Non-determinism and partiality in realizability:

Pure Gray code

Ulrich Berger
Swansea University

J-w.w.

Hideki Tsuiki
Kyoto University

Interval Analysis and Constructive Mathematics
CMO-BIRS workshop 16w5099
Oaxaca, November 13-18, 2016

26



Gray code for real numbers

Gray code for real numbers was introduced by Hideki Tsuiki in

Real number computation through Gray code embedding.
Theoretical Computer Science, 284:467-485, 2002.

Pure Gray code represents a real number in [—1, 1] by its itinerary

of the tent map
tent(x) =1 — 2|x|

That is, x € [—1,1] is represented by the stream dy : d; : ... where

1 if tent”(x) > 0
dy=1¢ L1 iftent’(x)=0
-1 iftent"(x) <0

Note that tent”(x) = 0 can happen for at most one n.

2/26



Gray code requires partiality and non-determinism

By definition, (pure) Gray code is partial.

Moreover, as shown by Tsuiki, computation with Gray code
requires non-determinism.

The intuitive reason is as follows:

» Because one digit of of Gray code may be undefined, a
(Turing) machine reading or writing Gray code must have two
heads, since one head might get stuck at an undefined digit.

» Since the two heads act independently the machine's
behaviour is non-deterministic.

3/26



Logic for partiality and non-determinism

» In this talk, we present a logic that captures partiality and
non-determinism in a constructive way. The logic allows for
the specification and extraction of provably correct partial and
non-deterministic programs.

> We apply this system to extract transformations between Gray
code and the signed digit representations of real numbers.

> An earlier version of the system was presented at CSL 2016.

B., Extracting Non-Deterministic Concurrent Programs. LIPICS 26

4/26



Related work: Extracting pre-Gray code

B., Kenji Miyamoto, Helmut Schwichtenberg, Hideki Tsuiki: Logic for
Gray-code computation. In: Concepts of Proof in Mathematics,
Philosophy, and Computer Science, de Gruyter, 2016.

gives a realizability interpretation and Minlog implementation of an
intensional version of Gray code, called pre-Gray code, using a
conventional constructive system and conventional program
extraction.

5/26



Realizability

» We base program extraction from proofs on realizability.

> Realizability explains what it means to solve the computational
problem expressed by a formula (can be viewed as a
formalization of the BHK-interpretation of constructive logic).

» We let a, b, c range over (denotations of) programs, for
example natural numbers viewed as codes of Turing machines,
or elements of a Scott domain.

» For each formula A we define a formula
crA

to be read “c realizes A" or
“c solves the computational problem expressed by A".

6

26



Realizability for logic

cr A = A (A nc, ¢ can be anything)

c r AVB = (c=L(a)AarA)V (c=R(b)AbrB)
c r AAB = c=a:bANarAANbrB (A, B not nc)
c r AAB = AANcrB  (Anc)

cr A—B = Va(arA — c(a)rB) (A not nc)
cr A-B = A—crB (Anc)

c r 3IxA(x) = Ix (crA(x))

c r VxA(x) = Vx (crA(x))

where a formula is non-computational (nc) if it doesn't contain V.

7/26



Realizability for inductive definitions (by example)

Assume operations and nc axioms for a real closed field R.

N(x) £ x=0v3Iy(N(y)Ax=y+1)

This defines N (inductively) as the least subset of R that contains
0 and is closed under successor.

Realizability for N is given by an analogous inductive definition:

nrN(x) £ (n=LAx=0)V
(n=R(m)AJy(mrN(y)Ax=y+1))

Hence nrN(x) means that n is a unary representation of the
natural number x € R.

8/26



First (trivial) example of program extraction

Theorem Vx,y (N(x) AN(y) = N(x + y))

From a (constructive) proof of this theorem one extracts a realizer
f of the formula Vx, y (N(x) AN(y) — N(x + y)), that is

Vx,y,n,m(neN(x) A mrN(y) — f(n,m)rN(x + y))

Hence f computes addition on unary numbers.

9/26



Realizability for coinductive definitions (by example)

I=[1,-1CR
Iy =[d/2—1/2,d/2+1/2] for d € SD = {~1,0,1}

C(x)

\/ x €Iy ANC(2x — d)
deSDh

srC(x) £ \/ s=d:s'Axely As'rC(2x — d)
deSD

Hence sr C(x) means that s is an infinite stream of signed digits
do : di :...such that

x= Y d2 D

ieN

i.o.w., s is a signed digit representation of x € [—1,1].

10/26



Second (slightly less trivial) example of program extraction

Theorem Vx,y (C(x) A C(y) — C(xy))

From a (constructive) proof of this theorem one extracts a realizer
g of the formula Vx, y (C(x) A C(y) — C(xy)), that is
Vx,y,s,t(srC(x) AtrC(y) — g(n,m)rC(xy))

Hence g computes multiplication on signed digit representations.

11/26



Soundness

Program extraction is based on the soundness theorem for
realizability which makes explicit the computational nature of
constructive proofs:

Theorem (Soundness)

From a constructive proof of a formula A one can extract a
program realizing A, that is, some term M (denoting a
computation) such that Mr A is provable.

The proof may use axioms which are either
» nc and true in the intended model, or else

» provided with realizers (for example induction axioms which
are realized by recursion operators).

12/26



Constructivism for classical mathematicians

The Soundness Theorem may be a motivation for classical
mathematicians to study constructive proofs, since there is a
tangible advantage of constructive over classical proofs:

A constructive proof of A not only confirms that A is true, but also
provides a solution to the computational problem expressed by A.

13 /26



Origins of realizability

> Realizability was introduced by Kleene in 1945 for intuitionistic
(constructive) number theory. His realizers are numbers
encoding Turing machines or partial recursive functions.

» Kreisel introduced modified realizability for analysis
(second-order number theory) in 1959. His realizers are
continuous functionals of higher types.

> In the 1970s and 80s Kleene's number realizers were
generalized to structures called Partial Combinatory Algebras
(PCAs), and since then many variants of realizability were
studied.

14 /26



Uses of realizability

The main uses of realizability are to

» make explicit the computational content of constructive
mathematics,

» show the constructive unprovability of certain statements by
showing that they are not realizable,

» provide models for constructive systems (including systems
that are classically inconsistent),

> extract provably correct programs from constructive proofs.

15/26



Implementations and applications

Program extraction (via realizability or related methods) is
implemented in many proof systems, e.g., Agda, Coq, Isabelle,
Minlog, Nuprl.

Constructive analysis is a rich field of applications, but not the only
one.

PE has also been applied to, for example,

» Lambda calculus (normalization by evaluation)

v

Infinitary combinatorics (Higman's lemma)

v

Parsing (monadic parser combinators)

v

Imperative programming (in-place sorting)

v

Satisfiability testing (extraction of a SAT solver)

16 /26



Coinductive definition of Gray code

o
~—~~
X
N—"

I

(x 20 = x <0V x >0)A G(tent(x))

s =d : s’ where

0
=
Q
~—
X
N—r
I

(x#0—=dr (x<0Vx>0))As r G(tent(x))

Hence s r x € G iff s is a Gray code of x.

We wish to prove constructively G = C.

This will give us a computable equivalence of Gray code and signed
digit representation.

17 /26



Theorem. C C G.

Proof. By coinduction. We have to show
(1) C(x) > x#0—->x<0Vx>0and
(2) C(x) — C(tent(x)).

For (1) we show x # 0 — C(x) — x <0V x > 0, by Archimedean
Induction (next slide).

(2) can be proved directly.

18 /26



Archimedean Induction (Al)

Vx #0((|x] <1/2 = A(2x)) — A(x))
Vx # 0 A(x)

Expresses that the partial order ([—1,1] \ {0}, <), where
y < x =y = 2x, is wellfounded, i.e. if x # 0 then |2"x| > 1 for
some n € N.

Al is realized by general recursion. This means, if f realizes the
premise, i.e.

Vx #0Ve ((|x] <1/2 = crA(2x)) — f(c)rA(x))
then the least fixed point of f realizes Vx A(x), i.e.

Vx fix(f) r A(x)

19/26



We cannot expect to prove G C C constructively, since this would
give us a deterministic program to convert Gray code into signed
digit representation, which is impossible by Tsuiki's analysis.

However, we can prove G C Cy, where C; is a non-deterministic
variant of C.

In order to achieve this, we extend the logic by two new operators,
one for bounded non-determinism, the other for restriction, a strict
version of implication.

20 /26



Bounded non-determinism

For every formula A we introduce a new formula S,(A).
Realizability for S,(A) is defined inductively.

arS,(A) £ a=Amb(a,...,an) where m < nA
3i, b(a; = Res(b) v aj = Cont(b)) A
Vi, b((ai = Res(b) — brA) A
(aj = Cont(b) — brS,(A)))

Amb is a variant of McCarthys amb operator

John McCarthy, A Basis for a Mathematical Theory of Computation,
IFIP Congress 62, N-H, 1963

The operational semantics of Amb(ay, ..., an) is that the
(potentially non-terminating) processes aj, ..., am are run in
parallel. As soon as some a; terminates, its result is taken and the
other processes are abolished.

21/26



Restriction

For every formula A and nc formula B we introduce a new formula
A| B ("“A restricted to B").

Realizability is defined as follows:

cr(AB) = (B — 3ac=Res(a)) AVa(c=Res(a) > arA)

Compare this with realizability of B — A where B is nc and A = Ay V Ar:
cr(B—A) g, Ja(c=L(a)AarAgVc=R(a)AarA)

The problem is that if, say, L(a) realizes B — A, then it suggests that a
realizes Ag, but we cannot conclude this unless B is true.

On the other hand, if Res(a) realizes A| B, then we are sure that a
realizes A without knowing anything about B.

22/26



Non-deterministic signed digits

C2(X) = 82( \/ xelyg A CQ(2X — d))
deSD

Theorem G C Cs.
Proof. By coinduction. To show
G(x) = S2(3d € SD (x € Iy A G(2x — d)))
This follows from the following lemmas.
Lemma 1. G(x) Ax €Iy — G(2x — d), for all d € SD.
Lemma 2. (x#0—=-x<0Vx>0)«< (x<0Vx>0]xz#D0).
Lemma 3. G(x) — S2(3d € SDx € I).

The lemmas can be proven using the (realizable) rules on the next

slide.
23 /26



Logic for non-determinism

A Sn(A) A — Sa(A) A AlB A= (A]B)

Sn(A) Sn(A) Al B A'| B

A‘B B B—AVA —-B—ANA
A AoV Ap ’ B (Ao,Al,B nc)

AlB A|-B
S2(A)

24 /26



Extracted program: C C G

stog s = f s : tl (g s) where

f (-1:8) = -1

f (1:s) = 1

f (0:8) = fs

g (-1:8) = s

g (1:8) = -s

g (0:s) = 1:gs
hence

stog (-1:s8) = -1 : stog s
stog ( 1:s) 1 : nh (stog s)
stog ( 0:s) a:1:nht wherea : t = stog s

25 /26



Extracted program: G C C,

gtos (-1:s) = -1 : gtos s
gtos ( 1:b:s) 1 : gtos (swap b : s)
gtos ( a:l:c:s) 0 : gtos (a : swap ¢ : s)

26 /26



