Approximate Degree: A Survey

Justin Thaler ${ }^{1}$
Georgetown University

Boolean Functions

- Boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$

$$
\operatorname{AND}_{n}(x)=\left\{\begin{array}{lll}
-1 & (\text { TRUE }) & \text { if } x=(-1)^{n} \\
1 & (\text { FALSE }) & \text { otherwise }
\end{array}\right.
$$

Approximate Degree

- A real polynomial $p \epsilon$-approximates f if

$$
|p(x)-f(x)|<\epsilon \quad \forall x \in\{-1,1\}^{n}
$$

- $\widetilde{\operatorname{deg}}_{\epsilon}(f)=$ minimum degree needed to ϵ-approximate f
- $\widetilde{\operatorname{deg}(f)}:=\operatorname{deg}_{1 / 3}(f)$ is the approximate degree of f

Threshold Degree

Definition

Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a Boolean function. A polynomial p sign-represents f if $\operatorname{sgn}(p(x))=f(x)$ for all $x \in\{-1,1\}^{n}$.

Definition

The threshold degree of f is $\min \operatorname{deg}(p)$, where the minimum is over all sign-representations of f.

- An equivalent definition of threshold degree is $\lim _{\epsilon} \nearrow_{1} \widetilde{\operatorname{deg}_{\epsilon}}(f)$.

Why Care About Approximate and Threshold Degree?

Upper bounds on $\widetilde{\operatorname{deg}_{\epsilon}}(f)$ and $\operatorname{deg}_{ \pm}(f)$ yield efficient learning algorithms.

- $\epsilon \approx 1 / 3$: Agnostic Learning [KKMS05]

■ $\epsilon \approx 1-2^{-n^{\delta}}$: Attribute-Efficient Learning [KS04, STT12]
$■ \epsilon \rightarrow 1$ (i.e., $\operatorname{deg}_{ \pm}(f)$ upper bounds): PAC learning [KS01]

Why Care About Approximate and Threshold Degree?

Upper bounds on $\widetilde{\operatorname{deg}_{\epsilon}}(f)$ and $\operatorname{deg}_{ \pm}(f)$ yield efficient learning algorithms.

- $\epsilon \approx 1 / 3$: Agnostic Learning [KKMS05]

■ $\epsilon \approx 1-2^{-n^{\delta}}$: Attribute-Efficient Learning [KS04, STT12]
$■ \epsilon \rightarrow 1$ (i.e., $\operatorname{deg}_{ \pm}(f)$ upper bounds): PAC learning [KS01]
■ Upper bounds on $\widetilde{\operatorname{deg}}_{1 / 3}(f)$ also imply fast algorithms for differentially private data release [TUV12, CTUW14].

Why Care About Approximate and Threshold Degree?

Upper bounds on $\widetilde{\operatorname{deg}_{\epsilon}}(f)$ and $\operatorname{deg}_{ \pm}(f)$ yield efficient learning algorithms.

- $\epsilon \approx 1 / 3$: Agnostic Learning [KKMS05]

■ $\epsilon \approx 1-2^{-n^{\delta}}$: Attribute-Efficient Learning [KS04, STT12]
$■ \epsilon \rightarrow 1$ (i.e., $\operatorname{deg}_{ \pm}(f)$ upper bounds): PAC learning [KS01]
■ Upper bounds on $\widetilde{\operatorname{deg}}_{1 / 3}(f)$ also imply fast algorithms for differentially private data release [TUV12, CTUW14].

- Upper bounds on $\widetilde{\operatorname{deg}}_{\epsilon}(f)$ and $\operatorname{deg}_{ \pm}(f)$ for small formulas and threshold circuits f yield state of the art formula size and threshold circuit lower bounds [Tal17, Forster02].

Why Care About Approximate and Threshold Degree?

Lower bounds on $\widetilde{\operatorname{deg}}_{\epsilon}(f)$ and $\operatorname{deg}_{ \pm}(f)$ yield lower bounds on:
■ Oracle Separations [Bei94, BCHTV16]

- Quantum query complexity [BBCMW98]

■ Communication complexity [She08, SZ08, CA08, LS08, She12]

- Lower bounds hold for a communication problem related to f.
- Via, e.g., a technique called the Pattern Matrix Method [She08].

Why Care About Approximate and Threshold Degree?

Lower bounds on $\widetilde{\operatorname{deg}}_{\epsilon}(f)$ and $\operatorname{deg}_{ \pm}(f)$ yield lower bounds on:
■ Oracle Separations [Bei94, BCHTV16]

- Quantum query complexity [BBCMW98]
- Communication complexity [She08, SZ08, CA08, LS08, She12]
- Lower bounds hold for a communication problem related to f.
- Via, e.g., a technique called the Pattern Matrix Method [She08].
- $\epsilon \approx 1 / 3 \Longrightarrow \mathbf{B Q P}^{\text {cc }}$ lower bounds.

■ $\epsilon \approx 1-2^{-n^{\delta}} \Longrightarrow: \mathbf{P P}^{c c}$ lower bounds
■ $\epsilon \rightarrow 1$ (i.e., $\operatorname{deg}_{ \pm}(f)$ lower bounds) $\Longrightarrow \mathbf{U P P}^{\text {cc }}$ lower bounds.

Why Care About Approximate and Threshold Degree?

Lower bounds on $\widetilde{\operatorname{deg}}_{\epsilon}(f)$ and $\operatorname{deg}_{ \pm}(f)$ yield lower bounds on:
■ Oracle Separations [Bei94, BCHTV16]

- Quantum query complexity [BBCMW98]
- Communication complexity [She08, SZ08, CA08, LS08, She12]
- Lower bounds hold for a communication problem related to f.
- Via, e.g., a technique called the Pattern Matrix Method [She08].
- $\epsilon \approx 1 / 3 \Longrightarrow \mathbf{B Q P}^{\text {cc }}$ lower bounds.

■ $\epsilon \approx 1-2^{-n^{\delta}} \Longrightarrow: \mathbf{P P}^{c c}$ lower bounds
■ $\epsilon \rightarrow 1$ (i.e., $\operatorname{deg}_{ \pm}(f)$ lower bounds) $\Longrightarrow \mathbf{U P P}^{\text {cc }}$ lower bounds.

- Lower bounds on $\widetilde{\operatorname{deg}_{\epsilon}}(f)$ and $\operatorname{deg}_{ \pm}(f)$ also yield efficient secret-sharing schemes [BIVW16]

Example 1: The Approximate Degree of AND_{n}

Example: What is the Approximate Degree of AND_{n} ?

$\widetilde{\operatorname{deg}}\left(\mathrm{AND}_{n}\right)=\Theta(\sqrt{n})$.
■ Upper bound: Use Chebyshev Polynomials.
■ Markov's Inequality: Let $G(t)$ be a univariate polynomial s.t. $\operatorname{deg}(G) \leq d$ and $\sup _{t \in[-1,1]}|G(t)| \leq 1$. Then

$$
\sup _{t \in[-1,1]}\left|G^{\prime}(t)\right| \leq d^{2}
$$

■ Chebyshev polynomials are the extremal case.

Example: What is the Approximate Degree of AND_{n} ?

$$
\widetilde{\operatorname{deg}}\left(\mathrm{AND}_{n}\right)=O(\sqrt{n})
$$

- After shifting a scaling, can turn degree $O(\sqrt{n})$ Chebyshev polynomial into a univariate polynomial $Q(t)$ that looks like:

$$
Q(-1+2 / n)=2 / 3
$$

■ Define n-variate polynomial p via $p(x)=Q\left(\sum_{i=1}^{n} x_{i} / n\right)$.
■ Then $\left|p(x)-\operatorname{AND}_{n}(x)\right| \leq 1 / 3 \quad \forall x \in\{-1,1\}^{n}$.

Example: What is the Approximate Degree of AND_{n} ?

[NS92] $\widetilde{\operatorname{deg}}\left(\mathrm{AND}_{n}\right)=\Omega(\sqrt{n})$.

- Lower bound: Use symmetrization.
- Suppose $\left|p(x)-\operatorname{AND}_{n}(x)\right| \leq 1 / 3 \quad \forall x \in\{-1,1\}^{n}$.
- There is a way to turn p into a univariate polynomial $p^{\text {sym }}$ that looks like this:

- Claim 1: $\operatorname{deg}\left(p^{\text {sym }}\right) \leq \operatorname{deg}(p)$.
- Claim 2: Markov's inequality $\Longrightarrow \operatorname{deg}\left(p^{\text {sym }}\right)=\Omega\left(n^{1 / 2}\right)$.

AND Has Low Threshold Degree

- Fact: $\operatorname{deg}_{ \pm}\left(\mathrm{AND}_{n}\right)=1$.
- Proof: $\operatorname{AND}_{n}(x)=\operatorname{sgn}(p(x))$ for $p(x)=n-1+\sum_{i=1}^{n} x_{i}$.

■ In fact, $p(x) / n$ approximates AND_{n} to error $1-1 / n$.

Example 2: The Threshold Degree of the Minsky-Papert DNF

The Minsky-Papert DNF

■ The Minsky-Papert DNF is $\mathrm{MP}(x):=\mathrm{OR}_{n^{1 / 3}} \circ \mathrm{AND}_{n^{2 / 3}}$.

The Minsky-Papert DNF

- Claim: $\operatorname{deg}_{ \pm}(\mathrm{MP})=\tilde{\Omega}\left(n^{1 / 3}\right)$.
- More generally, $\operatorname{deg}_{ \pm}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{b}\right) \geq \Omega\left(\min \left(b^{1 / 2}, t\right)\right)$.
- Proved by Minsky and Papert in 1969 via an ad hoc symmetrization argument.

The Minsky-Papert DNF

- Claim: $\operatorname{deg}_{ \pm}(\mathrm{MP})=\tilde{\Omega}\left(n^{1 / 3}\right)$.
- More generally, $\operatorname{deg}_{ \pm}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{b}\right) \geq \Omega\left(\min \left(b^{1 / 2}, t\right)\right)$.
- Proved by Minsky and Papert in 1969 via an ad hoc symmetrization argument.
- (Klivans-Servedio 2004): All polysize DNFs have threshold degree $\tilde{O}\left(n^{1 / 3}\right)$.

■ Yields fastest known algorithm for PAC learning DNFs.

The Minsky-Papert DNF

- Claim: $\operatorname{deg}_{ \pm}(\mathrm{MP})=\tilde{\Omega}\left(n^{1 / 3}\right)$.
- More generally, $\operatorname{deg}_{ \pm}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{b}\right) \geq \Omega\left(\min \left(b^{1 / 2}, t\right)\right)$.
- Proved by Minsky and Papert in 1969 via an ad hoc symmetrization argument.
- (Klivans-Servedio 2004): All polysize DNFs have threshold degree $\tilde{O}\left(n^{1 / 3}\right)$.

■ Yields fastest known algorithm for PAC learning DNFs.

- We will prove the matching upper bound:

$$
\operatorname{deg}_{ \pm}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{b}\right) \leq \tilde{O}\left(\min \left(b^{1 / 2}, t\right)\right)
$$

- First, we'll construct a sign-representation of degree $\tilde{O}\left(b^{1 / 2}\right)$ using Chebyshev approximations to AND_{b}.
- Then we'll construct a sign-representation of degree $\tilde{O}(t)$ using rational approximations to AND_{b}.

A Sign-Representation for $\mathrm{OR}_{t} \circ \mathrm{AND}_{b}$ of degree $\tilde{O}\left(b^{1 / 2}\right)$

- Let p_{1} be a (Chebyshev-derived) polynomial of degree $O(\sqrt{b \cdot \log t})$ approximating AND_{b} to error $\frac{1}{8 t}$.
■ Let $p=\frac{1}{2} \cdot\left(1-p_{1}\right)$.
- $p\left(x_{i}\right)$ is "close to 0 " if $\operatorname{AND}_{b}\left(x_{i}\right)$ is FALSE, and "close to 1 " otherwise.

A Sign-Representation for $\mathrm{OR}_{t} \circ \mathrm{AND}_{b}$ of degree $\tilde{O}\left(b^{1 / 2}\right)$

- Let p_{1} be a (Chebyshev-derived) polynomial of degree $O(\sqrt{b \cdot \log t})$ approximating AND_{b} to error $\frac{1}{8 t}$.
■ Let $p=\frac{1}{2} \cdot\left(1-p_{1}\right)$.
- $p\left(x_{i}\right)$ is "close to 0 " if $\operatorname{AND}_{b}\left(x_{i}\right)$ is FALSE, and "close to 1 " otherwise.
- Then $\frac{1}{2}-\sum_{i=1}^{t} p\left(x_{i}\right)$ sign-represents $\mathrm{OR}_{t} \circ \mathrm{AND}_{b}$.

A Sign-Representation for $\mathrm{OR}_{t} \circ \mathrm{AND}_{b}$ of degree $\tilde{O}(t)$

■ Fact: there exist p_{1}, q_{1} of degree $O(\log b \cdot \log t)$ such that

$$
\left|\operatorname{AND}_{b}(x)-\frac{p_{1}(x)}{q_{1}(x)}\right| \leq \frac{1}{8 t} \text { for all } x \in\{-1,1\}^{b} .
$$

$■$ Let $\frac{p(x)}{q(x)}=\frac{1}{2} \cdot\left(1-\frac{p_{1}(x)}{q_{1}(x)}\right)$.

A Sign-Representation for $\mathrm{OR}_{t} \circ \mathrm{AND}_{b}$ of degree $\tilde{O}(t)$

■ Fact: there exist p_{1}, q_{1} of degree $O(\log b \cdot \log t)$ such that

$$
\left|\operatorname{AND}_{b}(x)-\frac{p_{1}(x)}{q_{1}(x)}\right| \leq \frac{1}{8 t} \text { for all } x \in\{-1,1\}^{b} .
$$

- Let $\frac{p(x)}{q(x)}=\frac{1}{2} \cdot\left(1-\frac{p_{1}(x)}{q_{1}(x)}\right)$.

■ Then $\operatorname{sgn}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{b}(x)\right)=\frac{1}{2}-\sum_{i=1}^{t} \frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}$

A Sign-Representation for $\mathrm{OR}_{t} \circ \mathrm{AND}_{b}$ of degree $\tilde{O}(t)$

■ Fact: there exist p_{1}, q_{1} of degree $O(\log b \cdot \log t)$ such that

$$
\left|\operatorname{AND}_{b}(x)-\frac{p_{1}(x)}{q_{1}(x)}\right| \leq \frac{1}{8 t} \text { for all } x \in\{-1,1\}^{b} .
$$

- Let $\frac{p(x)}{q(x)}=\frac{1}{2} \cdot\left(1-\frac{p_{1}(x)}{q_{1}(x)}\right)$.

■ Then $\operatorname{sgn}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{b}(x)\right)=\frac{1}{2}-\sum_{i=1}^{t} \frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}$

$$
=\frac{1}{2}-\sum_{i=1}^{t} \frac{p\left(x_{i}\right) \cdot q\left(x_{i}\right)}{q^{2}\left(x_{i}\right)} .
$$

A Sign-Representation for $\mathrm{OR}_{t} \circ \mathrm{AND}_{b}$ of degree $\tilde{O}(t)$

■ Fact: there exist p_{1}, q_{1} of degree $O(\log b \cdot \log t)$ such that

$$
\left|\operatorname{AND}_{b}(x)-\frac{p_{1}(x)}{q_{1}(x)}\right| \leq \frac{1}{8 t} \text { for all } x \in\{-1,1\}^{b} .
$$

- Let $\frac{p(x)}{q(x)}=\frac{1}{2} \cdot\left(1-\frac{p_{1}(x)}{q_{1}(x)}\right)$.
- Then $\operatorname{sgn}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{b}(x)\right)=\frac{1}{2}-\sum_{i=1}^{t} \frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}$

$$
=\frac{1}{2}-\sum_{i=1}^{t} \frac{p\left(x_{i}\right) \cdot q\left(x_{i}\right)}{q^{2}\left(x_{i}\right)} .
$$

- Put the sum over common denominator $\prod_{t=1}^{t} q^{2}\left(x_{i}\right)$ to obtain:

$$
\begin{gathered}
\operatorname{sgn}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{b}(x)\right)=r(x) / \prod_{i=1}^{i} q^{2}\left(x_{i}\right) \\
\text { for } r(x):=\left(\frac{1}{2} \cdot \prod_{1 \leq i \leq t} q^{2}\left(x_{i}\right)\right)-\sum_{i=1}^{t}\left(p\left(x_{i}\right) \cdot q\left(x_{i}\right) \cdot \prod_{1 \leq i \leq t, i^{\prime} \neq i} q^{2}\left(x_{i^{\prime}}\right)\right) .
\end{gathered}
$$

Recent Progress on Lower Bounds: Beyond Symmetrization

Beyond Symmetrization

- Symmetrization is "lossy": in turning an n-variate poly p into a univariate poly $p^{\text {sym }}$, we throw away information about p.
- Challenge problem: What is $\widetilde{\operatorname{deg}}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{n / t}\right)$?

History of the OR-AND Tree

Theorem

$\operatorname{deg}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{n / t}\right)=\Theta\left(n^{1 / 2}\right)$.

History of the OR-AND Tree

Theorem

$$
\widetilde{\operatorname{deg}}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{n / t}\right)=\Theta\left(n^{1 / 2}\right)
$$

Tight Upper Bound of $O\left(n^{1 / 2}\right)$
[HMW03] via quantum algorithms
[BNRdW07] different proof of $O\left(n^{1 / 2} \log n\right)$ (via error reduction+composition) [She13] different proof of tight upper bound (via robust composition)

History of the OR-AND Tree

Theorem

$$
\widetilde{\operatorname{deg}}\left(\mathrm{OR}_{t} \circ \mathrm{AND}_{n / t}\right)=\Theta\left(n^{1 / 2}\right)
$$

Tight Upper Bound of $O\left(n^{1 / 2}\right)$
[HMW03] via quantum algorithms
[BNRdW07] different proof of $O\left(n^{1 / 2} \log n\right)$ (via error reduction+composition) [She13] different proof of tight upper bound (via robust composition)

Tight Lower Bound of $\Omega\left(n^{1 / 2}\right)$
[BT13] and [She13] via the method of dual polynomials

Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f ? Primal LP (Linear in ϵ and coefficients of p):

$$
\begin{aligned}
\min _{p, \epsilon} & \epsilon \\
\text { s.t. } & |p(x)-f(x)| \leq \epsilon \quad \text { for all } x \in\{-1,1\}^{n} \\
& \operatorname{deg} p \leq d
\end{aligned}
$$

Dual LP:

$$
\begin{aligned}
\max _{\psi} & \sum_{x \in\{-1,1\}^{n}} \psi(x) f(x) \\
\text { s.t. } & \sum_{x \in\{-1,1\}^{n}}|\psi(x)|=1 \\
& \sum_{x \in\{-1,1\}^{n}} \psi(x) q(x)=0 \quad \text { whenever } \operatorname{deg} q \leq d
\end{aligned}
$$

Dual Characterization of Approximate Degree

Theorem: $\operatorname{deg}_{\epsilon}(f)>d$ iff there exists a "dual polynomial" $\psi:\{-1,1\}^{n} \rightarrow \mathbb{R}$ with
(1) $\sum_{x \in\{-1,1\}^{n}} \psi(x) f(x)>\epsilon$
"high correlation with f "
(2) $\sum_{x \in\{-1,1\}^{n}}|\psi(x)|=1$
" L_{1}-norm 1 "
(3) $\sum_{x \in\{-1,1\}^{n}} \psi(x) q(x)=0$, when $\operatorname{deg} q \leq d \quad$ "pure high degree d "

A lossless technique. Strong duality implies any approximate degree lower bound can be witnessed by dual polynomial.

Dual Characterization of Approximate Degree

Theorem: $\operatorname{deg}_{\epsilon}(f)>d$ iff there exists a "dual polynomial" $\psi:\{-1,1\}^{n} \rightarrow \mathbb{R}$ with
(1) $\sum_{x \in\{-1,1\}^{n}} \psi(x) f(x)>\epsilon$
"high correlation with f "
(2) $\sum_{x \in\{-1,1\}^{n}}|\psi(x)|=1$
" L_{1}-norm 1 "
(3) $\quad \sum \psi(x) q(x)=0$, when $\operatorname{deg} q \leq d \quad$ "pure high degree d " $x \in\{-1,1\}^{n}$

Example: 2^{-n}. PARITY ${ }_{n}$ witnesses the fact that $\lim _{\epsilon}{ }_{1} \widetilde{\operatorname{deg}}_{\epsilon}\left(\right.$ PARITY $\left._{n}\right)=n$.

Goal: Construct an explicit dual polynomial $\psi_{\text {OR-AND }}$ for $\mathrm{OR}_{t} \circ \mathrm{AND}_{n / t}$

Constructing a Dual Polynomial

■ By [NS92], there are dual polynomials

$$
\begin{aligned}
& \psi_{\text {OUT }} \text { for } \widetilde{\operatorname{deg}}\left(\mathrm{OR}_{t}\right)=\Omega\left(t^{1 / 2}\right) \quad \text { and } \\
& \psi_{\mathbf{I N}} \text { for } \widetilde{\operatorname{deg}}\left(\mathrm{AND}_{n / t}\right)=\Omega\left((n / t)^{1 / 2}\right)
\end{aligned}
$$

■ Both [She13] and [BT13] combine $\psi_{\text {OUt }}$ and $\psi_{\text {IN }}$ to obtain a dual polynomial $\psi_{\text {OR-AND }}$ for $\mathrm{OR}_{t} \circ \mathrm{AND}_{n / t}$.
■ The combining method was proposed in earlier works [SZ09, She09, Lee09]. We call it dual block composition.

Dual Block Composition [SZ09, She09, Lee09]

$$
\psi_{\mathbf{O R}-\mathbf{A N D}}\left(x_{1}, \ldots, x_{n^{1 / 2}}\right):=C \cdot \psi_{\mathbf{O U T}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
$$

(C chosen to ensure $\psi_{\text {OR-AND }}$ has L_{1}-norm 1).

Dual Block Composition [SZ09, She09, Lee09]

$\psi_{\mathbf{O R}-\mathbf{A N D}}\left(x_{1}, \ldots, x_{n^{1 / 2}}\right):=C \cdot \psi_{\mathbf{O U T}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|$
(C chosen to ensure $\psi_{\text {OR-AND }}$ has L_{1}-norm 1).
Must verify:
$1 \psi_{\text {OR-AND }}$ has pure high degree $\geq t^{1 / 2} \cdot(n / t)^{1 / 2}=n^{1 / 2}$.
$2 \psi_{\text {OR-AND }}$ has high correlation with $\mathrm{OR}_{t} \circ \mathrm{AND}_{n / t}$.

Dual Block Composition [SZ09, She09, Lee09]

$\psi_{\mathbf{O R}-\mathbf{A N D}}\left(x_{1}, \ldots, x_{n^{1 / 2}}\right):=C \cdot \psi_{\mathbf{O U T}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|$
(C chosen to ensure $\psi_{\text {OR-AND }}$ has L_{1}-norm 1).
Must verify:
$1 \psi_{\text {OR-AND }}$ has pure high degree $\geq t^{1 / 2} \cdot(n / t)^{1 / 2}=n^{1 / 2} \cdot \checkmark$ [She09]
$2 \psi_{\text {OR-AND }}$ has high correlation with $\mathrm{OR}_{t} \circ \mathrm{AND}_{n / t}$. [BT13, She13]

Proving Hardness Amplification Theorems Via Dual Block Composition

Proving Hardness Amplification Theorems Via Dual Block Composition

These theorems show that $g \circ f$ is "harder to approximate" by low-degree polynomials than is f alone.

(Negative) One-Sided Approximate Degree

■ Negative one-sided approximate degree is an intermediate notion between approximate degree and threshold degree.

- A real polynomial p is a negative one-sided ϵ-approximation for f if

$$
\begin{gathered}
|p(x)-1|<\epsilon \quad \forall x \in f^{-1}(1) \\
p(x) \leq-1 \quad \forall x \in f^{-1}(-1)
\end{gathered}
$$

■ odeg $_{-, \epsilon}(f)=\min$ degree of a negative one-sided ϵ-approximation for f.

(Negative) One-Sided Approximate Degree

■ Negative one-sided approximate degree is an intermediate notion between approximate degree and threshold degree.

- A real polynomial p is a negative one-sided ϵ-approximation for f if

$$
\begin{gathered}
|p(x)-1|<\epsilon \quad \forall x \in f^{-1}(1) \\
p(x) \leq-1 \quad \forall x \in f^{-1}(-1)
\end{gathered}
$$

■ $\widetilde{\text { odeg }}_{-, \epsilon}(f)=\min$ degree of a negative one-sided ϵ-approximation for f.
■ Examples: $\widetilde{\text { odeg }}_{-, 1 / 3}\left(\mathrm{AND}_{n}\right)=\Theta(\sqrt{n})$; $\widetilde{\text { odeg }}-, 1 / 3\left(\mathrm{OR}_{n}\right)=1$.

Hardness-Amplification Theorems: Part 1

Theorem (BT13, She13)

Let f be a Boolean function with $\widetilde{\text { odeg }}_{-, 1 / 2}(f) \geq d$. Let $F=\mathrm{OR}_{t} \circ f$. Then $\widetilde{\operatorname{deg}}_{1 / 2}(F) \geq d \cdot \sqrt{t}$.

Hardness-Amplification Theorems: Part 1

Theorem (BT13, She13)

Let f be a Boolean function with odeg-,1/2 $(f) \geq d$. Let $F=\mathrm{OR}_{t} \circ f$. Then $\widetilde{\operatorname{deg}}_{1 / 2}(F) \geq d \cdot \sqrt{t}$.

Theorem (BT14)

Let f be a Boolean function with $\widetilde{\text { odeg }}_{-, 1 / 2}(f) \geq d$. Let $F=\mathrm{OR}_{t} \circ f$. Then $\widetilde{\operatorname{deg}_{1-2^{-t}}}(F) \geq d$.

Hardness-Amplification Theorems: Part 1

Theorem (BT13, She13)

Let f be a Boolean function with odeg ${ }_{-, 1 / 2}(f) \geq d$. Let $F=\mathrm{OR}_{t} \circ f$. Then $\widetilde{\operatorname{deg}}_{1 / 2}(F) \geq d \cdot \sqrt{t}$.

Theorem (BT14)

Let f be a Boolean function with odeg ${ }_{-, 1 / 2}(f) \geq d$. Let $F=\mathrm{OR}_{t} \circ f$. Then $\widetilde{\operatorname{deg}}_{1-2^{-t}}(F) \geq d$.

Theorem (She14)

Let f be a Boolean function with odeg ${ }_{-, 1 / 2}(f) \geq d$. Let $F=\mathrm{OR}_{t} \circ f$. Then $\operatorname{deg}_{ \pm}(F)=\Omega(\min \{d, t\})$.

Recent Theorems: Part 2

- For some applications in complexity theory, one needs an even simpler "hardness-amplifying function" than OR_{t}.

Recent Theorems: Part 2

- For some applications in complexity theory, one needs an even simpler "hardness-amplifying function" than OR_{t}.
- Define GAPMAJ ${ }_{t}:\{-1,1\}^{t} \rightarrow\{-1,1\}$ to be the partial function that equals:

■ -1 if at least $2 / 3$ of its inputs are -1
■ +1 if at least $2 / 3$ of its inputs are +1
■ undefined otherwise.

```
Theorem (BCHTV16)
Let \(f\) be a Boolean function with \(\widetilde{\operatorname{deg}}_{1 / 2}(f) \geq d\). Let \(F=\operatorname{GAPMAJ}_{t} \circ f\). Then \(\operatorname{deg}_{1-2^{-\Omega(t)}}(F) \geq d\) and \(\operatorname{deg}_{ \pm}(F) \geq \Omega(\min \{d, t\})\).
```


Proving the Theorem

Theorem (BCHTV16, BT14, BIVW16)
Let f be a Boolean function with $\widetilde{\operatorname{deg}}_{1 / 2}(f) \geq d$. Let $F=G A P M A J_{t} \circ f$. Then $\operatorname{deg}_{1-2^{-\Omega(t)}}(F) \geq d$.

Proving the Theorem

Theorem (BCHTV16, BT14, BIVW16)

Let f be a Boolean function with $\widetilde{\operatorname{deg}}_{1 / 2}(f) \geq d$. Let
$F=\operatorname{GAPMAJ}_{t} \circ f$. Then $\operatorname{deg}_{1-2^{-\Omega(t)}}(F) \geq d$.

- Let $\psi_{\mathbf{I N}}$ be any dual witness to the fact that $\widetilde{\operatorname{deg}_{1 / 2}}(f) \geq d$.

■ Define $\psi_{\text {OUt }}:\{-1,1\}^{t} \rightarrow \mathbb{R}$ via:

$$
\psi_{\mathbf{O U T}}(y)= \begin{cases}1 / 2 & \text { if } y=\text { ALL-FALSE } \\ -1 / 2 & \text { if } y=\text { ALL-TRUE } \\ 0 & \text { otherwise }\end{cases}
$$

■ Combine $\psi_{\text {OUt }}$ and $\psi_{\text {IN }}$ via dual block composition to obtain a dual witness ψ_{F} for F.

Proving the Theorem

Theorem (BCHTV16, BT14, BIVW16)

Let f be a Boolean function with $\operatorname{deg}_{1 / 2}(f) \geq d$. Let $F=G A P M A J_{t} \circ f$. Then $\operatorname{deg}_{1-2^{-\Omega(t)}}(F) \geq d$.

- Let $\psi_{\mathbf{I N}}$ be any dual witness to the fact that $\widetilde{\operatorname{deg}}_{1 / 2}(f) \geq d$.

■ Define $\psi_{\text {out }}:\{-1,1\}^{t} \rightarrow \mathbb{R}$ via:

$$
\psi_{\mathbf{O U T}}(y)= \begin{cases}1 / 2 & \text { if } y=\text { ALL-FALSE } \\ -1 / 2 & \text { if } y=\text { ALL-TRUE } \\ 0 & \text { otherwise }\end{cases}
$$

■ Combine $\psi_{\text {OUT }}$ and $\psi_{\text {IN }}$ via dual block composition to obtain a dual witness ψ_{F} for F.
Must verify:
$1 \psi_{F}$ has pure high degree d.
$2 \psi_{F}$ has correlation at least $1-2^{-\Omega(t)}$ with F.

Proving the Theorem: Pure High Degree

■ Notice $\psi_{\text {OUT }}$ is balanced (i.e., it has pure high degree 1).
■ So previous analysis shows ψ_{F} has pure high degree at least $1 \cdot d=d$.

Proving the Theorem: Correlation Analysis

$$
\begin{gathered}
\text { Recall: } F=\operatorname{GAPMAJ}_{t} \circ f \\
\psi_{F}\left(x_{1}, \ldots, x_{t}\right):=C \cdot \psi_{\mathbf{O U T}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
\end{gathered}
$$

Proving the Theorem: Correlation Analysis

$$
\begin{gathered}
\text { Recall: } F=\mathrm{GAPMAJ}_{t} \circ f \\
\psi_{F}\left(x_{1}, \ldots, x_{t}\right):=C \cdot \psi_{\mathbf{o u t}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
\end{gathered}
$$

■ Goal: Show $\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x) \geq 1-2^{-\Omega(t)}$.

Proving the Theorem: Correlation Analysis

$$
\begin{gathered}
\text { Recall: } F=\operatorname{GAPMAJ}_{t} \circ f \\
\psi_{F}\left(x_{1}, \ldots, x_{t}\right):=C \cdot \psi_{\mathbf{o u t}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
\end{gathered}
$$

■ Goal: Show $\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x) \geq 1-2^{-\Omega(t)}$.
■ Idea: Show

$$
\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x)=\sum_{y \in\{-1,1\}^{t}} \psi_{\mathbf{O U T}}(y) \cdot \operatorname{GAPMAJ}_{t}(y)-2^{-\Omega(t)}=1-2^{-\Omega(t)}
$$

Proving the Theorem: Correlation Analysis

$$
\begin{gathered}
\text { Recall: } F=\operatorname{GAPMAJ}_{t} \circ f \\
\psi_{F}\left(x_{1}, \ldots, x_{t}\right):=C \cdot \psi_{\mathbf{o u t}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
\end{gathered}
$$

■ Goal: Show $\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x) \geq 1-2^{-\Omega(t)}$.
■ Idea: Show

$$
\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x)=\sum_{y \in\{-1,1\}^{t}} \psi_{\mathbf{O U T}}(y) \cdot \operatorname{GAPMA}_{t}(y)-2^{-\Omega(t)}=1-2^{-\Omega(t)}
$$

■ Consider $y=\left(\operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{1}\right)\right), \ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{t}\right)\right)\right)=$ ALL-TRUE.

Proving the Theorem: Correlation Analysis

$$
\begin{gathered}
\text { Recall: } F=\operatorname{GAPMAJ}_{t} \circ f \\
\psi_{F}\left(x_{1}, \ldots, x_{t}\right):=C \cdot \psi_{\text {Out }}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
\end{gathered}
$$

■ Goal: Show $\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x) \geq 1-2^{-\Omega(t)}$.

- Idea: Show
$\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x)=\sum_{y \in\{-1,1\}^{t}} \psi_{\mathbf{O u t}}(y) \cdot \operatorname{GAPMA}_{t}(y)-2^{-\Omega(t)}=1-2^{-\Omega(t)}$.
■ Consider $y=\left(\operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{1}\right)\right), \ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{t}\right)\right)\right)=$ ALL-TRUE.
■ If a $\leq 1 / 3$ fraction of the coordinates y_{i} of y are "in error", then $F(x)=\psi_{\text {OUT }}(y)=-1 . \cdot($

Proving the Theorem: Correlation Analysis

$$
\begin{gathered}
\text { Recall: } F=\operatorname{GAPMAJ}_{t} \circ f \\
\psi_{F}\left(x_{1}, \ldots, x_{t}\right):=C \cdot \psi_{\mathbf{O U T}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
\end{gathered}
$$

■ Goal: Show $\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x) \geq 1-2^{-\Omega(t)}$.

- Idea: Show
$\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x)=\sum_{y \in\{-1,1\}^{t}} \psi_{\mathbf{O u t}}(y) \cdot \operatorname{GAPMAJ}_{t}(y)-2^{-\Omega(t)}=1-2^{-\Omega(t)}$.
■ Consider $y=\left(\operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{1}\right)\right), \ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{t}\right)\right)\right)=$ ALL-TRUE.
■ If a $\leq 1 / 3$ fraction of the coordinates y_{i} of y are "in error", then $F(x)=\psi_{\text {OUT }}(y)=-1 . \cdot($
- Any coordinate y_{i} is "in error" with probability $\leq 1 / 4$ under distribution $\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|$, since $\psi_{\mathbf{I N}}$ is well-correlated with f.

Proving the Theorem: Correlation Analysis

$$
\begin{gathered}
\text { Recall: } F=\operatorname{GAPMAJ}_{t} \circ f \\
\psi_{F}\left(x_{1}, \ldots, x_{t}\right):=C \cdot \psi_{\text {out }}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
\end{gathered}
$$

■ Goal: Show $\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x) \geq 1-2^{-\Omega(t)}$.

- Idea: Show
$\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x)=\sum_{y \in\{-1,1\}^{t}} \psi_{\mathbf{O u t}}(y) \cdot \operatorname{GAPMAJ}_{t}(y)-2^{-\Omega(t)}=1-2^{-\Omega(t)}$.
■ Consider $y=\left(\operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{1}\right)\right), \ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{t}\right)\right)\right)=$ ALL-TRUE.
■ If a $\leq 1 / 3$ fraction of the coordinates y_{i} of y are "in error", then $F(x)=\psi_{\mathbf{O U T}}(y)=-1$. ©
- Any coordinate y_{i} is "in error" with probability $\leq 1 / 4$ under distribution $\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|$, since $\psi_{\mathbf{I N}}$ is well-correlated with f.
- Under product distribution $\prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|$, a $\geq 1 / 3$ fraction of the coordinates of y are in error with probability only $2^{-\Omega(t)}$.

Proving the Theorem: Correlation Analysis

$$
\begin{gathered}
\text { Recall: } F=\operatorname{GAPMAJ}_{t} \circ f \\
\psi_{F}\left(x_{1}, \ldots, x_{t}\right):=C \cdot \psi_{\text {out }}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
\end{gathered}
$$

■ Goal: Show $\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x) \geq 1-2^{-\Omega(t)}$.

- Idea: Show
$\sum_{x \in\{-1,1\}^{n}} \psi_{F}(x) \cdot F(x)=\sum_{y \in\{-1,1\}^{t}} \psi_{\mathbf{O U T}}(y) \cdot \operatorname{GAPMA}_{t}(y)-2^{-\Omega(t)}=1-2^{-\Omega(t)}$.
■ Consider $y=\left(\operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{1}\right)\right), \ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{t}\right)\right)\right)=$ ALL-TRUE.
■ If a $\leq 1 / 3$ fraction of the coordinates y_{i} of y are "in error", then $F(x)=\psi_{\mathbf{O U T}}(y)=-1$. ©
- Any coordinate y_{i} is "in error" with probability $\leq 1 / 4$ under distribution $\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|$, since $\psi_{\mathbf{I N}}$ is well-correlated with f.
■ Under product distribution $\prod_{i=1}^{t}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|$, a $\geq 1 / 3$ fraction of the coordinates of y are in error with probability only $2^{-\Omega(t)}$.
■ Identical analysis applies for $y=$ ALL-FALSE.

Applying the Theorem: Oracle Separations for Statistical Zero Knowledge

Some Delicious Alphabet Soup

■ PP is the class of all languages solvable by polynomial time randomized algorithms that output the correct answer with probability strictly better than $1 / 2$.
■ SZK is the class of all languages with efficient interactive proofs, in which convincing proofs reveal no information other than their own validity.

Some Delicious Alphabet Soup

■ PP is the class of all languages solvable by polynomial time randomized algorithms that output the correct answer with probability strictly better than $1 / 2$.
■ SZK is the class of all languages with efficient interactive proofs, in which convincing proofs reveal no information other than their own validity.
■ Open Problem (Watrous, 2002): Give an oracle \mathcal{O} such that $\mathbf{P P}^{\mathcal{O}} \not \subset \mathbf{S Z K}^{\mathcal{O}}$.

Some Delicious Alphabet Soup

■ PP is the class of all languages solvable by polynomial time randomized algorithms that output the correct answer with probability strictly better than $1 / 2$.
■ SZK is the class of all languages with efficient interactive proofs, in which convincing proofs reveal no information other than their own validity.
■ Open Problem (Watrous, 2002): Give an oracle \mathcal{O} such that $\mathbf{P P}^{\mathcal{O}} \not \subset \mathbf{S Z K}^{\mathcal{O}}$.

- Remainder of the talk: Solving this problem using the Theorem just proved.
- This is the strongest relativized evidence that SZK contains intractable problems.

Some Delicious Alphabet Soup

■ PP is the class of all languages solvable by polynomial time randomized algorithms that output the correct answer with probability strictly better than $1 / 2$.
■ SZK is the class of all languages with efficient interactive proofs, in which convincing proofs reveal no information other than their own validity.
■ Open Problem (Watrous, 2002): Give an oracle \mathcal{O} such that $\mathbf{P P}^{\mathcal{O}} \not \subset \mathbf{S Z K}^{\mathcal{O}}$.

- Remainder of the talk: Solving this problem using the Theorem just proved.
- This is the strongest relativized evidence that SZK contains intractable problems.
- Other consequences of the Theorem: $\mathbf{S Z K}^{\mathcal{O}} \not \subset \mathbf{P Z K}^{\mathcal{O}}$, NISZK $^{\mathcal{O}} \not \subset$ NIPZK $^{\mathcal{O}}, \mathbf{P Z K}^{\mathcal{O}} \not \subset \mathbf{c o P Z K}^{\mathcal{O}}$, and more.

Query (Decision Tree) Complexity

■ Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a function and $x \in\{-1,1\}^{n}$ be an input to f.

- Goal: Compute $f(x)$ by reading as few bits of x as possible.

Query (Decision Tree) Complexity

■ Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a function and $x \in\{-1,1\}^{n}$ be an input to f.

- Goal: Compute $f(x)$ by reading as few bits of x as possible.
- The $\mathbf{P} \mathbf{P}^{\text {dt }}$ cost of f is the least d such that there is some randomized algorithm making at most d queries that outputs $f(x)$ with probability at least $1 / 2+2^{-d}$.

Query (Decision Tree) Complexity

■ Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a function and $x \in\{-1,1\}^{n}$ be an input to f.

- Goal: Compute $f(x)$ by reading as few bits of x as possible.
- The $\mathbf{P P}^{\text {dt }}$ cost of f is the least d such that there is some randomized algorithm making at most d queries that outputs $f(x)$ with probability at least $1 / 2+2^{-d}$.
- The $\mathbf{S Z K}^{\mathbf{d t}}$ cost of f is the least d such that there is an interactive proof for the claim that $f(x)=-1$, where:
- The total communication between prover and verifier is $\leq d$.
- The verifier makes $\leq d$ queries to x.
- A convincing proof reveals nothing to the verifier (other than $f(x)=-1$) that the verifier could not have learned by making d queries to f without ever talking to the prover.

Query (Decision Tree) Complexity

■ Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a function and $x \in\{-1,1\}^{n}$ be an input to f.

- Goal: Compute $f(x)$ by reading as few bits of x as possible.
- The $\mathbf{P} \mathbf{P}^{\mathrm{dt}}$ cost of f is the least d such that there is some randomized algorithm making at most d queries that outputs $f(x)$ with probability at least $1 / 2+2^{-d}$.
- The $\mathbf{S Z K}^{\mathbf{d t}}$ cost of f is the least d such that there is an interactive proof for the claim that $f(x)=-1$, where:
- The total communication between prover and verifier is $\leq d$.
- The verifier makes $\leq d$ queries to x.
- A convincing proof reveals nothing to the verifier (other than $f(x)=-1$) that the verifier could not have learned by making d queries to f without ever talking to the prover.

■ Fact: To give an oracle \mathcal{O} s.t. $\mathbf{S Z K}^{\mathcal{O}} \not \subset \mathbf{P P}^{\mathcal{O}}$, it's enough to give an f s.t. $\mathbf{S Z K}{ }^{\mathbf{d t}}(f)=O(\log n)$ and $\mathbf{P} \mathbf{P}^{\mathbf{d t}}(f)=n^{\Omega(1)}$.

Connecting PP ${ }^{\mathrm{dt}}$ and Approximate Degree

Connecting PP ${ }^{\mathrm{dt}}$ and Approximate Degree

- Fact: $\mathbf{P P}^{\mathbf{d t}}(f) \leq d \Longleftrightarrow \widetilde{\operatorname{deg}}_{\epsilon}(f) \leq d$ for $\epsilon=1-2^{-d}$.

Connecting $\mathrm{PP}^{\mathrm{dt}}$ and Approximate Degree

- Fact: $\mathbf{P P}^{\mathrm{dt}}(f) \leq d \Longleftrightarrow \widetilde{\operatorname{deg}}_{\epsilon}(f) \leq d$ for $\epsilon=1-2^{-d}$.
- Idea for \Longrightarrow : For any randomized algorithm \mathcal{A} making at most T queries to x, there is a degree T polynomial p such that $p(x)=\operatorname{Pr}[\mathcal{A}(x)=-1]$.

Connecting $\mathrm{PP}^{\mathrm{dt}}$ and Approximate Degree

■ Fact: $\mathbf{P P}^{\mathrm{dtt}}(f) \leq d \Longleftrightarrow \widetilde{\operatorname{deg}}_{\epsilon}(f) \leq d$ for $\epsilon=1-2^{-d}$.

- Idea for \Longrightarrow : For any randomized algorithm \mathcal{A} making at most T queries to x, there is a degree T polynomial p such that $p(x)=\operatorname{Pr}[\mathcal{A}(x)=-1]$.
- If $\mathbf{P} \mathbf{P}^{\mathbf{d t}}(f)=d$, then there is a d-query algorithm \mathcal{A} such that

$$
\left\{\begin{array}{l}
f(x)=1 \Longrightarrow \operatorname{Pr}[\mathcal{A}(x)=1] \geq 1 / 2+2^{-d} \\
f(x)=-1 \Longrightarrow \operatorname{Pr}[\mathcal{A}(x)=1] \leq 1 / 2-2^{-d}
\end{array}\right.
$$

Connecting $\mathrm{PP}^{\mathrm{dt}}$ and Approximate Degree

■ Fact: $\mathbf{P P}^{\mathrm{dtt}}(f) \leq d \Longleftrightarrow \widetilde{\operatorname{deg}}_{\epsilon}(f) \leq d$ for $\epsilon=1-2^{-d}$.
■ Idea for \Longrightarrow : For any randomized algorithm \mathcal{A} making at most T queries to x, there is a degree T polynomial p such that $p(x)=\operatorname{Pr}[\mathcal{A}(x)=-1]$.

- If $\mathbf{P} \mathbf{P}^{\mathbf{d t}}(f)=d$, then there is a d-query algorithm \mathcal{A} such that

$$
\left\{\begin{array}{l}
f(x)=1 \Longrightarrow \operatorname{Pr}[\mathcal{A}(x)=1] \geq 1 / 2+2^{-d} \\
f(x)=-1 \Longrightarrow \operatorname{Pr}[\mathcal{A}(x)=1] \leq 1 / 2-2^{-d}
\end{array}\right.
$$

- So there is a degree d polynomial p such that:

$$
\left\{\begin{array}{l}
f(x)=1 \Longrightarrow p(x)-1 / 2 \in\left[2^{-d}, 1\right] \\
f(x)=-1 \Longrightarrow p(x)-1 / 2 \in\left[-1,2^{-d}\right]
\end{array}\right.
$$

Summary So Far

Giving an oracle O such that $\boldsymbol{S Z} \boldsymbol{K}^{\boldsymbol{O}} \nsubseteq \boldsymbol{P P}^{\boldsymbol{O}}$

Giving a function f such that $\boldsymbol{S Z} \boldsymbol{K}^{\mathrm{dt}}(f)=0(\log n)$ and $\boldsymbol{P} \boldsymbol{P}^{\mathrm{dt}}(f)=n^{\Omega(1)}$

Giving a function f such that $\boldsymbol{S Z} \boldsymbol{K}^{\text {dt }}(f)=O(\log n)$ and $\widetilde{\operatorname{deg}}_{1-2^{-d}}(f) \geq d$ for some $d=n^{\Omega(1)}$

A Problem in SZK ${ }^{\text {dt }}$ With Large (1/3)-Approximate Degree

- The Permutation Testing Problem (PTP) interprets its input as a list of N numbers $\left(x_{1}, \ldots, x_{N}\right)$ from range $\{1, \ldots, N\}$.
- PTP $(x)=-1$ if every number between 1 and N appears exactly once in the list.
- PTP $(x)=1$ if at least $N / 2$ range items do not appear in the list.
- $\mathrm{PTP}(x)$ is undefined otherwise.

A Problem in SZK ${ }^{\text {dt }}$ With Large (1/3)-Approximate Degree

- The Permutation Testing Problem (PTP) interprets its input as a list of N numbers $\left(x_{1}, \ldots, x_{N}\right)$ from range $\{1, \ldots, N\}$.
- PTP $(x)=-1$ if every number between 1 and N appears exactly once in the list.
- PTP $(x)=1$ if at least $N / 2$ range items do not appear in the list.
- $\mathrm{PTP}(x)$ is undefined otherwise.
- Fact: $\mathbf{S Z K}^{\mathbf{d t}}(\mathrm{PTP})=O(\log n)$.
- Idea: Verifier picks a range item j at random, and demands that prover provide an i such that $x_{i}=j$.

A Problem in SZK $^{\text {dt }}$ With Large (1/3)-Approximate Degree

- The Permutation Testing Problem (PTP) interprets its input as a list of N numbers $\left(x_{1}, \ldots, x_{N}\right)$ from range $\{1, \ldots, N\}$.
- $\operatorname{PTP}(x)=-1$ if every number between 1 and N appears exactly once in the list.
- PTP $(x)=1$ if at least $N / 2$ range items do not appear in the list.
- $\mathrm{PTP}(x)$ is undefined otherwise.

■ Fact: $\mathbf{S Z K}^{\mathbf{d t}}(\mathrm{PTP})=O(\log n)$.

- Idea: Verifier picks a range item j at random, and demands that prover provide an i such that $x_{i}=j$.
- Fact: $\widetilde{\operatorname{deg}}(P T P)=\tilde{\Theta}\left(n^{1 / 3}\right)$ [Aaronson 2012, AS 2004].

The Punchline: A Problem Separating SZK ${ }^{\mathrm{dt}}$ And PPdt

- Recall: we seek a function f such that: $\mathbf{S Z K}^{\mathbf{d t}}(f)=O(\log n)$ and $\operatorname{deg}_{1-2^{-d}}(f)=\Omega(d)$, for some $d=n^{\Omega(1)}$.
- Recall: $\mathbf{S Z K}^{\text {dt }}(\mathrm{PTP})=O(\log n)$, and $\widetilde{\operatorname{deg}}(\mathrm{PTP})=\tilde{\Theta}\left(n^{1 / 3}\right)$.

The Punchline: A Problem Separating SZK ${ }^{\mathrm{dt}}$ And PPdt

- Recall: we seek a function f such that: $\mathbf{S Z K}^{\mathbf{d t}}(f)=O(\log n)$ and $\widetilde{\operatorname{deg}}_{1-2^{-d}}(f)=\Omega(d)$, for some $d=n^{\Omega(1)}$.
■ Recall: $\mathbf{S Z K}^{\text {dt }}(\mathrm{PTP})=O(\log n)$, and $\widetilde{\operatorname{deg}}(\mathrm{PTP})=\tilde{\Theta}\left(n^{1 / 3}\right)$.
■ But $\operatorname{deg}_{1-1 / n}(\mathrm{PTP})=O(\log n)$.
■ Can we turn PTP into a function F such that $\mathbf{S Z K}^{\text {dt }}(F)=O(\log n)$, yet $\widetilde{\operatorname{deg}}_{1-2^{-d}}(F) \geq d$ for $d=n^{\Omega(1)}$?

The Punchline: A Problem Separating SZK ${ }^{\mathrm{dt}}$ And PPdt

- Recall: we seek a function f such that: $\mathbf{S Z K}^{\mathbf{d t}}(f)=O(\log n)$ and $\widetilde{\operatorname{deg}}_{1-2^{-d}}(f)=\Omega(d)$, for some $d=n^{\Omega(1)}$.
- Recall: $\mathbf{S Z K}^{\mathbf{d t}}(\mathrm{PTP})=O(\log n)$, and $\widetilde{\operatorname{deg}}(\mathrm{PTP})=\tilde{\Theta}\left(n^{1 / 3}\right)$.

■ But $\operatorname{deg}_{1-1 / n}(\mathrm{PTP})=O(\log n)$.
©
■ Can we turn PTP into a function F such that $\mathbf{S Z K}^{\text {dt }}(F)=O(\log n)$, yet $\widetilde{\operatorname{deg}}_{1-2^{-d}}(F) \geq d$ for $d=n^{\Omega(1)}$?
■ Yes! Let $F=$ GAPMAJ $_{n^{1 / 4}} \circ \mathrm{PTP}_{n^{3 / 4}}$.

The Punchline: A Problem Separating SZK ${ }^{\mathrm{dt}}$ And PPdt

- Recall: we seek a function f such that: $\mathbf{S Z K}^{\mathbf{d t}}(f)=O(\log n)$ and $\widetilde{\operatorname{deg}}_{1-2^{-d}}(f)=\Omega(d)$, for some $d=n^{\Omega(1)}$.
- Recall: $\mathbf{S Z K}^{\mathbf{d t}}(\mathrm{PTP})=O(\log n)$, and $\widetilde{\operatorname{deg}}(\mathrm{PTP})=\tilde{\Theta}\left(n^{1 / 3}\right)$.

■ But $\operatorname{deg}_{1-1 / n}(\mathrm{PTP})=O(\log n)$.

- Can we turn PTP into a function F such that $\mathbf{S Z K}^{\text {dt }}(F)=O(\log n)$, yet $\widetilde{\operatorname{deg}}_{1-2^{-d}}(F) \geq d$ for $d=n^{\Omega(1)}$?
■ Yes! Let $F=$ GAPMAJ $_{n^{1 / 4}} \circ \mathrm{PTP}_{n^{3 / 4}}$.
- Claim 1: $\widetilde{\operatorname{deg}}_{1-2^{-n^{1 / 4}}}(F)=\Omega\left(n^{1 / 4}\right)$.

■ Proof: By Theorem from earlier.

The Punchline: A Problem Separating SZK ${ }^{\mathrm{dt}}$ And PP ${ }^{\mathrm{dt}}$

■ Recall: we seek a function f such that: $\mathbf{S Z K}^{\mathbf{d t}}(f)=O(\log n)$ and $\widetilde{\operatorname{deg}}_{1-2^{-d}}(f)=\Omega(d)$, for some $d=n^{\Omega(1)}$.

- Recall: $\mathbf{S Z K}^{\text {dt }}(\mathrm{PTP})=O(\log n)$, and $\widetilde{\operatorname{deg}}(\mathrm{PTP})=\tilde{\Theta}\left(n^{1 / 3}\right)$.

■ But $\operatorname{deg}_{1-1 / n}(\mathrm{PTP})=O(\log n)$.

- Can we turn PTP into a function F such that $\mathbf{S Z K}^{\mathrm{dt}}(F)=O(\log n)$, yet $\widetilde{\operatorname{deg}}_{1-2^{-d}}(F) \geq d$ for $d=n^{\Omega(1)}$?
■ Yes! Let $F=$ GAPMAJ $_{n^{1 / 4}} \circ$ PTP $_{n^{3 / 4}}$.
- Claim 1: $\widetilde{\operatorname{deg}}_{1-2^{-n^{1 / 4}}}(F)=\Omega\left(n^{1 / 4}\right)$.
- Proof: By Theorem from earlier.
- Claim 2: $\mathbf{S Z K}^{\mathbf{d t}}(F)=O(\log n)$.
- Rough Intuition: On input $x=\left(x_{1}, \ldots, x_{n^{1 / 4}}\right)$ to F, Verifier picks a random $i \in\left\{1, \ldots, n^{1 / 4}\right\}$, and prover proves that PTP $\left(x_{i}\right)=-1$ in zero-knowledge.
- i.e., SZK $^{\text {dt }}$ is closed under composition with GAPMAJ.

Summary

- Many important hardness amplifications for approximate degree have been proven in recent years using the method of dual polynomials.
- These theorems show that the block-composed function $g \circ f$ is harder to approximate than f alone, even for very simple "hardness amplifiers" g.
- Most of the proofs use dual block composition and its variants.

Summary

■ Many important hardness amplifications for approximate degree have been proven in recent years using the method of dual polynomials.

- These theorems show that the block-composed function $g \circ f$ is harder to approximate than f alone, even for very simple "hardness amplifiers" g.
- Most of the proofs use dual block composition and its variants.
- These results led to:
- Improved understanding of how subclasses of the polynomial hierarchy (e.g. SZK), and AC^{0} circuits, can compute hard functions in query, communication, and relativized settings.
- Secret-sharing schemes with reconstruction procedures in AC^{0}.
- and more.

Summary

- Many important hardness amplifications for approximate degree have been proven in recent years using the method of dual polynomials.
- These theorems show that the block-composed function $g \circ f$ is harder to approximate than f alone, even for very simple "hardness amplifiers" g.
- Most of the proofs use dual block composition and its variants.
- These results led to:
- Improved understanding of how subclasses of the polynomial hierarchy (e.g. SZK), and AC^{0} circuits, can compute hard functions in query, communication, and relativized settings.
- Secret-sharing schemes with reconstruction procedures in AC^{0}.
- and more.

■ Next talk by Mark Bun: beyond block-composed functions.

Thank you!

