Extremal Value Theory of a Stationary $S\alpha S$ Random Fields

Zaoli Chen Joint with Gennady Samorodnitsky

Cornell University

June 21, 2018

Stationary $S\alpha S$ random fields driven by conservative flows.

 $\Phi = \{\phi_t, t \in \mathbb{N}_0^d\}$ is a conservative \mathbb{N}_0^d -action on measurable space $(\mathcal{E}, \mathcal{E}, \mu)$.

- ϕ_0 is the identity map on S.
- $\phi_{u+v} = \phi_u \circ \phi_v$ for all $u, v \in \mathbb{N}_0^d$.

Assume that the action is measure preserving. Take $f \in L_{\alpha}(\mu)$ and a $S\alpha S$ random measure M controlled by μ :

$$X_t := \int_{\mathcal{E}} f \circ \phi_t dM, \quad t \in \mathbb{N}_0^d$$

 $\{X_i\}$ is a stationary $S\alpha S$ random fields, and such random fields are assumed to have long memory.

Rosiński, J(2000). Decomposition of stationary α -stable random fields, Annals of Probability.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

To study the long memory properties, we mainly focus on two types of limit theorems.

$$\lim_{n\to\infty}\frac{1}{b_n}\max_{k\in nB}X_t\quad B\in\mathcal{B}([0,\infty)^d)\quad\text{weak convergence of sup-measures}\\ \lim_{n\to\infty}\frac{1}{b_n}\max_{\mathbf{0}\leqslant t\leqslant \lfloor nt\rfloor}X_t\quad t\in [0,\infty)^d\quad\text{functional convergence}$$

 $\mathbb{E}=\mathbb{R}^d,\mathbb{R}^d_+,[0,1]^d$, (generally LCHS spaces). $m:\mathcal{G}\to[0,\infty]$ is called a sup measure if

- $m(\emptyset) = 0$
- $m(\cup_{\gamma} G_{\gamma}) = \sup_{\gamma} m(G_{\gamma})$ for arbitrary collections $\{G_{\gamma} \in \mathcal{G} : \gamma\}$.

 $\{m_n\}\stackrel{\mathsf{vague}}{\longrightarrow} m$ if and only if

$$\limsup_{n\to\infty} m_n(K)\leqslant m(K)\quad\forall\ K\in\mathcal{K}\quad \liminf_{n\to\infty} m_n(G)\geqslant m(G)\quad\forall\ G\in\mathcal{G}$$

 \mathcal{M} is compact and metrizable under sup-vague topology.

◆ロト ◆個ト ◆意ト ◆意ト 意 めなべ

Random sup-measure is a random elements in \mathcal{M} . In particular, if $\mathcal{M}(G)$ is a cont rv for any open rectangle G, then weak-convergence $M_n \Rightarrow M$ is equivalent to fdd convergence.

$$(m_n(B_1), \cdots, m_n(B_k)) \Rightarrow (m(B_1), \ldots, m(B_k)),$$
 open disjoint rectangles B_i

Sup-derivatives and sup-integral:

$$d^{\vee}m(t):=\inf_{G:t\in G}m(G),\quad G\in \mathcal{G}\quad \text{uniquely determines }m,\quad d^{\vee}m \text{ is usc}$$
 $i^{\vee}f(B):=\sup_{t\in B}f(t)\quad \text{uniquely specifies a sup-measure, }f \text{ is usc.}$

(日) (레) (토) (토) (토) (인()

Markov chains and product Markov chains.

 $\{x_n, n \geqslant 0\}$ is an irreducible and null recurrent MC on $\mathbb Z$,with invariant measure $(\pi_i, i \in \mathbb Z)$, $\pi_0 = 1$. On the path space

- $(E, \mathcal{E}) = (\mathbb{Z}^{\mathbb{N}_0}, \mathcal{B}(\mathbb{Z}^{\mathbb{N}_0})).$
- $\mu(\cdot) = \sum_{i \in \mathbb{Z}} \pi_i P_i(\cdot)$.
- $P_i(\cdot)$ is the law of $\{x_n : n \ge 0, x_0 = i\}$.

left shift operator $T(x_0, x_1, \ldots) = (x_1, x_2, \ldots)$

Proposition (Harris and Robbins 1953)

 $\{x_n\}$ irreducible and null-recurrent $\Leftrightarrow T$ conservative and ergodic.

4日 → 4部 → 4 注 → 4 注 → 9 Q (*)

For a conservative action with

- $A = \{x_0 = 0\}$, $\mu(A) = 1$.
- $b_n^{\alpha} = \mu(\bigcup_{k=1}^n T^{-k}A) \in RV_{\beta}, \quad \beta \in (0,1)$

The processes $X_t := \int_F 1_A \circ T^t dM$ has limit theorems:

Theorem

$$\frac{1}{b_n} \max_{k \in nB} X_t \Rightarrow \left(\frac{C_\alpha}{2}\right)^{1/\alpha} \eta^{\alpha,\beta}(B) \quad B \in \mathcal{B}([0,1])$$

- $\beta \in (0, 1/2), \ d^{\vee} \eta^{\alpha, \beta}(t) = \sum_{i=1}^{\infty} \Gamma_i^{-1/\alpha} 1_{\{t \in V_i + R_i\}} \quad t \in [0, 1].$
- $\beta \in [1/2, 1)$, $d^{\vee} \eta^{\alpha, \beta}(t) = \bigvee_{i=1}^{\infty} \Gamma_i^{-1/\alpha} 1_{\{t \in V_i + R_i\}} \quad t \in [0, 1]$.

Let $L_{1-\beta}$ be the standard $(1-\beta)$ -subordinator

$$R_1:=\overline{\{L_{1-eta}(t),t\geqslant 0\}}\subset [0,\infty) \quad (1-eta)$$
 — stable regenerative set

$$P(V_j \leq x) = x^{\beta}, \quad x \in [0,1]$$
 indep of R_j , $\{V_j, R_j\}$ iid family and $\{\Gamma_j\}$ arrival time of unit Poisson on $(0,\infty)$.

Zaoli Chen $\,$ Joint with Gennady Samorodnits|Extremal Value Theory of a Stationary Slpha S |

Lacaux, C and Samorodnitsky, G(2016). Time-changed extremal process as random sup measure, Bernoulli. Samorodnitsky, G and Wang,Y (2017) Extremal value theory for long range dependent infinitely divisible processes.

d iid copies Markov chains $(x_n^{(1)}), \ldots, (x_n^{(d)})$, has path spaces $(E_1, \mathcal{E}_1, \mu_1), \dots, (E_d, \mathcal{E}_d, \mu_d)$. T_i is the left shift operator on E_i .

$$x_k := (x_{k_1}^{(1)}, \dots, x_{k_d}^{(d)}), \quad k \in \mathbb{N}_0^d$$

Path space of (x_k) and the shift operator are

- $(E, \mathcal{E}, \mu) = (\prod_{i=1}^d E_i, \prod_{i=1}^d \mathcal{E}_i, \prod_{i=1}^d \mu_i)$
- $T^k(x) = ((T_1)^{k_1}x_1, \dots, (T_d)^{k_d}x_d)$

Proposition

The action \mathcal{T} on the σ -finite (infinite) measure space (E, \mathcal{E}, μ) is conservative, ergodic and measure-preserving.

Consider the random fields

• $A := \{x_0 = 0\}$, M is a $S \alpha S$ random measure on (E, \mathcal{E}) controlled by μ .

•
$$X_k := \int_{\mathcal{E}} (1_{\mathcal{A}} \circ T^k)(x) M(dx), \quad k \in \mathbb{N}_0^d$$

The scaling constant in limit theorems is

$$b_n = \mu \left(\bigcup_{k=1}^{n} T^{-k} A\right)^{1/\alpha}$$

$$= \prod_{i=1}^{d} b_n^{(i)} \in \mathsf{RV}_{d\beta/\alpha} \quad \text{assuming} \quad b_n^{(1)} = \dots = b_n^{(d)} \in \mathsf{RV}_{\beta/\alpha}$$

where $b_n^{(i)}$ is the scaling constant for process $X^{(i)}$ generated by $(E_i, \mathcal{E}_i, \mu_i, T_i)$.

Define a random sup-measure,

$$\mathcal{M}_n(B) := \max_{k \in nB} X_k \quad B \in \mathcal{B}([0,1]^d)$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Main theorem

Theorem (Convergence of random sup-measure)

For $0 < \alpha < 2, 0 < \beta < 1$, in space SM with the sup vague topology.

$$\begin{split} &\frac{1}{b_n}\mathscr{M}_n(\mathbf{X}) \Longrightarrow \left(\frac{C_\alpha}{2}\right)^{1/\alpha} \eta^{\alpha,\beta} \quad n \to \infty \\ &\eta^{\alpha,\beta}(t) \triangleq \sum_{j=1}^\infty \Gamma_j^{-1/\alpha} \mathbf{1}_{\{t \in \prod_{i=1}^d (V_j^{(i)} + R_j^{(\beta,i)})\}}, \quad t \in [0,1]^2 \\ &\eta^{\alpha,\beta}(B) \triangleq \sup_{t \in B} \sum_{j=1}^\infty \Gamma_j^{-1/\alpha} \mathbf{1}_{\{t \in \prod_{i=1}^d (V_j^{(i)} + R_j^{(\beta,i)})\}}, \quad B \in \mathcal{B}([0,1]^2) \end{split}$$

Random variables on RHS are all independent and have same distribution in the d=1 settings. Note that:

$$\eta^{\alpha,\beta}(t) \leqslant \lfloor \beta^{-1} \rfloor \bigvee_{i=1}^{\infty} \Gamma_j^{-1/\alpha} 1_{\{t \in \prod_{i=1}^d (V_j^{(i)} + R_j^{(\beta,i)})\}}$$

- Due to the fact that the limiting random fields is self-similar, we only consider the convergence in $[0,1]^d$.
- ② Functional convergence in J_1 topology are natural corollaries of random sup-measure convergence.
- **3** We focus on the situation d = 2. General cases are similar.

Start with series representation and truncation.

$$\begin{split} & \left(X_k: \mathbf{0} \leqslant k \leqslant \mathbf{n}\right) \stackrel{d}{=} \left(b_n C_\alpha^{1/\alpha} \sum_{j=1}^\infty \epsilon_j \Gamma_j^{-1/\alpha} 1_{\{T^k(U_j^{(n)})_{\mathbf{0}} = \mathbf{0}\}}, \mathbf{0} \leqslant k \leqslant \mathbf{n}\right) \\ & \mathcal{M}_{\ell,n}(B) \triangleq b_n C_\alpha^{1/\alpha} \max_{k \in nB} \sum_{j=1}^\ell \epsilon_j \Gamma_j^{-1/\alpha} 1_{\{T^k(U_j^{(n)})_{\mathbf{0}} = \mathbf{0}\}}, \quad B \in \mathcal{B}([0,1]^2) \end{split}$$

- $\{\epsilon_i\}$ is a iid, Rademacher rvs.
- $\{\Gamma_j\}$ are the arrival times of a unit rate Poisson process on $(0,\infty)$.
- For each n, $\{U_j^{(n)}: j\geqslant 1\}$ are iid E-valued (paths of chains) random elements with same law η_n

$$\frac{\mu\left(\cdot \cap \{x \in E : x_t = \mathbf{0} \text{ for some } \mathbf{0} \leqslant t \leqslant \mathbf{n}\}\right)}{\mu\left(\{x \in E : x_t = \mathbf{0} \text{ for some } \mathbf{0} \leqslant t \leqslant \mathbf{n}\}\right)}$$

Proposition

For any $\delta > 0$,

$$\lim_{\ell \to \infty} \limsup_{n \to \infty} \mathbb{P}\left(\max_{\mathbf{0} \leqslant k \leqslant \mathbf{n}} C_{\alpha}^{1/\alpha} \left| \sum_{j=\ell+1}^{\infty} \epsilon_{j} \Gamma_{j}^{-1/\alpha} \mathbf{1}_{\{T^{k}(U_{j}^{(n)})_{\mathbf{0}} = \mathbf{0}\}} \right| > \delta \right) = 0$$

Together with

$$\frac{1}{b_n} \mathscr{M}_{\ell,n} \Rightarrow \eta_{\ell}^{\alpha,\beta}, \quad \eta_{\ell}^{\alpha,\beta} \uparrow \eta^{\alpha,\beta}$$

is sufficient to prove weak convergence.

Zaoli Chen Joint with Gennady SamorodnitslExtremal Value Theory of a Stationary Slpha S racksquare

June 21, 2018

We need to consider simultaneous return time to 0 of several Markov chains. Because we want to pick up "positive" summands in the series representation.

- $Z_{j,n} := \frac{1}{n} \{ \mathbf{0} \leqslant k \leqslant \mathbf{n} : T^k(U_j^{(n)})_{\mathbf{0}} = \mathbf{0} \}$, this is a random closed set in $[0,1]^2$.
- i = 1, 2, $Z_{j,n}^{(i)} = \frac{1}{n} \{ 0 \leqslant k \leqslant n : T^k (U_j^{(i,n)})_0 = 0 \}$, $U^{(n)} = (U_j^{(1,n)}, U_j^{(2,n)})$
- $Z_{j,n} = Z_{j,n}^{(1)} \times Z_{j,n}^{(2)}$.

Once the chain visits zero, the time interval between succeeding visits are iid random variables. In C. Lacaux and G. Samorodnitsky 2016

$$\begin{split} Z_{j,n}^{(1)} &= \frac{1}{n} \{ \text{first return time} + \text{range of an} \uparrow \text{random walk} \ \} \\ &\to (V_j^{(1)} + R_j^{(1)}) \cap [0,1] := \tilde{R}_j^{(1)} \cap [0,1] \\ &\text{where} \quad x \in [0,1], \mathbb{P}(V_j^{(1)} \leqslant x) = x^\beta \\ &R_j^{(1)} \text{iid} \quad (1-\beta) - \text{stable regenerative set} \end{split}$$

ロト 4回 ト 4 恵 ト 4 恵 ト ・ 恵 ・ 夕久で

- For $S \subset \mathbb{N}$, $\hat{l}_{S,n} := \cap_{j \in S}, Z_{j,n} = \hat{l}_{S,n}^{(1)} \times \hat{l}_{S,n}^{(2)}$.
- $S \subset \mathbb{N}$, $I_S^{(1)} := \cap_{j \in S} \tilde{R}_j^{(1)}$
- $I_S = I_S^{(1)} \times I_S^{(2)}$

Theorem (G. Samorodnitsky and Y. Wang 2017)

$$(\hat{I}_{S,n}^{(1)})_{S\subset\{1,\ldots,\ell\}}\Rightarrow (I_S^{(1)})_{S\subset\{1,\ldots,\ell\}}\quad n\to\infty\quad \text{ in } \mathcal{F}([0,1])^{2^\ell}$$

Corollary

$$(\hat{I}_{S,n})_{S\subset\{1,\ldots,\ell\}}\Rightarrow (I_S)_{S\subset\{1,\ldots,\ell\}}\quad n\to\infty\quad \text{ in } \mathcal{F}([0,1]^2)^{2^\ell}$$

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
*
*
*
*
<

$$\hat{l}_{S,n}^* \triangleq \hat{l}_{S,n} \cap \left(\bigcup_{j \in \{1,...,\ell\}-S} Z_{j,n}\right)^c$$

return time to 0 by chains indexed by S exclusively $B \subset [0,1]^2$ is an open rectangle

$$H_n(B) := \bigcup_{S \subset \{1, \dots, \ell\}} \left(\left\{ \hat{I}_{S,n} \cap B \neq \emptyset \right\} \bigcap \left\{ \hat{I}_{S,n}^* \cap T = \emptyset \right\} \right)$$

Proposition

$$\lim_{n\to\infty}\mathbb{P}\{H_n(B)\}=0$$

Intuition: Consider the limit, intersections of stable subordinators.

◆ロト ◆問 > ◆意 > ◆意 > ・ 意 ・ の Q (*)

Zaoli Chen Joint with Gennady SamorodnitslExtremal Value Theory of a Stationary Slpha S

Take B_1, \ldots, B_m disjoint open rectangles in $[0, 1]^2$. For each i, on complement of $H_n(B_i)$

$$\mathcal{M}_{\ell,n}(B_i) = \max_{k \in nB_i} b_n \sum_{j=1}^{\ell} \epsilon_j \Gamma_j^{-1/\alpha} 1_{\{T^k(U_j^{(n)})_0 = \mathbf{0}\}}$$

$$= C_{\alpha}^{1/\alpha} \max_{S \subset \{1,...,\ell\}} 1_{\{\hat{I}_{S,n} \cap B_i \neq \emptyset\}} \sum_{j \in S} \epsilon_j \Gamma_j^{-1/\alpha}$$

$$= C_{\alpha}^{1/\alpha} \max_{S \subset \{1,...,\ell\}} 1_{\{\hat{I}_{S,n} \cap B_i \neq \emptyset\}} \sum_{j \in S} 1_{\{\epsilon_j = 1\}} \Gamma_j^{-1/\alpha}$$

$$\begin{split} \frac{1}{b_n} \mathscr{M}_{\ell,n} &\Rightarrow C_\alpha \max_{S \subset \{1,\dots,\ell\}} \mathbf{1}_{\{I_S \cap B_i \neq \emptyset\}} \sum_{j \in S} \mathbf{1}_{\{\epsilon_j = 1\}} \Gamma_j^{-1/\alpha} \\ &= C_\alpha \max_{t \in B_i} \sum_{j = 1}^\ell \mathbf{1}_{\{\epsilon_j = 1\}} \Gamma_j^{-1/\alpha} \mathbf{1}_{\{t \in \tilde{R}_j\}} \\ &\stackrel{d}{=} C_\alpha^{1/\alpha} 2^{-1/\alpha} \sum_{i \in S} \Gamma_j^{-1/\alpha} \mathbf{1}_{\{t \in \tilde{R}_j\}} := \eta_\ell^{\alpha,\beta} \qquad \eta_\ell^{\alpha,\beta} \uparrow \eta^{\alpha,\beta} \text{a.s.} \end{split}$$

1 01 0010 00 / 00

Corollary

$$egin{align} \mathscr{M}_n(|\mathbf{X}|)(B) &:= \max_{k: k/n \in B} |X_k|, \quad B \in \mathcal{B}([0,1]^d) \ & rac{1}{b_n} \mathscr{M}_n(\mathbf{X}) \Longrightarrow \mathcal{C}_{lpha}^{1/lpha} \eta^{lpha,eta} \quad n o \infty \ \end{array}$$

$$\begin{split} &\frac{1}{b_n} \mathscr{M}_{\ell,n}(|\mathbf{X}|)(B) = C_{\alpha}^{1/\alpha} \max_{S \subset \{1,\dots,\ell\}} 1_{\{\hat{I}_{S,n} \cap B_i \neq \emptyset\}} \sum_{j \in S} \epsilon_j \Gamma_j^{-1/\alpha} \\ \Rightarrow & C_{\alpha}^{1/\alpha} \Big(\max_{S \subset \{1,\dots,\ell\}} 1_{\{\hat{I}_{S,n} \cap B \neq \emptyset\}} \sum_{j \in S} 1_{\{\epsilon_j = 1\}} \Gamma_j^{-1/\alpha} \\ & \bigvee \max_{S \subset \{1,\dots,\ell\}} 1_{\{\hat{I}_{S,n} \cap B \neq \emptyset\}} \sum_{i \in S} 1_{\{\epsilon_j = -1\}} \Gamma_j^{-1/\alpha} \Big) \end{split}$$

Taking the maximum of two iid rvs cancells out $2^{-1/\alpha}$.

Convergence of partial maxima processes

Theorem

Assume that $0 < \alpha < 2, 0 < \beta < 1$.

$$\left(\frac{1}{b_n}\max_{1\leqslant k\leqslant \lfloor nt\rfloor}X_k,t\in [0,1]^2\right)\Longrightarrow \left(C_\alpha^{1/\alpha}2^{-1/\alpha}\eta([0,t]),t\in [0,1]^2\right)$$

in $D([0,1]^2)$ with Skorohod J_1 -topology.

Again, it suffices to show J_1 convergence for the truncated partial maxima random fields.

Zaoli Chen Joint with Gennady SamorodnitslExtremal Value Theory of a Stationary Slpha S

Fix $S \subset \{1, \dots, \ell\}$, and i = 1, 2

$$egin{aligned} Y_{\mathcal{S},n}^{(i)}(t) &:= \mathbb{1}_{\{\hat{I}_{\mathcal{S},n}^{(i)} \cap [0,t_i]
eq \emptyset\}}, \quad t_i \in [0,1] \ Y_{\mathcal{S}}^{(i)}(t) &:= \mathbb{1}_{\{I_{\mathcal{S}}^{(i)} \cap [0,t_i]
eq \emptyset\}}, \quad t_i \in [0,1] \end{aligned}$$

$$\hat{I}_{S,n}^{(i)} \Rightarrow I_S^{(i)}$$
 implies min $\hat{I}_{S,n}^{(i)} \Rightarrow \min I_S^{(i)}$ So
$$(Y_{S,n}^{(i)}(t_i), t_i \in [0,1]) \stackrel{J_1}{\Longrightarrow} (Y_S^{(1)}(t_i), t_i \in [0,1]) \quad \text{in } D[0,1]$$

$$(Y_{S,n}(t), t \in [0,1]) \stackrel{J_1}{\Longrightarrow} (Y_S(t), t \in [0,1]) \quad \text{in } D([0,1]^2)$$

where

$$egin{aligned} Y_{\mathcal{S},n}(t) &:= 1_{\{\hat{I}_{\mathcal{S},n} \cap [0,t]
eq \emptyset\}} = \prod_{i=1}^2 Y_{\mathcal{S},n}^{(i)}(t_i), \quad t \in [0,1]^2 \ Y_{\mathcal{S}}(t) &:= 1_{\{I_{\mathcal{S}} \cap [0,t]
eq \emptyset\}} = \prod^2 Y_{\mathcal{S}}^{(i)}(t_i), \quad t \in [0,1]^2 \end{aligned}$$

On the complement $H_n([0,1]^2)$ and apply continuous mapping theorem,

$$\begin{split} &\left(\frac{1}{b_n} M_n(t), t \in [0, 1]^2\right) \quad t = (t_1, t_2), [0, t] := [0, t_1] \times [0, t_2] \\ &= \left(C_{\alpha}^{1/\alpha} \max_{S \subset \{1, \dots, \ell\}} \mathbb{1}_{\{\hat{I}_{S,n} \cap [0, t] \neq \emptyset\}} \sum_{j \in S} \epsilon_j \Gamma_j^{-1/\alpha}, \quad t \in [0, 1]^2\right) \\ &\stackrel{J_1}{\Rightarrow} \left(C_{\alpha}^{1/\alpha} \max_{S \subset \{1, \dots, \ell\}} \mathbb{1}_{\{I_S \cap [0, t] \neq \emptyset\}} \sum_{j \in S} \mathbb{1}_{\{\epsilon_j = 1\}} \Gamma_j^{-1/\alpha}, \quad t \in [0, 1]^2\right) \\ &\stackrel{d}{=} \left(\left(\frac{C_{\alpha}}{2}\right)^{1/\alpha}\right) \eta_{\ell}^{\alpha, \beta}([0, t]), \quad t \in [0, 1]^2\right) \end{split}$$

Corollary

Assume that $0 < \alpha < 2, 0 < \beta < 1$.

$$\left(\frac{1}{b_n}\max_{1\leqslant k\leqslant \lfloor nt\rfloor}|X_k|,t\in[0,1]^2\right)\Longrightarrow \left(C_\alpha^{1/\alpha}\eta([0,t]),t\in[0,1]^2\right)$$

in $D([0,1]^2)$ with Skorohod J_1 -topology.

Random fields driven by additive simple random walks: in progress

- $\{S_{\cdot}^{(1)}\}$ and $\{S_{\cdot}^{(2)}\}$, two independent simple symmetric random walk from origin.
- ② $S_k \triangleq S_{k_1}^{(1)} + S_{k_2}^{(2)} + S_0$, let $S_0 \in \mathbb{Z}$ with counting measure π .

 (E,\mathcal{E}) , path space of $(S_k,k\in\mathbb{N}_0^2)$.

$$\mu:=\sum_{n=-\infty}^{\infty}\mathbb{P}_n$$
 is a σ -finite measure

$$x \in E, x = x_1 \oplus x_2, k = (k_1, k_2) \in \mathbb{N}_0^d, T^k x = (T_1)^{k_1} x_1 + (T_2)^{k_2} x_2$$

 $(E, \mathcal{E}, \mu, \mathcal{T})$ is a conservative, ergodic and measure-preserving system.

- ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

A denotes the set $\{S_0 = 0\}$.

$$X_k := \int_E 1_A \circ \theta^k dM = \int_E 1_{\{S_k = 0\}} dM, \quad k \in \mathbb{Z}_+^2$$

In this model

$$b_n^{lpha} \sim c \sqrt{n}$$
 for some constant c

A random sup-measure

$$\mathcal{M}_n(\mathbf{X})(B) = \max_{k: k/n \in B} |X_k|, \quad B \in \mathcal{B}([0,\infty)^2)$$

<□▶ <┛▶ <≧▶ <≧▶ = 900

Theorem (in progress)

Assume $0 < \alpha < 2$,

$$rac{1}{b_n}\mathscr{M}_n(|\mathbf{X}|)\Longrightarrow \mathcal{C}_{lpha}^{1/lpha}\eta\quad ext{as }n o\infty$$

in space $SM[0,1]^2$

$$\eta(t) = \sum_{j=1}^{\infty} \Gamma_j^{-1/\alpha} 1_{\{t \in W_j\}}$$

 $\{W_j\}_{j\geqslant 1}$, iid rsc's on $[0,1]^2$, orall $G\in \mathcal{G}([0,1]^2)$,

$$\mathbb{P}\{W_1 \cap G \neq \emptyset\} = \frac{1}{c_2} \int_{-\infty}^{\infty} \mathbb{P}\left\{\mathcal{Z}\left(\left\{B_{\cdot}^{(1)} + B_{\cdot}^{(2)} + t\right\}_{[0,1]^2}\right) \cap G \neq \emptyset\right\} dt$$

 $B^{(1)}$ and $B^{(2)}$, independent linear standard Brownian motions started from the origin.

Unsolved Problem:

Whether zeros of additive simple random walk on \mathbb{Z}^d , d > 1, after proper scaling, converges weakly to zeros of additive Brownian motion.

Thanks