Approximate Degree: A Survey

Justin Thaler¹

Georgetown University

Boolean function
$$f: \{-1,1\}^n \to \{-1,1\}$$

AND_n $(x) = \begin{cases} -1 & (\mathsf{TRUE}) & \text{if } x = (-1)^n \\ 1 & (\mathsf{FALSE}) & \text{otherwise} \end{cases}$

• A real polynomial $p \epsilon$ -approximates f if

$$|p(x) - f(x)| < \epsilon \quad \forall x \in \{-1, 1\}^n$$

• $\widetilde{\deg}_{\epsilon}(f) = \text{minimum degree needed to } \epsilon\text{-approximate } f$ • $\widetilde{\deg}(f) := \deg_{1/3}(f)$ is the approximate degree of f

Definition

Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function. A polynomial $p \text{ sign-represents } f \text{ if } \operatorname{sgn}(p(x)) = f(x) \text{ for all } x \in \{-1,1\}^n$.

Definition

The threshold degree of f is $\min \deg(p)$, where the minimum is over all sign-representations of f.

• An equivalent definition of threshold degree is $\lim_{\epsilon \nearrow 1} \widetilde{\deg}_{\epsilon}(f)$.

Upper bounds on $\widetilde{\deg}_{\epsilon}(f)$ and $\deg_{\pm}(f)$ yield efficient learning algorithms.

- $\epsilon \approx 1/3$: Agnostic Learning [KKMS05]
- $\epsilon \approx 1 2^{-n^{\delta}}$: Attribute-Efficient Learning [KS04, STT12]
- $\epsilon \to 1$ (i.e., $\deg_{\pm}(f)$ upper bounds): PAC learning [KS01]

Upper bounds on $\widetilde{\deg}_{\epsilon}(f)$ and $\deg_{\pm}(f)$ yield efficient learning algorithms.

- $\epsilon \approx 1/3$: Agnostic Learning [KKMS05]
- $\epsilon \approx 1 2^{-n^{\delta}}$: Attribute-Efficient Learning [KS04, STT12]
- $\epsilon \to 1$ (i.e., $\deg_{\pm}(f)$ upper bounds): PAC learning [KS01]
- Upper bounds on deg_{1/3}(f) also imply fast algorithms for differentially private data release [TUV12, CTUW14].

Upper bounds on $\widetilde{\deg}_{\epsilon}(f)$ and $\deg_{\pm}(f)$ yield efficient learning algorithms.

- $\epsilon \approx 1/3$: Agnostic Learning [KKMS05]
- $\epsilon \approx 1 2^{-n^{\delta}}$: Attribute-Efficient Learning [KS04, STT12]
- $\epsilon \to 1$ (i.e., $\deg_{\pm}(f)$ upper bounds): PAC learning [KS01]
- Upper bounds on deg_{1/3}(f) also imply fast algorithms for differentially private data release [TUV12, CTUW14].
- Upper bounds on $\deg_{\epsilon}(f)$ and $\deg_{\pm}(f)$ for small formulas and threshold circuits f yield state of the art formula size and threshold circuit lower bounds [Tal17, Forster02].

Lower bounds on $\widetilde{\deg}_{\epsilon}(f)$ and $\deg_{\pm}(f)$ yield lower bounds on:

- Oracle Separations [Bei94, BCHTV16]
- Quantum query complexity [BBCMW98]
- Communication complexity [She08, SZ08, CA08, LS08, She12]
 - Lower bounds hold for a communication problem **related** to *f*.
 - Via, e.g., a technique called the Pattern Matrix Method [She08].

Lower bounds on $\widetilde{\deg}_{\epsilon}(f)$ and $\deg_{\pm}(f)$ yield lower bounds on:

- Oracle Separations [Bei94, BCHTV16]
- Quantum query complexity [BBCMW98]
- Communication complexity [She08, SZ08, CA08, LS08, She12]
 - Lower bounds hold for a communication problem **related** to *f*.
 - Via, e.g., a technique called the Pattern Matrix Method [She08].

■
$$\epsilon \approx 1/3 \Longrightarrow \mathbf{BQP^{cc}}$$
 lower bounds.
■ $\epsilon \approx 1 - 2^{-n^{\delta}} \Longrightarrow : \mathbf{PP^{cc}}$ lower bounds
■ $\epsilon \to 1$ (i.e., $\deg_{\pm}(f)$ lower bounds) $\Longrightarrow \mathbf{UPP^{cc}}$ lower bounds.

Lower bounds on $\widetilde{\deg}_{\epsilon}(f)$ and $\deg_{\pm}(f)$ yield lower bounds on:

- Oracle Separations [Bei94, BCHTV16]
- Quantum query complexity [BBCMW98]
- Communication complexity [She08, SZ08, CA08, LS08, She12]
 - Lower bounds hold for a communication problem **related** to *f*.
 - Via, e.g., a technique called the Pattern Matrix Method [She08].

■ $\epsilon \approx 1/3 \Longrightarrow \mathbf{BQP^{cc}}$ lower bounds. ■ $\epsilon \approx 1 - 2^{-n^{\delta}} \Longrightarrow : \mathbf{PP^{cc}}$ lower bounds ■ $\epsilon \to 1$ (i.e., $\deg_{\pm}(f)$ lower bounds) $\Longrightarrow \mathbf{UPP^{cc}}$ lower bounds.

■ Lower bounds on deg_e(f) and deg_±(f) also yield efficient secret-sharing schemes [BIVW16]

Example 1: The Approximate Degree of AND_n

Example: What is the Approximate Degree of AND_n ?

 $\widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Theta(\sqrt{n}).$

- Upper bound: Use Chebyshev Polynomials.
- Markov's Inequality: Let G(t) be a univariate polynomial s.t. $\deg(G) \le d$ and $\sup_{t \in [-1,1]} |G(t)| \le 1$. Then

$$\sup_{t \in [-1,1]} |G'(t)| \le d^2.$$

• Chebyshev polynomials are the extremal case.

Example: What is the Approximate Degree of AND_n ?

 $\widetilde{\operatorname{deg}}(\operatorname{AND}_n) = O(\sqrt{n}).$

After shifting a scaling, can turn degree $O(\sqrt{n})$ Chebyshev polynomial into a univariate polynomial Q(t) that looks like:

Define n-variate polynomial p via $p(x) = Q(\sum_{i=1}^{n} x_i/n)$.
Then $|p(x) - AND_n(x)| \le 1/3 \quad \forall x \in \{-1, 1\}^n$.

Example: What is the Approximate Degree of AND_n ?

[NS92] $\widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Omega(\sqrt{n}).$

- Lower bound: Use symmetrization.
- Suppose $|p(x) AND_n(x)| \le 1/3$ $\forall x \in \{-1, 1\}^n$.
- There is a way to turn p into a <u>univariate</u> polynomial p^{sym} that looks like this:

- Claim 1: $\deg(p^{sym}) \leq \deg(p)$.
- Claim 2: Markov's inequality $\Longrightarrow \deg(p^{sym}) = \Omega(n^{1/2}).$

- Fact: $\deg_{\pm}(AND_n) = 1$.
- Proof: AND_n(x) = sgn(p(x)) for $p(x) = n 1 + \sum_{i=1}^{n} x_i$.
- In fact, p(x)/n approximates AND_n to error 1 1/n.

Example 2: The Threshold Degree of the Minsky-Papert DNF

• The Minsky-Papert DNF is $MP(x) := OR_{n^{1/3}} \circ AND_{n^{2/3}}$.

The Minsky-Papert DNF

- Claim: $\deg_{\pm}(\mathsf{MP}) = \tilde{\Omega}(n^{1/3}).$
- More generally, $\deg_{\pm}(\operatorname{OR}_t \circ \operatorname{AND}_b) \ge \Omega(\min(b^{1/2}, t)).$
- Proved by Minsky and Papert in 1969 via an ad hoc symmetrization argument.

The Minsky-Papert DNF

- Claim: $\deg_{\pm}(\mathsf{MP}) = \tilde{\Omega}(n^{1/3}).$
- More generally, $\deg_{\pm}(\operatorname{OR}_t \circ \operatorname{AND}_b) \ge \Omega(\min(b^{1/2}, t)).$
- Proved by Minsky and Papert in 1969 via an ad hoc symmetrization argument.
- (Klivans-Servedio 2004): <u>All</u> polysize DNFs have threshold degree $\tilde{O}(n^{1/3})$.

Yields fastest known algorithm for PAC learning DNFs.

The Minsky-Papert DNF

- Claim: $\deg_{\pm}(\mathsf{MP}) = \tilde{\Omega}(n^{1/3}).$
- More generally, $\deg_{\pm}(\operatorname{OR}_t \circ \operatorname{AND}_b) \ge \Omega(\min(b^{1/2}, t)).$
- Proved by Minsky and Papert in 1969 via an ad hoc symmetrization argument.
- (Klivans-Servedio 2004): <u>All</u> polysize DNFs have threshold degree $\tilde{O}(n^{1/3})$.
 - Yields fastest known algorithm for PAC learning DNFs.
- We will prove the matching upper bound:

$$\deg_{\pm}(\operatorname{OR}_t \circ \operatorname{AND}_b) \le \tilde{O}(\min(b^{1/2}, t)).$$

- First, we'll construct a sign-representation of degree $\tilde{O}(b^{1/2})$ using Chebyshev approximations to AND_b.
- Then we'll construct a sign-representation of degree O(t) using rational approximations to AND_b.

A Sign-Representation for $\operatorname{OR}_t \circ \operatorname{AND}_b$ of degree $ilde{O}(b^{1/2})$

• Let p_1 be a (Chebyshev-derived) polynomial of degree $O\left(\sqrt{b \cdot \log t}\right)$ approximating AND_b to error $\frac{1}{8t}$.

• Let
$$p = \frac{1}{2} \cdot (1 - p_1)$$
.

■ *p*(*x_i*) is "close to 0" if AND_b(*x_i*) is FALSE, and "close to 1" otherwise.

A Sign-Representation for $\mathrm{OR}_t \circ \mathrm{AND}_b$ of degree $ilde{O}(b^{1/2})$

• Let p_1 be a (Chebyshev-derived) polynomial of degree $O\left(\sqrt{b \cdot \log t}\right)$ approximating AND_b to error $\frac{1}{8t}$.

• Let
$$p = \frac{1}{2} \cdot (1 - p_1)$$
.

- *p*(*x_i*) is "close to 0" if AND_b(*x_i*) is FALSE, and "close to 1" otherwise.
- Then $\frac{1}{2} \sum_{i=1}^{t} p(x_i)$ sign-represents $OR_t \circ AND_b$.

A Sign-Representation for $OR_t \circ AND_b$ of degree $\tilde{O}(t)$

Fact: there exist
$$p_1, q_1$$
 of degree $O(\log b \cdot \log t)$ such that
$$\left| \operatorname{AND}_b(x) - \frac{p_1(x)}{q_1(x)} \right| \leq \frac{1}{8t} \text{ for all } x \in \{-1, 1\}^b.$$
Let $\frac{p(x)}{q(x)} = \frac{1}{2} \cdot \left(1 - \frac{p_1(x)}{q_1(x)}\right).$

A Sign-Representation for $\operatorname{OR}_t \circ \operatorname{AND}_b$ of degree $\widetilde{O}(t)$

Fact: there exist p_1, q_1 of degree $O(\log b \cdot \log t)$ such that $\left| \operatorname{AND}_b(x) - \frac{p_1(x)}{q_1(x)} \right| \leq \frac{1}{8t} \text{ for all } x \in \{-1, 1\}^b.$ Let $\frac{p(x)}{q(x)} = \frac{1}{2} \cdot \left(1 - \frac{p_1(x)}{q_1(x)}\right).$ Then $\operatorname{sgn}(\operatorname{OR}_t \circ \operatorname{AND}_b(x)) = \frac{1}{2} - \sum_{i=1}^t \frac{p(x_i)}{q(x_i)}$

A Sign-Representation for $OR_t \circ AND_b$ of degree $\tilde{O}(t)$

Fact: there exist p_1, q_1 of degree $O(\log b \cdot \log t)$ such that $\left| \operatorname{AND}_b(x) - \frac{p_1(x)}{q_1(x)} \right| \leq \frac{1}{8t} \text{ for all } x \in \{-1, 1\}^b.$ Let $\frac{p(x)}{q(x)} = \frac{1}{2} \cdot \left(1 - \frac{p_1(x)}{q_1(x)}\right).$ Then $\operatorname{sgn}(\operatorname{OR}_t \circ \operatorname{AND}_b(x)) = \frac{1}{2} - \sum_{i=1}^t \frac{p(x_i)}{q(x_i)}$ $= \frac{1}{2} - \sum_{i=1}^t \frac{p(x_i) \cdot q(x_i)}{q^2(x_i)}.$

A Sign-Representation for $OR_t \circ AND_b$ of degree O(t)

Fact: there exist p_1, q_1 of degree $O(\log b \cdot \log t)$ such that $\left| \operatorname{AND}_{b}(x) - \frac{p_{1}(x)}{q_{1}(x)} \right| \leq \frac{1}{8t} \text{ for all } x \in \{-1, 1\}^{b}.$ • Let $\frac{p(x)}{q(x)} = \frac{1}{2} \cdot \left(1 - \frac{p_1(x)}{q_1(x)}\right)$. • Then $\operatorname{sgn}(\operatorname{OR}_t \circ \operatorname{AND}_b(x)) = \frac{1}{2} - \sum_{i=1}^t \frac{p(x_i)}{q(x_i)}$ $= \frac{1}{2} - \sum_{i=1}^{l} \frac{p(x_i) \cdot q(x_i)}{q^2(x_i)}.$ • Put the sum over common denominator $\prod_{i=1}^t q^2(x_i)$ to obtain: $\operatorname{sgn}(\operatorname{OR}_t \circ \operatorname{AND}_b(x)) = r(x) / \prod q^2(x_i)$

$$\text{for } r(x) := \left(\frac{1}{2} \cdot \prod_{1 \leq i \leq t} q^2(x_i)\right) - \sum_{i=1}^t \left(p(x_i) \cdot q(x_i) \cdot \prod_{1 \leq i \leq t, i' \neq i} q^2(x_{i'})\right)$$

Recent Progress on Lower Bounds: Beyond Symmetrization

Beyond Symmetrization

- Symmetrization is "lossy": in turning an *n*-variate poly *p* into a univariate poly *p*^{sym}, we throw away information about *p*.
- Challenge problem: What is $deg(OR_t \circ AND_{n/t})$?

History of the OR-AND Tree

Theorem

$$\widetilde{\operatorname{deg}}(\mathsf{OR}_t \circ \mathsf{AND}_{n/t}) = \Theta(n^{1/2}).$$

Theorem

 $\widetilde{\operatorname{deg}}(\mathsf{OR}_t \circ \mathsf{AND}_{n/t}) = \Theta(n^{1/2}).$

Tight Upper Bound of ${\cal O}(n^{1/2})$

 $\begin{array}{ll} [\mathsf{HMW03}] & \mathsf{via} \ \mathsf{quantum} \ \mathsf{algorithms} \\ [\mathsf{BNRdW07}] & \mathsf{different} \ \mathsf{proof} \ \mathsf{of} \ O(n^{1/2}\log n) \ \mathsf{(via} \ \mathsf{error} \ \mathsf{reduction} + \mathbf{composition}) \\ [\mathsf{She13}] & \mathsf{different} \ \mathsf{proof} \ \mathsf{of} \ \mathsf{tight} \ \mathsf{upper} \ \mathsf{bound} \ \mathsf{(via} \ \mathbf{robust} \ \mathbf{composition}) \end{array}$

Theorem

 $\widetilde{\operatorname{deg}}(\mathsf{OR}_t \circ \mathsf{AND}_{n/t}) = \Theta(n^{1/2}).$

Tight Upper Bound of $O(n^{1/2})$

 $\begin{array}{ll} [\mathsf{HMW03}] & \mathsf{via} \ \mathsf{quantum} \ \mathsf{algorithms} \\ [\mathsf{BNRdW07}] & \mathsf{different} \ \mathsf{proof} \ \mathsf{of} \ O(n^{1/2} \log n) \ \mathsf{(via} \ \mathsf{error} \ \mathsf{reduction} + \mathsf{composition}) \\ [\mathsf{She13}] & \mathsf{different} \ \mathsf{proof} \ \mathsf{of} \ \mathsf{tight} \ \mathsf{upper} \ \mathsf{bound} \ \mathsf{(via} \ \mathsf{robust} \ \mathsf{composition}) \\ \end{array}$

Tight Lower Bound of $\Omega(n^{1/2})$

[BT13] and [She13] via the method of dual polynomials

What is best error achievable by **any** degree d approximation of f? Primal LP (Linear in ϵ and coefficients of p):

Dual LP:

$$\begin{split} \max_{\psi} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) \\ \text{s.t.} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 \\ & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0 \qquad \text{whenever } \deg q \leq d \end{split}$$

Theorem: deg_{ϵ}(f) > d iff there exists a "dual polynomial" $\psi \colon \{-1,1\}^n \to \mathbb{R}$ with

- (1) $\sum_{x \in \{-1,1\}^n} \psi(x) f(x) > \epsilon$ "high correlation with f"
- (2) $\sum_{x \in \{-1,1\}^n} |\psi(x)| = 1$ "L₁-norm 1"
- (3) $\sum_{x \in \{-1,1\}^n} \psi(x)q(x) = 0$, when $\deg q \le d$ "pure high degree d"
 - A **lossless** technique. Strong duality implies any approximate degree lower bound can be witnessed by dual polynomial.

Theorem: deg_{ϵ}(f) > d iff there exists a "dual polynomial" $\psi \colon \{-1,1\}^n \to \mathbb{R}$ with

(1)
$$\sum_{x \in \{-1,1\}^n} \psi(x) f(x) > \epsilon$$
 "high correlation with f"
(2)
$$\sum_{x \in \{-1,1\}^n} |\psi(x)| = 1$$
 "L norm 1"

(2)
$$\sum_{x \in \{-1,1\}^n} |\psi(x)| = 1$$
 "L₁-norm 1"

(3) $\sum_{x \in \{-1,1\}^n} \psi(x)q(x) = 0$, when $\deg q \le d$ "pure high degree d"

Example: $2^{-n} \cdot \mathsf{PARITY}_n$ witnesses the fact that $\lim_{\epsilon \nearrow 1} \widetilde{\deg}_{\epsilon}(\mathsf{PARITY}_n) = n.$

Goal: Construct an explicit dual polynomial $\psi_{\text{OR-AND}}$ for $\text{OR}_t \circ \text{AND}_{n/t}$

- By [NS92], there are dual polynomials ψ_{OUT} for $\widetilde{\text{deg}}(\text{OR}_t) = \Omega(t^{1/2})$ and ψ_{IN} for $\widetilde{\text{deg}}(\text{AND}_{n/t}) = \Omega((n/t)^{1/2})$
- Both [She13] and [BT13] combine ψ_{OUT} and ψ_{IN} to obtain a dual polynomial ψ_{OR-AND} for OR_t ∘ AND_{n/t}.
- The combining method was proposed in earlier works [SZ09, She09, Lee09]. We call it dual block composition.

$$\psi_{\mathsf{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^t |\psi_{\mathsf{IN}}(x_i)|$$

(C chosen to ensure $\psi_{\text{OR-AND}}$ has L_1 -norm 1).

$$\psi_{\mathsf{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^t |\psi_{\mathsf{IN}}(x_i)|$$

(C chosen to ensure $\psi_{\text{OR-AND}}$ has L_1 -norm 1).

Must verify:

- **1** $\psi_{\text{OR-AND}}$ has pure high degree $\geq t^{1/2} \cdot (n/t)^{1/2} = n^{1/2}$.
- **2** ψ_{OR-AND} has high correlation with $OR_t \circ AND_{n/t}$.

$$\psi_{\mathsf{OR-AND}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^t |\psi_{\mathsf{IN}}(x_i)|$$

(C chosen to ensure $\psi_{\text{OR-AND}}$ has L_1 -norm 1).

Must verify:

- 1 $\psi_{\text{OR-AND}}$ has pure high degree $\geq t^{1/2} \cdot (n/t)^{1/2} = n^{1/2} \cdot \checkmark$ [She09]
- **2** $\psi_{\text{OR-AND}}$ has high correlation with $\text{OR}_t \circ \text{AND}_{n/t}$. [BT13, She13]

Proving Hardness Amplification Theorems Via Dual Block Composition

Proving Hardness Amplification Theorems Via Dual Block Composition

These theorems show that $g \circ f$ is "harder to approximate" by low-degree polynomials than is f alone.

- Negative one-sided approximate degree is an intermediate notion between approximate degree and threshold degree.
- A real polynomial p is a <u>negative one-sided</u> *ϵ*-approximation for f if

$$|p(x) - 1| < \epsilon \quad \forall x \in f^{-1}(1)$$
$$p(x) \le -1 \quad \forall x \in f^{-1}(-1)$$

• $\operatorname{odeg}_{-,\epsilon}(f) = \min \text{ degree of a negative one-sided} \\ \epsilon \operatorname{-approximation for } f.$

- Negative one-sided approximate degree is an intermediate notion between approximate degree and threshold degree.
- A real polynomial p is a negative one-sided $\epsilon\text{-approximation}$ for f if

$$|p(x) - 1| < \epsilon \quad \forall x \in f^{-1}(1)$$
$$p(x) \le -1 \quad \forall x \in f^{-1}(-1)$$

- $\operatorname{odeg}_{-,\epsilon}(f) = \min \text{ degree of a negative one-sided } \epsilon$ -approximation for f.
- Examples: $\widetilde{\mathsf{odeg}}_{-,1/3}(AND_n) = \Theta(\sqrt{n}); \widetilde{\mathsf{odeg}}_{-,1/3}(OR_n) = 1.$

Theorem (BT13, She13)

Let f be a Boolean function with $deg_{-,1/2}(f) \ge d$. Let $F = OR_t \circ f$. Then $deg_{1/2}(F) \ge d \cdot \sqrt{t}$.

Theorem (BT13, She13)

Let f be a Boolean function with $deg_{-,1/2}(f) \ge d$. Let $F = OR_t \circ f$. Then $deg_{1/2}(F) \ge d \cdot \sqrt{t}$.

Theorem (BT14)

Let f be a Boolean function with $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$. Let $F = OR_t \circ f$. Then $\widetilde{\deg}_{1-2^{-t}}(F) \ge d$.

Theorem (BT13, She13)

Let f be a Boolean function with $deg_{-,1/2}(f) \ge d$. Let $F = OR_t \circ f$. Then $deg_{1/2}(F) \ge d \cdot \sqrt{t}$.

Theorem (BT14)

Let f be a Boolean function with $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$. Let $F = OR_t \circ f$. Then $\widetilde{\text{deg}}_{1-2^{-t}}(F) \ge d$.

Theorem (She14)

Let f be a Boolean function with $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$. Let $F = OR_t \circ f$. Then $\deg_{\pm}(F) = \Omega(\min\{d,t\})$.

Recent Theorems: Part 2

• For some applications in complexity theory, one needs an even simpler "hardness-amplifying function" than OR_t .

Recent Theorems: Part 2

- For some applications in complexity theory, one needs an even simpler "hardness-amplifying function" than OR_t .
- Define GAPMAJ_t: $\{-1,1\}^t \rightarrow \{-1,1\}$ to be the partial function that equals:
 - -1 if at least 2/3 of its inputs are -1
 - +1 if at least 2/3 of its inputs are +1
 - undefined otherwise.

Theorem (BCHTV16)

Let f be a Boolean function with $\deg_{1/2}(f) \ge d$. Let $F = \mathsf{GAPMAJ}_t \circ f$. Then $\widetilde{\deg}_{1-2^{-\Omega(t)}}(F) \ge d$ and $\deg_{\pm}(F) \ge \Omega(\min\{d,t\})$.

Proving the Theorem

Theorem (BCHTV16, BT14, BIVW16)

Let f be a Boolean function with $\widetilde{\operatorname{deg}}_{1/2}(f) \ge d$. Let $F = \operatorname{GAPMAJ}_t \circ f$. Then $\operatorname{deg}_{1-2^{-\Omega(t)}}(F) \ge d$.

Theorem (BCHTV16, BT14, BIVW16)

Let f be a Boolean function with $\widetilde{\deg}_{1/2}(f) \ge d$. Let $F = \mathsf{GAPMAJ}_t \circ f$. Then $\deg_{1-2^{-\Omega(t)}}(F) \ge d$.

■ Let ψ_{IN} be any dual witness to the fact that $\widetilde{\deg}_{1/2}(f) \ge d$. ■ Define $\psi_{\text{OUT}} : \{-1, 1\}^t \to \mathbb{R}$ via:

$$\psi_{\text{OUT}}(y) = \begin{cases} 1/2 & \text{if } y = \text{ ALL-FALSE} \\ -1/2 & \text{if } y = \text{ ALL-TRUE} \\ 0 & \text{otherwise} \end{cases}$$

■ Combine ψ_{OUT} and ψ_{IN} via dual block composition to obtain a dual witness ψ_F for F.

Theorem (BCHTV16, BT14, BIVW16)

Let f be a Boolean function with $\widetilde{\deg}_{1/2}(f) \ge d$. Let $F = \mathsf{GAPMAJ}_t \circ f$. Then $\deg_{1-2^{-\Omega(t)}}(F) \ge d$.

• Let ψ_{IN} be any dual witness to the fact that $\widetilde{\deg}_{1/2}(f) \ge d$. • Define $\psi_{\text{OUT}} : \{-1, 1\}^t \to \mathbb{R}$ via:

$$\psi_{\text{OUT}}(y) = \begin{cases} 1/2 & \text{if } y = \text{ ALL-FALSE} \\ -1/2 & \text{if } y = \text{ ALL-TRUE} \\ 0 & \text{otherwise} \end{cases}$$

■ Combine ψ_{OUT} and ψ_{IN} via dual block composition to obtain a dual witness ψ_F for F.

Must verify:

- 1 ψ_F has pure high degree d.
- **2** ψ_F has correlation at least $1 2^{-\Omega(t)}$ with F.

Proving the Theorem: Pure High Degree

- Notice ψ_{OUT} is balanced (i.e., it has pure high degree 1).
- So previous analysis shows ψ_F has pure high degree at least $1 \cdot d = d$.

Recall:
$$F = \mathsf{GAPMAJ}_t \circ f$$

 $\psi_F(x_1, \dots, x_t) := C \cdot \psi_{\mathsf{OUT}}(\dots, \operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)), \dots) \prod_{i=1}^t |\psi_{\mathsf{IN}}(x_i)|$

$$\begin{aligned} \text{Recall: } F &= \text{GAPMAJ}_t \circ f \\ \psi_F(x_1, \dots, x_t) &:= C \cdot \psi_{\text{OUT}}(\dots, \text{sgn}(\psi_{\text{IN}}(x_i)), \dots) \prod_{i=1}^t |\psi_{\text{IN}}(x_i)| \\ \bullet \text{ Goal: Show } \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \geq 1 - 2^{-\Omega(t)}. \end{aligned}$$

$$\begin{aligned} \text{Recall: } F &= \mathsf{GAPMAJ}_t \circ f \\ \psi_F(x_1, \dots, x_t) &:= C \cdot \psi_{\mathsf{OUT}}(\dots, \operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)), \dots) \prod_{i=1}^t |\psi_{\mathsf{IN}}(x_i)| \\ & \quad \text{Goal: Show} \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \geq 1 - 2^{-\Omega(t)}. \\ & \quad \text{Idea: Show} \\ & \quad \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) = \sum_{y \in \{-1,1\}^t} \psi_{\mathsf{OUT}}(y) \cdot \mathsf{GAPMAJ}_t(y) - 2^{-\Omega(t)} = 1 - 2^{-\Omega(t)}. \end{aligned}$$

$$\begin{aligned} \text{Recall: } F &= \mathsf{GAPMAJ}_t \circ f \\ \psi_F(x_1, \dots, x_t) &:= C \cdot \psi_{\mathsf{OUT}}(\dots, \operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)), \dots) \prod_{i=1}^t |\psi_{\mathsf{IN}}(x_i)| \\ & \quad \text{Goal: Show} \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \geq 1 - 2^{-\Omega(t)}. \\ & \quad \text{Idea: Show} \\ \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) &= \sum_{y \in \{-1,1\}^t} \psi_{\mathsf{OUT}}(y) \cdot \mathsf{GAPMAJ}_t(y) - 2^{-\Omega(t)} = 1 - 2^{-\Omega(t)}. \\ & \quad \text{Consider } y = (\operatorname{sgn}(\psi_{\mathsf{IN}}(x_1)), \dots, \operatorname{sgn}(\psi_{\mathsf{IN}}(x_t))) = \mathsf{ALL-TRUE}. \end{aligned}$$

$$\begin{aligned} & \text{Recall: } F = \text{GAPMAJ}_t \circ f \\ \psi_F(x_1, \dots, x_t) &:= C \cdot \psi_{\text{OUT}}(\dots, \text{sgn}(\psi_{\text{IN}}(x_i)), \dots) \prod_{i=1}^t |\psi_{\text{IN}}(x_i)| \\ & \text{Indea: Show} \\ & \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \geq 1 - 2^{-\Omega(t)}. \\ & \text{Idea: Show} \\ & \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) = \sum_{y \in \{-1,1\}^t} \psi_{\text{OUT}}(y) \cdot \text{GAPMAJ}_t(y) - 2^{-\Omega(t)} = 1 - 2^{-\Omega(t)}. \\ & \text{Indea: Show} \\ & \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) = \sum_{y \in \{-1,1\}^t} \psi_{\text{OUT}}(y) \cdot \text{GAPMAJ}_t(y) - 2^{-\Omega(t)} = 1 - 2^{-\Omega(t)}. \\ & \text{Indea: Show} \\ & \text{Indea: Show} \\ & \text{Indea: Show} \\ & \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) = \sum_{y \in \{-1,1\}^t} \psi_{\text{OUT}}(y) \cdot \text{GAPMAJ}_t(y) - 2^{-\Omega(t)} = 1 - 2^{-\Omega(t)}. \\ & \text{Indea: Show} \\ & \sum_{x \in \{-1,1\}^n} \psi_F(x) - 2^{-\Omega(t)} = 1 - 2^{-\Omega(t)}. \\ & \text{Indea: Show} \\ & \text{Indea: Show}$$

$$\begin{aligned} & \text{Recall: } F = \text{GAPMAJ}_t \circ f \\ \psi_F(x_1, \dots, x_t) &\coloneqq C \cdot \psi_{\text{OUT}}(\dots, \text{sgn}(\psi_{\text{IN}}(x_i)), \dots) \prod_{i=1}^t |\psi_{\text{IN}}(x_i)| \\ & \text{Goal: Show } \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \geq 1 - 2^{-\Omega(t)}. \\ & \text{Idea: Show} \\ & \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) = \sum_{y \in \{-1,1\}^t} \psi_{\text{OUT}}(y) \cdot \text{GAPMAJ}_t(y) - 2^{-\Omega(t)} = 1 - 2^{-\Omega(t)}. \\ & \text{Consider } y = (\text{sgn}(\psi_{\text{IN}}(x_1)), \dots, \text{sgn}(\psi_{\text{IN}}(x_t))) = \text{ALL-TRUE}. \\ & \text{If } a \leq 1/3 \text{ fraction of the coordinates } y_i \text{ of } y \text{ are "in error",} \end{aligned}$$

then
$$F(x) = \psi_{\text{OUT}}(y) = -1$$
. \odot

Any coordinate y_i is "in error" with probability $\leq 1/4$ under distribution $|\psi_{IN}(x_i)|$, since ψ_{IN} is well-correlated with f.

$$\begin{aligned} & \text{Recall: } F = \text{GAPMAJ}_t \circ f \\ \psi_F(x_1, \dots, x_t) &:= C \cdot \psi_{\text{OUT}}(\dots, \text{sgn}(\psi_{\text{IN}}(x_i)), \dots) \prod_{i=1}^t |\psi_{\text{IN}}(x_i)| \\ & \text{I Goal: Show } \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \geq 1 - 2^{-\Omega(t)}. \\ & \text{I Idea: Show} \\ & \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) = \sum_{y \in \{-1,1\}^t} \psi_{\text{OUT}}(y) \cdot \text{GAPMAJ}_t(y) - 2^{-\Omega(t)} = 1 - 2^{-\Omega(t)}. \end{aligned}$$

- Consider $y = (\operatorname{sgn}(\psi_{\mathsf{IN}}(x_1)), \dots, \operatorname{sgn}(\psi_{\mathsf{IN}}(x_t))) = \mathsf{ALL}\mathsf{-}\mathsf{TRUE}.$
- If a $\leq 1/3$ fraction of the coordinates y_i of y are "in error", then $F(x) = \psi_{\text{OUT}}(y) = -1$. ③
- Any coordinate y_i is "in error" with probability $\leq 1/4$ under distribution $|\psi_{IN}(x_i)|$, since ψ_{IN} is well-correlated with f.
- Under product distribution $\prod_{i=1}^{t} |\psi_{\text{IN}}(x_i)|$, a $\geq 1/3$ fraction of the coordinates of y are in error with probability only $2^{-\Omega(t)}$.

$$\begin{aligned} & \text{Recall: } F = \text{GAPMAJ}_t \circ f \\ \psi_F(x_1, \dots, x_t) &:= C \cdot \psi_{\text{OUT}}(\dots, \text{sgn}(\psi_{\text{IN}}(x_i)), \dots) \prod_{i=1}^t |\psi_{\text{IN}}(x_i)| \\ & \text{ Goal: Show } \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \geq 1 - 2^{-\Omega(t)}. \\ & \text{ Idea: Show } \\ & \sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) = \sum_{y \in \{-1,1\}^t} \psi_{\text{OUT}}(y) \cdot \text{GAPMAJ}_t(y) - 2^{-\Omega(t)} = 1 - 2^{-\Omega(t)}. \end{aligned}$$

- Consider $y = (\operatorname{sgn}(\psi_{\mathsf{IN}}(x_1)), \dots, \operatorname{sgn}(\psi_{\mathsf{IN}}(x_t))) = \mathsf{ALL}\operatorname{-}\mathsf{TRUE}.$
- If a $\leq 1/3$ fraction of the coordinates y_i of y are "in error", then $F(x) = \psi_{\text{OUT}}(y) = -1$. ③
- Any coordinate y_i is "in error" with probability $\leq 1/4$ under distribution $|\psi_{IN}(x_i)|$, since ψ_{IN} is well-correlated with f.
- Under product distribution $\prod_{i=1}^{t} |\psi_{\text{IN}}(x_i)|$, a $\geq 1/3$ fraction of the coordinates of y are in error with probability only $2^{-\Omega(t)}$.
- Identical analysis applies for y = ALL-FALSE.

Applying the Theorem: Oracle Separations for Statistical Zero Knowledge

- **PP** is the class of all languages solvable by polynomial time randomized algorithms that output the correct answer with probability strictly better than 1/2.
- SZK is the class of all languages with efficient interactive proofs, in which convincing proofs reveal no information other than their own validity.

- **PP** is the class of all languages solvable by polynomial time randomized algorithms that output the correct answer with probability strictly better than 1/2.
- SZK is the class of all languages with efficient interactive proofs, in which convincing proofs reveal no information other than their own validity.
- Open Problem (Watrous, 2002): Give an oracle \mathcal{O} such that $\mathbf{PP}^{\mathcal{O}} \not\subset \mathbf{SZK}^{\mathcal{O}}$.

- **PP** is the class of all languages solvable by polynomial time randomized algorithms that output the correct answer with probability strictly better than 1/2.
- SZK is the class of all languages with efficient interactive proofs, in which convincing proofs reveal no information other than their own validity.
- Open Problem (Watrous, 2002): Give an oracle \mathcal{O} such that $\mathbf{PP}^{\mathcal{O}} \not\subset \mathbf{SZK}^{\mathcal{O}}$.
- Remainder of the talk: Solving this problem using the Theorem just proved.
- This is the strongest relativized evidence that SZK contains intractable problems.

- **PP** is the class of all languages solvable by polynomial time randomized algorithms that output the correct answer with probability strictly better than 1/2.
- SZK is the class of all languages with efficient interactive proofs, in which convincing proofs reveal no information other than their own validity.
- Open Problem (Watrous, 2002): Give an oracle \mathcal{O} such that $\mathbf{PP}^{\mathcal{O}} \not\subset \mathbf{SZK}^{\mathcal{O}}$.
- Remainder of the talk: Solving this problem using the Theorem just proved.
- This is the strongest relativized evidence that SZK contains intractable problems.
- Other consequences of the Theorem: $SZK^{\mathcal{O}} \not\subset PZK^{\mathcal{O}}$, $NISZK^{\mathcal{O}} \not\subset NIPZK^{\mathcal{O}}$, $PZK^{\mathcal{O}} \not\subset coPZK^{\mathcal{O}}$, and more.

- Let $f: \{-1,1\}^n \to \{-1,1\}$ be a function and $x \in \{-1,1\}^n$ be an input to f.
- Goal: Compute f(x) by reading as few bits of x as possible.

- Let $f: \{-1,1\}^n \to \{-1,1\}$ be a function and $x \in \{-1,1\}^n$ be an input to f.
- Goal: Compute f(x) by reading as few bits of x as possible.
- The **PP^{dt}** cost of *f* is the least *d* such that there is some randomized algorithm making at most *d* queries that outputs *f*(*x*) with probability at least 1/2 + 2^{-d}.

- Let $f: \{-1,1\}^n \to \{-1,1\}$ be a function and $x \in \{-1,1\}^n$ be an input to f.
- Goal: Compute f(x) by reading as few bits of x as possible.
- The **PP^{dt}** cost of *f* is the least *d* such that there is some randomized algorithm making at most *d* queries that outputs *f*(*x*) with probability at least 1/2 + 2^{-d}.
- The **SZK^{dt}** cost of *f* is the least *d* such that there is an interactive proof for the claim that *f*(*x*) = −1, where:
 - The total communication between prover and verifier is $\leq d$.
 - The verifier makes $\leq d$ queries to x.
 - A convincing proof reveals nothing to the verifier (other than f(x) = -1) that the verifier could not have learned by making d queries to f without ever talking to the prover.

- Let $f: \{-1,1\}^n \to \{-1,1\}$ be a function and $x \in \{-1,1\}^n$ be an input to f.
- Goal: Compute f(x) by reading as few bits of x as possible.
- The **PP^{dt}** cost of *f* is the least *d* such that there is some randomized algorithm making at most *d* queries that outputs *f*(*x*) with probability at least 1/2 + 2^{-d}.
- The SZK^{dt} cost of f is the least d such that there is an interactive proof for the claim that f(x) = -1, where:
 - The total communication between prover and verifier is $\leq d$.
 - The verifier makes $\leq d$ queries to x.
 - A convincing proof reveals nothing to the verifier (other than f(x) = -1) that the verifier could not have learned by making d queries to f without ever talking to the prover.

■ Fact: To give an oracle \mathcal{O} s.t. $\mathbf{SZK}^{\mathcal{O}} \not\subset \mathbf{PP}^{\mathcal{O}}$, it's enough to give an f s.t. $\mathbf{SZK}^{\mathbf{dt}}(f) = O(\log n)$ and $\mathbf{PP}^{\mathbf{dt}}(f) = n^{\Omega(1)}$.

Connecting \mathbf{PP}^{dt} and Approximate Degree

Connecting \mathbf{PP}^{dt} and Approximate Degree

• Fact:
$$\mathbf{PP}^{\mathsf{dt}}(f) \leq d \iff \widetilde{\deg}_{\epsilon}(f) \leq d \text{ for } \epsilon = 1 - 2^{-d}$$

Connecting **PP^{dt}** and Approximate Degree

- Fact: $\mathbf{PP}^{\mathbf{dt}}(f) \leq d \iff \widetilde{\deg}_{\epsilon}(f) \leq d \text{ for } \epsilon = 1 2^{-d}.$
- Idea for \implies : For any randomized algorithm \mathcal{A} making at most T queries to x, there is a degree T polynomial p such that $p(x) = \Pr[\mathcal{A}(x) = -1]$.

Connecting **PP^{dt}** and Approximate Degree

• Fact: $\mathbf{PP}^{\mathbf{dt}}(f) \leq d \iff \widetilde{\deg}_{\epsilon}(f) \leq d \text{ for } \epsilon = 1 - 2^{-d}.$

• Idea for \implies : For any randomized algorithm \mathcal{A} making at most T queries to x, there is a degree T polynomial p such that $p(x) = \Pr[\mathcal{A}(x) = -1]$.

If $\mathbf{PP}^{dt}(f) = d$, then there is a d-query algorithm \mathcal{A} such that

$$\begin{cases} f(x) = 1 \implies \Pr[\mathcal{A}(x) = 1] \ge 1/2 + 2^{-d} \\ f(x) = -1 \implies \Pr[\mathcal{A}(x) = 1] \le 1/2 - 2^{-d} \end{cases}$$

Connecting **PP^{dt}** and Approximate Degree

• Fact: $\mathbf{PP}^{\mathbf{dt}}(f) \leq d \iff \widetilde{\deg}_{\epsilon}(f) \leq d \text{ for } \epsilon = 1 - 2^{-d}.$

• Idea for \implies : For any randomized algorithm \mathcal{A} making at most T queries to x, there is a degree T polynomial p such that $p(x) = \Pr[\mathcal{A}(x) = -1]$.

If $\mathbf{PP^{dt}}(f) = d$, then there is a d-query algorithm \mathcal{A} such that

$$\begin{cases} f(x) = 1 \implies \Pr[\mathcal{A}(x) = 1] \ge 1/2 + 2^{-d} \\ f(x) = -1 \implies \Pr[\mathcal{A}(x) = 1] \le 1/2 - 2^{-d}. \end{cases}$$

• So there is a degree *d* polynomial *p* such that:

$$\begin{cases} f(x) = 1 \implies p(x) - 1/2 \in [2^{-d}, 1] \\ f(x) = -1 \implies p(x) - 1/2 \in [-1, 2^{-d}] \end{cases}$$

Summary So Far

- The Permutation Testing Problem (PTP) interprets its input as a list of N numbers (x_1, \ldots, x_N) from range $\{1, \ldots, N\}$.
 - $\mathsf{PTP}(x) = -1$ if every number between 1 and N appears exactly once in the list.
 - PTP(x) = 1 if at least N/2 range items do not appear in the list.
 - **PTP**(x) is undefined otherwise.

- The Permutation Testing Problem (PTP) interprets its input as a list of N numbers (x_1, \ldots, x_N) from range $\{1, \ldots, N\}$.
 - $\mathsf{PTP}(x) = -1$ if every number between 1 and N appears exactly once in the list.
 - **PTP**(x) = 1 if at least N/2 range items do not appear in the list.
 - PTP(x) is undefined otherwise.
- Fact: $\mathbf{SZK}^{\mathbf{dt}}(\mathsf{PTP}) = O(\log n)$.
 - Idea: Verifier picks a range item j at random, and demands that prover provide an i such that $x_i = j$.

- The Permutation Testing Problem (PTP) interprets its input as a list of N numbers (x_1, \ldots, x_N) from range $\{1, \ldots, N\}$.
 - $\mathsf{PTP}(x) = -1$ if every number between 1 and N appears exactly once in the list.
 - PTP(x) = 1 if at least N/2 range items do not appear in the list.
 - PTP(x) is undefined otherwise.
- Fact: $\mathbf{SZK}^{\mathbf{dt}}(\mathsf{PTP}) = O(\log n)$.
 - Idea: Verifier picks a range item j at random, and demands that prover provide an i such that $x_i = j$.
- Fact: $\widetilde{\deg}(\mathsf{PTP}) = \tilde{\Theta}(n^{1/3})$ [Aaronson 2012, AS 2004].

- Recall: we seek a function f such that: $\mathbf{SZK}^{\mathbf{dt}}(f) = O(\log n)$ and $\widetilde{\deg}_{1-2^{-d}}(f) = \Omega(d)$, for some $d = n^{\Omega(1)}$.
- Recall: $\mathbf{SZK}^{\mathbf{dt}}(\mathsf{PTP}) = O(\log n)$, and $\widetilde{\deg}(\mathsf{PTP}) = \widetilde{\Theta}(n^{1/3})$.

- Recall: we seek a function f such that: $\mathbf{SZK}^{\mathbf{dt}}(f) = O(\log n)$ and $\widetilde{\deg}_{1-2^{-d}}(f) = \Omega(d)$, for some $d = n^{\Omega(1)}$.
- Recall: $\mathbf{SZK}^{\mathbf{dt}}(\mathsf{PTP}) = O(\log n)$, and $\widetilde{\operatorname{deg}}(\mathsf{PTP}) = \widetilde{\Theta}(n^{1/3})$.
- But $\deg_{1-1/n}(\mathsf{PTP}) = O(\log n)$. \odot
- Can we turn PTP into a function F such that $\mathbf{SZK}^{dt}(F) = O(\log n)$, yet $\widetilde{\deg}_{1-2^{-d}}(F) \ge d$ for $d = n^{\Omega(1)}$?

- Recall: we seek a function f such that: $\mathbf{SZK}^{\mathbf{dt}}(f) = O(\log n)$ and $\widetilde{\deg}_{1-2^{-d}}(f) = \Omega(d)$, for some $d = n^{\Omega(1)}$.
- Recall: $\mathbf{SZK}^{\mathbf{dt}}(\mathsf{PTP}) = O(\log n)$, and $\widetilde{\operatorname{deg}}(\mathsf{PTP}) = \widetilde{\Theta}(n^{1/3})$.
- But $\deg_{1-1/n}(\mathsf{PTP}) = O(\log n)$. \odot
- Can we turn PTP into a function F such that $\mathbf{SZK}^{dt}(F) = O(\log n)$, yet $\widetilde{\deg}_{1-2^{-d}}(F) \ge d$ for $d = n^{\Omega(1)}$?
- Yes! Let $F = \mathsf{GAPMAJ}_{n^{1/4}} \circ \mathsf{PTP}_{n^{3/4}}$.

- Recall: we seek a function f such that: $\mathbf{SZK}^{\mathbf{dt}}(f) = O(\log n)$ and $\widetilde{\deg}_{1-2^{-d}}(f) = \Omega(d)$, for some $d = n^{\Omega(1)}$.
- Recall: $\mathbf{SZK}^{\mathbf{dt}}(\mathsf{PTP}) = O(\log n)$, and $\widetilde{\operatorname{deg}}(\mathsf{PTP}) = \widetilde{\Theta}(n^{1/3})$.
- But $\deg_{1-1/n}(\mathsf{PTP}) = O(\log n)$. \odot
- Can we turn PTP into a function F such that $\mathbf{SZK}^{dt}(F) = O(\log n)$, yet $\widetilde{\deg}_{1-2^{-d}}(F) \ge d$ for $d = n^{\Omega(1)}$?
- Yes! Let $F = \mathsf{GAPMAJ}_{n^{1/4}} \circ \mathsf{PTP}_{n^{3/4}}$.
- Claim 1: $\widetilde{\deg}_{1-2^{-n^{1/4}}}(F) = \Omega(n^{1/4}).$
- Proof: By Theorem from earlier.

- Recall: we seek a function f such that: $\mathbf{SZK}^{\mathbf{dt}}(f) = O(\log n)$ and $\widetilde{\deg}_{1-2^{-d}}(f) = \Omega(d)$, for some $d = n^{\Omega(1)}$.
- Recall: $\mathbf{SZK}^{\mathbf{dt}}(\mathsf{PTP}) = O(\log n)$, and $\widetilde{\operatorname{deg}}(\mathsf{PTP}) = \widetilde{\Theta}(n^{1/3})$.
- But $\deg_{1-1/n}(\mathsf{PTP}) = O(\log n)$.
- Can we turn PTP into a function F such that $\mathbf{SZK}^{dt}(F) = O(\log n)$, yet $\widetilde{\deg}_{1-2^{-d}}(F) \ge d$ for $d = n^{\Omega(1)}$?
- Yes! Let $F = \mathsf{GAPMAJ}_{n^{1/4}} \circ \mathsf{PTP}_{n^{3/4}}$.
- Claim 1: $\widetilde{\deg}_{1-2^{-n^{1/4}}}(F) = \Omega(n^{1/4}).$
- Proof: By Theorem from earlier.
- Claim 2: $\mathbf{SZK}^{\mathbf{dt}}(F) = O(\log n).$
 - **Rough Intuition**: On input $x = (x_1, \ldots, x_{n^{1/4}})$ to F, Verifier picks a random $i \in \{1, \ldots, n^{1/4}\}$, and prover proves that $PTP(x_i) = -1$ in zero-knowledge.
 - i.e., \mathbf{SZK}^{dt} is closed under composition with GAPMAJ.

Summary

- Many important hardness amplifications for approximate degree have been proven in recent years using the method of dual polynomials.
- These theorems show that the block-composed function $g \circ f$ is harder to approximate than f alone, even for very simple "hardness amplifiers" g.
- Most of the proofs use dual block composition and its variants.

Summary

- Many important hardness amplifications for approximate degree have been proven in recent years using the method of dual polynomials.
- These theorems show that the block-composed function $g \circ f$ is harder to approximate than f alone, even for very simple "hardness amplifiers" g.
- Most of the proofs use dual block composition and its variants.
- These results led to:
 - Improved understanding of how subclasses of the polynomial hierarchy (e.g. SZK), and AC⁰ circuits, can compute hard functions in query, communication, and relativized settings.
 - Secret-sharing schemes with reconstruction procedures in AC⁰.
 - and more.

Summary

- Many important hardness amplifications for approximate degree have been proven in recent years using the method of dual polynomials.
- These theorems show that the block-composed function $g \circ f$ is harder to approximate than f alone, even for very simple "hardness amplifiers" g.
- Most of the proofs use dual block composition and its variants.
- These results led to:
 - Improved understanding of how subclasses of the polynomial hierarchy (e.g. SZK), and AC⁰ circuits, can compute hard functions in query, communication, and relativized settings.
 - Secret-sharing schemes with reconstruction procedures in AC⁰.
 - and more.
- Next talk by Mark Bun: beyond block-composed functions.

Thank you!