale = a frame that claims to consist of the opens of a space localic map = a thing that claims to be the preimage of a continuous function point = a completely prime filter

Francesco Ciraulo (Padua)

Point-free VS point-wise topology

There is an adjunction between **topological spaces** and **locales**. There is an equivalence between **sober** topological spaces and **spatial** locales.

sober = space of points of a locale =
= every cp-filter is the neighbourhood filter of a unique point
(Hausdorff
$$\Rightarrow$$
 sober)

spatial = frame of open of a topological space

- {sober spaces} \hookrightarrow {locales}
- If X is a T2 space, then {subspaces of X} ⊆ {sublocales of X}.
 Example: ℝ has (many) more sub-locales than sub-spaces.

Predicative point-free topology: formal topology

 $\Omega \mathbb{R}$ has a base of open intervals with rational endpoints.

All the information about $\Omega \mathbb{R}$ can be coded by:

- the set $S = \{(a, b) \in \mathbb{Q} \times \mathbb{Q} \mid a < b\}$ and
- a *cover* relation $(a, b) \triangleleft \{(x_i, y_i) \mid i \in I\}$ which say when $]a, b[\subseteq \bigcup_{i \in I}]x_i, y_i[$

More generally:

```
formal topology = a locale with a base = a cover relation (S, \triangleleft)
```

formal map = the relation induced between the two bases by a localic map

formal point $\,=\,$ the intersection of the base and a completely prime filter

Francesco Ciraulo (Padua)

The formal topology of interval numbers

There exist a cover relation $\triangleleft_{\mathrm{IR}}$ on the set $S = \{(a, b) \in \mathbb{Q} \times \mathbb{Q} \mid a < b\}$ s.t.

(classically) $\mathbb{IR} \cong \{ \text{formal points of } (S, \triangleleft_{\mathbb{IR}}) \}$

(S. Negri, 2002)

- The topology on IR induced by (S, \lhd_{IR}) is the Scott-topology.
- The *specialization* order is just \supseteq .
- $(I\mathbb{R}, \supseteq)$ is a continuous domain =
- = dcpo (all directed sups) + every x is a directed join of y's way-below x.
- $([y_1, y_2] << [x_1, x_2] \text{ iff } [y_1, y_2] \supset [x_1, x_2])$

More generally....

Francesco Ciraulo (Padua)

Point-free topology and continuous domains

- The "points" of a point-free topology form a **dcpo** (wrt specialization). (Johnstone)
- The topology on the points is coarser than the Scott-topology.

(Abramsky&Jung)

• Every **continuous domain** can be represented as the space of points of a formal topology...

which is a constructive version of Abramsky&Yung's:

a continuous domain equipped with the Scott-topology is a sober spaces.

イロト 不得 とくき とくき とうき

Point-free interval analysis

Let ${\mathcal R}$ and $I{\mathcal R}$ be the point-free versions of ${\mathbb R}$ and $I{\mathbb R}.$

Then:

- $\bullet \ \mathcal{R}$ embeds in $I\mathcal{R}$ and
- \bullet any morphism from ${\cal R}$ to ${\cal R}$ lifts to a morphism from $I{\cal R}$ to $I{\cal R}$
- (e. g. the arithmetic operations on \mathcal{R} lift to the ordinary interval arithmetic operations).

(A. Hedin's PhD thesis 2011)

イロト イポト イヨト イヨト

Toward a different perspective...

```
Let C\mathbb{R} be \{C \subseteq \mathbb{R} \mid C \text{ closed}\}
```

 $I\mathbb{R}$ is a subspace of $C\mathbb{R}.$. . . if we put a topology on the latter.

Lower (Vietoris) hypertopology subbase: $\{\diamond A \mid A \subseteq \mathbb{R} \text{ open}\}$ where $\diamond A = \{C \in \mathbb{CR} \mid C \land A\}$

Classically:

that is the upper interval topology (aka weak topology) on the poset ($C\mathbb{R}, \subseteq$) = = the coarsest topology s.t. \subseteq is the specialization order =

= the coarsest topology s.t. every $\{X \in \mathbb{CR} \mid X \subseteq C\}$ is closed, for C closed in \mathbb{R} .

About $\mathrm{I}\mathbb{R}$ with the subspace topology

- $\bullet\,$ The specialization order is $\subseteq\,$ and
- $\bullet\,$ hence the topology is finer than the weak topology wrt $\subseteq\,$
- in fact, it is strictly finer than that: $\{[x,y] \in I\mathbb{R} \mid x < 0\} \text{ is open in the induced topology, not in the weak one.}$
- Actually, it is just the Scott topology.
- Is it sober?

イロト 不得 とくき とくき とうき

The lower powerlocale $\mathrm{P}_\mathrm{L}\mathcal{R}$

The point-free version of the lower hyperspace over the reals is $P_L \mathcal{R}$, the *lower powerlocale* of \mathcal{R} .

(cf. the Hoare powerdomain)

- Its underlying frame is generated by the $\diamond A$'s.
- Actually it is the free frame over Ωℝ qua suplattice (because ◊ preserve unions, and that's it).
- As a formal topology, it is of the form (*Fin*(*S*), ⊲) where *S* = {(*a*, *b*) ∈ ℚ × ℚ | *a* < *b*} as before and *Fin*(*S*) is the set of (Kuratowski-)finite subsets of *S*.
- Its points are the closed subset of R, classically.
 Constructively, they correspond to overt, weakly closed sublocales of R.

Francesco Ciraulo (Padua)

イロト 不得下 イヨト イヨト 二日

Positivity relations

Giovanni Sambin (late 90's) introduced formal topologies with positivity relations.

 (S, \lhd, \ltimes)

These objects are called *positive topologies* (or *balanced formal topologies*).

- $\bullet~\ltimes$ has the same logical type as \lhd
- \ltimes and \lhd have dual properties (almost always)
- k corresponds to a family of distinguished "closed sets" (actually a sub-suplattice of all possible overt, weakly closed sublocales)
- Many \ltimes 's exist which are compatible with a given $\lhd.$

Localic suplattices

From a localic point of view,

- each <u>positive relation</u> on a locale X corresponds to a <u>localic suplattice</u>, that is, an algebra for the lower powerlocale monad P_L ;
- moreover, it is a sub-object of $P_L X$ in the Eilenberg-Moore category for P_L .

Positivity relations on X = (spatial) localic sub-suplattices of $P_L X$

[F.C. - Steve Vickers "Positivity relations on a locale" APAL 2016]

Francesco Ciraulo (Padua)

Intervals numbers in pointfree topology

IA&CM - Oaxaca - 2016 13 / 16

イロト 不得 とくき とくき とうき

A different point-free perspective on interval numbers $_{\mbox{At last!}}$

Idea: use a suitable positivity relation to single out the interval numbers.

- Start from $I\mathbb{R}$.
- ⁽²⁾ Break free of points: $I^+\mathbb{R} = \{[x, y] \mid x < y\}$
- Make it into a dcpo: (I⁺R) = {closed intervals of positive or infinite length} (cf. Kulisch's complete interval arithmetic)
- Add finite joins: $reg \mathbb{CR} = \{ C \in \mathbb{CR} \mid C = cl(int(C)) \} = \{ cl(A) \mid A \in \Omega \mathbb{R} \}$
- which is a sub-suplattice of CR
 (the least sub-suplattice of CR which contains I⁺R)

By F.C.&S.Vickers 2016, regCR corresponds to a positivity relation on $\mathcal R$.

Francesco Ciraulo (Padua)

Intervals numbers in pointfree topology

Explicitly...

For $S = \{(a, b) \in \mathbb{Q} \times \mathbb{Q} \mid a < b\}$, $(a, b) \in S$ and $U \subseteq S$

$$(a,b)\ltimes U$$
 iff $\exists (c,d)\in S. (a,b)\in \diamond (c,d)\subseteq U$

where $\diamond(c, d) = \{(x, y) \in S \mid (x, y) \notin (c, d)\} = \{(x, y) \in S \mid x < d \& c < y\}.$

If \triangleleft is the usual cover for the reals, then $(S, \triangleleft, \ltimes)$ is a structure in which

- $\bullet \ \lhd$ gives us access to the reals and
- ≪ gives us access to a family of distinguished sublocales
 (which are the regular closed subsets of ℝ, classically).

So reals and positive-length intervals live in two separate parts of the same structure; this makes sense constructively, since you are not able to decide whether [x, y] is 0-length or positive-length!

References

- Abramsky, S.; Jung, A. Domain theory Oxford Univ. Press, New York, 1994.
- C., F.; Vickers, S. Positivity relations on a locale Ann. Pure Appl. Logic 167 (2016).
- Johnstone, P. T. The point of pointless topology. Bull. Amer. Math. Soc. 8 (1983).
- Johnstone, P. T. Stone spaces Cambridge University Press, 1982.
- Hedin, A. Contributions to Pointfree Topology and Apartness Spaces PhD dissertation, Uppsala Universitet (2011).
- Negri, S. Continuous domains as formal spaces. Math. Structures Comput. Sci. 12 (2002).
- Pultr, A.; Picado, J. Frames and locales Birkhäuser, Basel, 2012.
- Sambin, G. Some points in formal topology Theoret. Comput. Sci. 305 (2003).
- Sambin, G. Intuitionistic formal spaces-a first communication. Mathematical logic and its applications. Plenum, New York, 1987.
- Simpson, A. Measure, randomness and sublocales. Ann. Pure Appl. Logic 163 (2012).

Francesco Ciraulo (Padua)