
Non-determinism and partiality in realizability:
Pure Gray code

Ulrich Berger
Swansea University

j.w.w.

Hideki Tsuiki
Kyoto University

Interval Analysis and Constructive Mathematics
CMO-BIRS workshop 16w5099
Oaxaca, November 13-18, 2016

1 / 26

Gray code for real numbers

Gray code for real numbers was introduced by Hideki Tsuiki in

Real number computation through Gray code embedding.
Theoretical Computer Science, 284:467–485, 2002.

Pure Gray code represents a real number in [−1, 1] by its itinerary
of the tent map

tent(x) = 1− 2|x |

That is, x ∈ [−1, 1] is represented by the stream d0 : d1 : . . . where

dn =


1 if tentn(x) > 0
⊥ if tentn(x) = 0
−1 if tentn(x) < 0

Note that tentn(x) = 0 can happen for at most one n.

2 / 26

Gray code requires partiality and non-determinism

By definition, (pure) Gray code is partial.

Moreover, as shown by Tsuiki, computation with Gray code
requires non-determinism.

The intuitive reason is as follows:

I Because one digit of of Gray code may be undefined, a
(Turing) machine reading or writing Gray code must have two
heads, since one head might get stuck at an undefined digit.

I Since the two heads act independently the machine’s
behaviour is non-deterministic.

3 / 26

Logic for partiality and non-determinism

I In this talk, we present a logic that captures partiality and
non-determinism in a constructive way. The logic allows for
the specification and extraction of provably correct partial and
non-deterministic programs.

I We apply this system to extract transformations between Gray
code and the signed digit representations of real numbers.

I An earlier version of the system was presented at CSL 2016.

B., Extracting Non-Deterministic Concurrent Programs. LIPICS 26

4 / 26

Related work: Extracting pre-Gray code

B., Kenji Miyamoto, Helmut Schwichtenberg, Hideki Tsuiki: Logic for

Gray-code computation. In: Concepts of Proof in Mathematics,

Philosophy, and Computer Science, de Gruyter, 2016.

gives a realizability interpretation and Minlog implementation of an
intensional version of Gray code, called pre-Gray code, using a
conventional constructive system and conventional program
extraction.

5 / 26

Realizability

I We base program extraction from proofs on realizability.

I Realizability explains what it means to solve the computational
problem expressed by a formula (can be viewed as a
formalization of the BHK-interpretation of constructive logic).

I We let a, b, c range over (denotations of) programs, for
example natural numbers viewed as codes of Turing machines,
or elements of a Scott domain.

I For each formula A we define a formula

c r A

to be read “c realizes A” or
“c solves the computational problem expressed by A”.

6 / 26

Realizability for logic

c r A ≡ A (A nc, c can be anything)

c r A ∨ B ≡ (c = L(a) ∧ a r A) ∨ (c = R(b) ∧ b r B)

c r A ∧ B ≡ c = a : b ∧ a r A ∧ b r B (A,B not nc)

c r A ∧ B ≡ A ∧ c r B (A nc)

c r A→ B ≡ ∀ a(a r A→ c(a) r B) (A not nc)

c r A→ B ≡ A→ c r B (A nc)

c r ∃x A(x) ≡ ∃x (c r A(x))

c r ∀x A(x) ≡ ∀x (c r A(x))

where a formula is non-computational (nc) if it doesn’t contain ∨.

7 / 26

Realizability for inductive definitions (by example)

Assume operations and nc axioms for a real closed field R.

N(x)
µ
= x = 0 ∨ ∃y (N(y) ∧ x = y + 1)

This defines N (inductively) as the least subset of R that contains
0 and is closed under successor.

Realizability for N is given by an analogous inductive definition:

n rN(x)
µ
= (n = L ∧ x = 0) ∨

(n = R(m) ∧ ∃y (m rN(y) ∧ x = y + 1))

Hence n rN(x) means that n is a unary representation of the
natural number x ∈ R.

8 / 26

First (trivial) example of program extraction

Theorem ∀x , y (N(x) ∧ N(y)→ N(x + y))

From a (constructive) proof of this theorem one extracts a realizer
f of the formula ∀x , y (N(x) ∧ N(y)→ N(x + y)), that is

∀x , y , n,m (n rN(x) ∧m rN(y)→ f (n,m) rN(x + y))

Hence f computes addition on unary numbers.

9 / 26

Realizability for coinductive definitions (by example)

I = [1,−1] ⊆ R
Id = [d/2− 1/2, d/2 + 1/2] for d ∈ SD = {−1, 0, 1}

C(x)
ν
=

∨
d∈SD

x ∈ Id ∧ C(2x − d)

s rC(x)
ν
=

∨
d∈SD

s = d : s ′ ∧ x ∈ Id ∧ s ′ rC(2x − d)

Hence s rC(x) means that s is an infinite stream of signed digits
d0 : d1 : . . . such that

x =
∑
i∈N

di2
−(i+1)

i.o.w., s is a signed digit representation of x ∈ [−1, 1].

10 / 26

Second (slightly less trivial) example of program extraction

Theorem ∀x , y (C(x) ∧ C(y)→ C(x y))

From a (constructive) proof of this theorem one extracts a realizer
g of the formula ∀x , y (C(x) ∧ C(y)→ C(x y)), that is

∀x , y , s, t (s rC(x) ∧ t rC(y)→ g(n,m) rC(x y))

Hence g computes multiplication on signed digit representations.

11 / 26

Soundness

Program extraction is based on the soundness theorem for
realizability which makes explicit the computational nature of
constructive proofs:

Theorem (Soundness)

From a constructive proof of a formula A one can extract a
program realizing A, that is, some term M (denoting a
computation) such that M r A is provable.

The proof may use axioms which are either

I nc and true in the intended model, or else

I provided with realizers (for example induction axioms which
are realized by recursion operators).

12 / 26

Constructivism for classical mathematicians

The Soundness Theorem may be a motivation for classical
mathematicians to study constructive proofs, since there is a
tangible advantage of constructive over classical proofs:

A constructive proof of A not only confirms that A is true, but also
provides a solution to the computational problem expressed by A.

13 / 26

Origins of realizability

I Realizability was introduced by Kleene in 1945 for intuitionistic
(constructive) number theory. His realizers are numbers
encoding Turing machines or partial recursive functions.

I Kreisel introduced modified realizability for analysis
(second-order number theory) in 1959. His realizers are
continuous functionals of higher types.

I In the 1970s and 80s Kleene’s number realizers were
generalized to structures called Partial Combinatory Algebras
(PCAs), and since then many variants of realizability were
studied.

14 / 26

Uses of realizability

The main uses of realizability are to

I make explicit the computational content of constructive
mathematics,

I show the constructive unprovability of certain statements by
showing that they are not realizable,

I provide models for constructive systems (including systems
that are classically inconsistent),

I extract provably correct programs from constructive proofs.

15 / 26

Implementations and applications

Program extraction (via realizability or related methods) is
implemented in many proof systems, e.g., Agda, Coq, Isabelle,
Minlog, Nuprl.

Constructive analysis is a rich field of applications, but not the only
one.

PE has also been applied to, for example,

I Lambda calculus (normalization by evaluation)

I Infinitary combinatorics (Higman’s lemma)

I Parsing (monadic parser combinators)

I Imperative programming (in-place sorting)

I Satisfiability testing (extraction of a SAT solver)

16 / 26

Coinductive definition of Gray code

G(x)
ν
= (x 6= 0→ x ≤ 0 ∨ x ≥ 0) ∧G(tent(x))

s rG(x)
ν
= s = d : s ′ where

(x 6= 0→ d r (x ≤ 0 ∨ x ≥ 0)) ∧ s ′ r G(tent(x))

Hence s r x ∈ G iff s is a Gray code of x .

We wish to prove constructively G = C.

This will give us a computable equivalence of Gray code and signed
digit representation.

17 / 26

C ⊆ G

Theorem. C ⊆ G.

Proof. By coinduction. We have to show

(1) C(x)→ x 6= 0→ x ≤ 0 ∨ x ≥ 0 and

(2) C(x)→ C(tent(x)).

For (1) we show x 6= 0→ C(x)→ x ≤ 0 ∨ x ≥ 0, by Archimedean
Induction (next slide).

(2) can be proved directly.

18 / 26

Archimedean Induction (AI)

∀x 6= 0 ((|x | ≤ 1/2→ A(2x))→ A(x))

∀x 6= 0 A(x)

Expresses that the partial order ([−1, 1] \ {0},≺), where
y ≺ x ≡ y = 2x , is wellfounded, i.e. if x 6= 0 then |2nx | ≥ 1 for
some n ∈ N.

AI is realized by general recursion. This means, if f realizes the
premise, i.e.

∀x 6= 0∀c ((|x | ≤ 1/2→ c r A(2x))→ f (c) r A(x))

then the least fixed point of f realizes ∀x A(x), i.e.

∀x fix(f) r A(x)

19 / 26

G ⊆ C?

We cannot expect to prove G ⊆ C constructively, since this would
give us a deterministic program to convert Gray code into signed
digit representation, which is impossible by Tsuiki’s analysis.

However, we can prove G ⊆ C2, where C2 is a non-deterministic
variant of C.

In order to achieve this, we extend the logic by two new operators,
one for bounded non-determinism, the other for restriction, a strict
version of implication.

20 / 26

Bounded non-determinism
For every formula A we introduce a new formula Sn(A).
Realizability for Sn(A) is defined inductively.

a r Sn(A)
µ
= a = Amb(a1, . . . , am) where m ≤ n ∧

∃i , b (ai = Res(b) ∨ ai = Cont(b)) ∧
∀i , b ((ai = Res(b)→ b r A) ∧

(ai = Cont(b)→ b r Sn(A)))

Amb is a variant of McCarthys amb operator

John McCarthy, A Basis for a Mathematical Theory of Computation,
IFIP Congress 62, N-H, 1963

The operational semantics of Amb(a1, . . . , am) is that the
(potentially non-terminating) processes a1, . . . , am are run in
parallel. As soon as some ai terminates, its result is taken and the
other processes are abolished.

21 / 26

Restriction

For every formula A and nc formula B we introduce a new formula
A |B (“A restricted to B”).

Realizability is defined as follows:

c r (A |B)
Def
= (B → ∃a c = Res(a)) ∧ ∀a (c = Res(a)→ a r A)

Compare this with realizability of B → A where B is nc and A = A0 ∨A1:

c r (B → A)
Def
= B → ∃a (c = L(a) ∧ a r A0 ∨ c = R(a) ∧ a r A1)

The problem is that if, say, L(a) realizes B → A, then it suggests that a
realizes A0, but we cannot conclude this unless B is true.

On the other hand, if Res(a) realizes A |B, then we are sure that a
realizes A without knowing anything about B.

22 / 26

Non-deterministic signed digits

C2(x)
ν
= S2(

∨
d∈SD

x ∈ Id ∧ C2(2x − d))

Theorem G ⊆ C2.

Proof. By coinduction. To show

G(x)→ S2(∃d ∈ SD (x ∈ Id ∧G(2x − d)))

This follows from the following lemmas.

Lemma 1. G(x) ∧ x ∈ Id → G(2x − d), for all d ∈ SD.

Lemma 2. (x 6= 0→ x ≤ 0 ∨ x ≥ 0)↔ (x ≤ 0 ∨ x ≥ 0 | x 6= 0).

Lemma 3. G(x)→ S2(∃d ∈ SD x ∈ Id).

The lemmas can be proven using the (realizable) rules on the next
slide.

23 / 26

Logic for non-determinism

A
Sn(A)

Sn(A) A→ Sn(A′)

Sn(A′)
A

A | B

A | B A→ (A′ | B)

A′ | B

A | B B

A

B → A0 ∨ A1 ¬B → A0 ∧ A1

A0 ∨ A1 | B (A0,A1,B nc)

A | B A | ¬B

S2(A)

24 / 26

Extracted program: C ⊆ G

stog s = f s : t1 (g s) where

f (-1:s) = -1

f (1:s) = 1

f (0:s) = f s

g (-1:s) = s

g (1:s) = -s

g (0:s) = 1 : g s

hence

stog (-1:s) = -1 : stog s

stog (1:s) = 1 : nh (stog s)

stog (0:s) = a : 1 : nh t where a : t = stog s

25 / 26

Extracted program: G ⊆ C2

gtos (-1:s) = -1 : gtos s

gtos (1:b:s) = 1 : gtos (swap b : s)

gtos (a:1:c:s) = 0 : gtos (a : swap c : s)

26 / 26

