Polyhedral o tropical geometry of flag positroidt
Joint w/ Jonathan Boretsky of Chris Eur
Overview:
Tropical geometry
(Positive) (Flog) Matroids

Outline

- Intro to pos. flag variety
- Flag positroids (special class of flag matnoids) \& their moment polybpen
- The pos. tropical flag variety (pos Dressian)
- Theorem connectuy the above objects
- Applications to realizatility questions o Bruhat interval polytopes
- Example of $T_{r} \mathrm{Fl}_{4}{ }^{>0}$ (cluster connection, relation to Lara Boosngeq's tall e)

Positive Flag Variety (Type A)
Def: Let $R=\left\{r_{1}<\ldots<r_{k}\right\}<[n]=\{1, \ldots 1 n\}$
The flog variety $F l_{R i n}$ is variety of portal flags of subspace

$$
\left\{\left(V_{1}, \ldots, V_{k}\right): 0 \subset V_{1} \subset \ldots \subset V_{k} \subset \mathbb{R}^{n} \text { and } \operatorname{dim} V_{i}=r_{i} \forall i\right\}
$$

Can represent an element of $F l_{R i n}$ by an $r_{E} \times n$ matrix s.t. span of top r_{i} rows $m V_{i}$.
Special cases: (1) If $R=[n]$: complete flog van $F \ln$
(2) If $R=\{r\}$: Grassmonncan $G r_{r ; n}$

Have poogecton $\pi: F \ln \rightarrow F l_{R}$ in obtained by forgetting some V_{i} 's
Ex: $A=\left(\begin{array}{ccc}1 & a+c & b c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right)$ represent element of $T l_{3}$ where $V_{i}=$ span of
For $I \subset[n]$, Plucker cord $P_{I}(A):=\operatorname{det}$ of submatax in columns I and rows $1,2, \ldots$, II 1 .

Two notions of positivity. Fix $R=\left\{r_{1}<\ldots<r_{k}\right\} \subset[n]$
Plycken-posituity: We say (a matin reprefulty) an element ($\left.V_{c}, \ldots<V_{k}\right) \in F l_{R ; y}$ is Plucter-poritue / nonnegative iff all Plucky Lords P_{I} for $|I|=r_{i}$ are pos/ nonnegative.
Luszig-posituvity: $G L_{n}^{>0}=\{n \times \eta$ matrices sit. all square submatuce have por-det $\}$
$F l_{n}>0=$ image of $G L_{n}^{20}$ inside $6 L_{n} / B^{\curvearrowleft}$ Morel subqp
$F l_{n} 2^{20}=$ closure $\frac{l_{70}^{70}}{70)}$
For R as above, $\quad F l_{R i n}^{>0}=$ project $\pi\left(F l_{n}{ }^{>0}\right)$

$$
F_{R ; n}^{20}=" " F_{n} \geq 0
$$

Thu (Bloch-Karp): The two notus of positivity for $F l_{R ; n}$ coincide if R is a set of consecutive integers(complete flog case indep proved by poverty)
(*) We now restuct attention to case where $R=\{a, a+1, \ldots, b\}$

Matroids, Flog matroids, Flag positroide
Def: Given subset $S \subseteq[n]$, let $e_{s}=\sum_{i \in S} e_{i} \in \mathbb{R}^{n}$
Given collection $B<\binom{[n]}{d}$, let $P(B)=$ conc hall $\left\{e_{B}: B \in B\right\}$ in \mathbb{R}^{n} If every edge of $P(B)$ is parallel to $e_{i}-e_{j}$ for some $i \neq j$, then say B is set of bases of matrooid M_{B} and that $P(B)$ is a matroid polytope. (Gelfand-Goverky. Mactherin-Segganora)
If $\exists d \times n$ matrix A sit. $P_{I}(A) \neq 0$ iff $I \in B$, say A realized M.
Def: Let $R=\left(r_{1}<\ldots<r_{k}\right) \subset[n]$.
A $\frac{f l a g \text { matnood }}{\text { of ranks } R}$ of ranees R on $[n]$ it. all vertices sequela $M=\left(M_{1} \ldots M_{k}\right)$ of nations of ranks R on $[n]$ sit. all vertus of the Minkowske rum $P(\underline{M})=P\left(M_{1}\right)+\ldots+P\left(M_{k}\right)$ are equidistant from the origin.
$P(M)$ called flag mattoid polytope.
If $\left(M_{1}, \ldots, M_{k}\right)$ hos a realiz by a real $r_{c} \times n$ matnx A sit. for $1 \leq i \leq k$ the top $r_{i} \times n$ submatux of A hat its max il minors posinue, say that $\left(M_{1}, \ldots, M_{k}\right)$ is a flog poritioid $\& P(M)$ a flog pos- polytope. [Note: defining flog positioid sit, it's automatically realiz]

Tores $\left(\mathbb{C}^{*}\right)^{n}$ acts on $G_{r i n}$ by scaling columus of matnx.
Note: If matnoid M is realing by matax A then Nathoid polytore $P(M)=$ moment map image of closcue of torm orbst of A.
(kodama-w)
Ex: If $R=[n]$, the flag pos, polytopas are Brehat interwal polytopes Theare have form

$$
\begin{aligned}
& P_{u, v}:=\operatorname{conv}\{(x(1), \ldots x(u)) \mid \quad u \leq x \leq v\} \subset \mathbb{R}^{\eta} \\
& \underset{u \leq v}{\pi} \text { in }_{n}
\end{aligned}
$$

Ex: If $R=\{r\}$, the flag por, polytipes are positiond polytoper connecton to nonclossivy partition (Ardila - Rimon- ω)

Q: when o how can we subduvile matroid polytope into smaller wationd poly toper?
same Q for $f(o g$ mationd polytoper o pos-analosuer...
 (Kapranov, Lafforque, Speyer... matroid subduricm o matioid Subdivirm
connecm to trop Geassmannion)

Thm (Lukowski-Paisi-w, Speyer-w, Arkani-Hamed-Lam-Sprablin) ket $\mu=\left(\mu_{I}: I \in\binom{[n]}{r}\right) \in \mathbb{R}^{\left(\begin{array}{l}\eta\end{array}\right)}$. TFAE:

- μ lies in pos-trop. Grassmanncom $\operatorname{Tr}_{r} G_{r, n}>0$ (closure of coord-wise valuation of $G_{r, n} r_{r, 0}$ ovel Puisent series)
- μ obeys the pos. trop. 3-term Plucken relatiow: for $i<j<k<l$ and S disjoint from them, $|S|=r-2$,

$$
\mu_{s i k}+\mu_{s j l}=\min \left(\mu_{s i j}+\mu_{s k l}, \mu_{s i l}+\mu_{s j l}\right)
$$

- Every face in coherent (reqular) subodiv of hyparsiuplex $\Delta_{r, \eta}=\operatorname{conv}\left(\left.e_{x}\right|_{I \in}\left(\begin{array}{l}\left.\binom{n}{r}\right)\end{array}\right)\right.$ induced by μ is a poritiored polytope.
Coherent subdiv obtained by "liff" each vertex e_{I} of $\Delta_{r_{1} n}$ to "ht" μ_{I} : then proy lower facete of $\operatorname{conv}\left\{\left(e_{ \pm}, \mu_{I}\right)\right\}$ back to \mathbb{R}^{n}
Ex: $n=4, n=2$. Considu ($\mu_{I}: \pm \in\binom{[4]}{2}$) s.t. $\mu_{13}+\mu_{24}=\mu_{23}+\mu_{19}<\mu_{12}+\mu_{34}$.
Then get this subber

Thin (Boretsky, Jorwig-Loho-Luber-Olarte): Let $\mu=\left\{\mu_{ \pm}: \pm \subsetneq[n]\right\} \in \mathbb{R}^{2^{4}}$. TFAE

- μ lies in poos. Trop complete flag vacieh $\operatorname{Tr} \mathrm{Fln}^{70}$

Bonetrky

- M obeys por. toop 3-tenm Plucter a incidenee Pluedes nelam.

$$
\underline{\varepsilon_{x}}: \mu_{2}+\mu_{13}=\min \left(\mu_{1}+\mu_{23}, \mu_{3}+\mu_{12}\right) \leftarrow
$$

- Evey face in coherent subdir of permutohedm Permn induced by μ is a Bruhat intercal polytope.
(Now eg. we lift vatex $(3,1,2,5,4)$ to ht $\mu_{4}+\mu_{45}+\mu_{145}+\mu_{1345}$)
Ex: $n=3$. Conriden $\left(\mu_{12} \mu_{2,}, \mu_{31}, \mu_{12}, \mu_{13}, \mu_{23}\right)$ s.t. $\mu_{22}+\mu_{13}=\mu_{1}+\mu_{23}<\mu_{3}+\mu_{12}$

Give then which generalzes there in

- extend to $f \log _{\text {vanceties }} F l_{R i n}$ whece $R{ }^{123}$ is consec set of integers
- replace "posinve" by "nonnegatime" which allows us to look at subdin of move geneal polytepes.
(tropual hypuriuld
Thm (Boretsky- $\varepsilon m-\omega)$: Let R be seg of consec integers $(a, a+1, \ldots, b)$. Let $\mu=\left(\mu^{a}, \ldots, \mu^{b}\right) \in \prod_{i=a}^{b} \mathbb{P}\left(\prod^{k}\binom{[n]}{i}\right)^{n}=\prod_{i=d}^{n}(\mathbb{R} \cup\{\infty\})^{\binom{n]}{i}}$. TFAE
- μ lies in nonneg trop. of $F l_{R ; n} \quad\left(=\right.$ closme of coord-win ral of $\left.F l_{R, n}^{20}(R)\right)$
- μ satisfies all pos. trop 3-term Plucher a incidem Plucker rel
- Every face in coherent subdiv of flog natioed polytope $P\left(\mu^{a}\right)+\ldots+P\left(\mu^{6}\right)$ is a flag poritioid polytope.

Applicatous
$\operatorname{Cor}(B \in \omega)$: For flag matroid $M=\left(M_{a}, M_{a+1} \ldots, M_{b}\right)$ of consec rambs $a, a+1 \ldots$
polytope , its flag mation polytope $P(M)$ is a $f(\log$ par. polytope iff all its (≤ 2)-diml faces are-
Thm (Trukenman-w): Every faces of a Brihat interval polyiton (BIP) is a $B(P$.
Cor (BEW): A complete flog mationd poly is BIP iff all 2-dimil facn ar.
Q: When does sequener of, poriturids of deff rauks have a realigath by one matut? pouctoids of afo
$\operatorname{Cor}(B \in W)$: Suppose ($M_{a}, M_{a+1} \ldots M_{b}$) is sequence of poritiorde of consec ravbs- Then, when considered as sequene of por. oriented matroids,
$\left(M_{a}, \ldots, M_{b}\right)$ is a flag positnoid iff itts an orented flag Matroid.

Example: $\operatorname{Tr} \mathrm{Fl}_{q}{ }^{20}=\left\{\left(\mu_{工}: \pm\{[\neq 7)\} \subset \mathbb{R}^{15}\right.\right.$ "tropi Pluch vecton"

Bossinger computed Grobner fan structuce

- 14 max'l cones, 9 rays, dual to 3D associahen

Note: Fl_{4} is clust voniety of fincte tym A_{3}.
Seconday fan stunctme. Got same fan.

Height function $\left(P_{1}, P_{2}, P_{3}, P_{4} ; P_{12}, P_{13}\right.$, $\left.P_{14}, P_{23}, P_{24}, P_{34} ; P_{123}, P_{124}, P_{134}, P_{234}\right)$	Bruhat interval polytopes in subdivision	f-vector
$\begin{aligned} & (15,-1,-7,-7 ; 4,-2,-2, \\ & -2,-2,4 ;-7,-7,-1,15) \end{aligned}$	$P_{3214,4321}, P_{3124,4231}, P_{2314,3421}$, $P_{2134,3241}, P_{1324,2431}, P_{1234,2341}$	
$\begin{aligned} & (15,3,-9,-9 ; 4,-8,-8 \\ & -4,-4,20 ;-1,-1,-1,3) \end{aligned}$	$P_{2413,4321}, P_{3124,4231}, P_{2314,4231}$, $P_{2134,3241}, P_{1324,2431}, P_{1234,2341}$	
$\begin{aligned} & (15,-7,-1,-7 ;-2,4,-2, \\ & -2,4,-2 ;-7,-1,-7,15) \end{aligned}$	$P_{3142,4321}, P_{3124,4312}, P_{2143,3421}$, $P_{2134,3412}, P_{1243,2431}, P_{1234,2413}$	
$\begin{aligned} & (-1,-1,-1,3 ; 4,-8,-4 \\ & -8,-4,20 ; 15,3,-9,-9) \end{aligned}$	$P_{2413,4321}, P_{1423,4231}, P_{1342,4231}$, $P_{1324,4213}, P_{1243,4132}, P_{1234,4123}$	
$\begin{aligned} & (-7,-7,-1,15 ; 4,-2,-2, \\ & -2,-2,4 ; 15,-1,,-7,-7) \end{aligned}$	$\begin{aligned} & P_{1432,4321}, P_{1423,4312}, P_{1342,4231}, \\ & P_{1324,4213}, P_{1243,4132}, P_{1234,4123} \end{aligned}$	
$\begin{aligned} & (-1,-7,-7,15 ;-2,-2,4 \\ & 4,-2,-2 ; 15,-7,-7,-1) \end{aligned}$	$P_{3142,4321}, P_{2143,4312}, P_{2134,4213},$ $P_{1342,3421}, P_{1243,3412}, P_{1234,2413}$	
$\begin{aligned} & (-9,-9,3,15 ; 20,-4,-8 \\ & -4,-8,4 ; 3,-1,-1,-1) \end{aligned}$	$\begin{aligned} & P_{1432,4321}, P_{1423,4312}, P_{1342,4231}, \\ & P_{1324,4213}, P_{1324,4132}, P_{1234,3142} \\ & \hline \end{aligned}$	$(24,46,29,6)$
$\begin{aligned} & (11,-7,-7,3 ;-6,-6,4, \\ & 4,2,2 ; 11,-7,-7,3) \end{aligned}$	$\begin{aligned} & P_{3142,4321}, P_{2143,4312}, P_{2134,4213}, \\ & P_{2143,3421}, P_{1243,2431}, P_{1234,2413} \\ & \hline \end{aligned}$	
$\begin{aligned} & (3,3,-3,-3 ; 20,-10,-10 \\ & -10,-10,20 ;-3,-3,3,3) \end{aligned}$	$\begin{aligned} & \hline P_{2413,4321}, P_{3124,4231}, P_{2314,4231}, \\ & P_{1324,2431}, P_{1324,3241}, P_{1234,3142} \\ & \hline \end{aligned}$	
$\begin{aligned} & (3,-1,-1,-1 ; 20,-4,-4 \\ & -8,-8,4 ;-9,-9,3,15) \end{aligned}$	$P_{3214,4321}, P_{3124,4231}, P_{2314,3421}$, $P_{1324,3241}, P_{1324,2431}, P_{1234,3142}$	
$\begin{aligned} & (-3,-3,3,3 ; 20,-10,-10 \\ & -10,-10,20 ; 3,3,-3,-3) \end{aligned}$	$\begin{aligned} & P_{2413,4321}, P_{1423,4231}, P_{1342,4231}, \\ & P_{1324,4132}, P_{1324,4213}, P_{1234,3142} \\ & \hline \end{aligned}$	
$\begin{aligned} & (3,-7,-7,11 ; 2,2,4 \\ & 4,-6,-6 ; 3,-7,-7,11) \end{aligned}$	$P_{3142,4321}, P_{3124,4312}, P_{1342,3421}$, $P_{2134,3412}, P_{1243,3412}, P_{1234,2413}$	
$\begin{aligned} & (11,-1,-7,-3 ;-2,-8,-4, \\ & -4,0,18 ; 11,-1,-7,-3) \\ & \hline \end{aligned}$	$\begin{aligned} & P_{2413,4321}, P_{2143,4231}, P_{2134,4213}, \\ & P_{1243,2431}, P_{1234,2413} \\ & \hline \end{aligned}$	45,27,
$\begin{aligned} & (-3,-7,-1,11 ; 18,0,-4 \\ & -4,-8,-2 ;-3,-7,-1,11) \end{aligned}$	$\begin{aligned} & P_{3142,4321}, P_{3124,4312}, P_{1342,3421} \\ & P_{1324,3412}, P_{1234,3142} \end{aligned}$	

Table 1. Table documenting the 14 finest coherent subdivisions of Perm ${ }_{4}$ into Bruhat interval polytopes. There are two possible f-vectors, each of which can be realized in multiple ways.

Thank you!
Iw/ Jon Boretsly a Chis Em) Polynedial ©o twop geom of positwield anXiv: 2208.0913l

