Polyhedral & tropical geometry of flag positroids Joint w/ Jonathan Boretsky & Chris Eur

Overview:

Tropical geometry (Positive) (Flag) Matroids 55

Subdivisions of (flag) positivid polytopes In honor of the birthday of Bernard Kecluc Figure from Nadeau-Tewari 2341 2208, 19128 "Remixed Eulerian numbers" 1234

 Intro to pos. flag vallety · Flag positionide (special class of flag mathoide) + their moment polytoper • The pos. tropical flag variety (pos Dressian) Theorem connecting the above objects · Applications to realizability questions & Bruhal interval polytoper · Example of Tr Fly (cluster connection, relation to Zara Bassinger's talk)

Outline

Positive Flag Variety (Type A)
Def: Let
$$R = \{r_1 < ... < r_k\} \in [r_1] = \{i_1, ..., n\}$$

The flog variety $Fl_{R;n}$ is variety of partial flogs of subspaces
 $\{(V_{1,1},..,V_k): O \in V_1 \subset ... \in V_k \in IR^n \text{ and den } V_i = r_i \neq i\}$
Can represent an element of $Fl_{R;n}$ by an $r_i \times n$ matrix s.t.
Span of top r_i rows $m \neq V_i$.
Special cases: D If $R = [n]$: complete flog van Fl_n
 (\supseteq) If $R = fr_3$: Grassmannian $Gr_{r;n}$
Have projection $Tr: Fl_n \rightarrow Fl_{R;n}$ obtained by forgethy some V.'s
 $\frac{E_{K:}}{A} = \begin{pmatrix} 1 & a+c & bc \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$ represent clement of Tl_3 where $V_i = span$ of
 $top i rows$

For I = [n], Plucter coord PI (A) := det of submature in column I. and nows 1,2,..., III.

Two notions of positivity. Fix
$$R = \{r_1 < \dots < r_k\} < [n]$$

Plucker-positivity! We say (a matrix representing) an elemont $(V, c \dots < V_k) \in Fl_{R;y}$
is Plucker-positive / nonnegative of all plucker coords
PI for $|II| = r$; are pex/ nonnegative.
Lussing-positivity: $GL_n^{>0} = \{n \times n\}$ matrices sit all square submatrice have par. det?
Fln²⁰ = image of $GL_n^{>0}$ inside GL_n / B^{m} Borel subgp
 $FL_n^{>0} = coscule FL_n^{>0}$
For R as above, $Fl_{R;n}^{>0} = projecti Tr(Fl_n^{>0})$
 $Fl_{R;n}^{>0} = "" Fl_n^{>0}$

(A) We now restrict attention to case where $R = \{a, a+1, ..., b\}$

Matroids, Flag Matroids, Flag paritroide Def: Given subset $S \subseteq [n]$, let $e_s = Ze_s \in \mathbb{R}^n$ Given collector $B < \begin{pmatrix} n \\ d \end{pmatrix}$, let $P(B) = conv hull <math>\{e_B : B \in B\}$ in \mathbb{R}^n If every edge of P(B) is parallel to $e_i - e_j$ for some $i \neq j$, then say B is set of bases of matroid M_B and that P(B) is a matrois polytope. (Gelfand-Goverky Machinen-Serganona) IF I d'xn matrix A s.t. PI(A) = D iff IEB, say A realized M. Def: Let $R = (r_1 < \dots < r_k) \subset [n]$. A flag Matrix of ranks R on (n) is sequence M = (M,..., M) of natrixes of ranks R on (n) s.t. all vertues of the Minkowski sum $P(\underline{M}) = P(\underline{M}_{1}) + ... + P(\underline{M}_{k})$ are equidistant from the origin. P(M) called flag matroid polytope. If (H1, ..., Hk) have a realize by a real ric × n matn× A s.t. for l=i=k the top r. × n submature of A has its max'l minors parisone, say that (M,,..., M) is a flag positroid & P(M) a flag pos-polytope. [Note: dufining flag positraid s.t. it's automatically realiz]

Torus
$$(\mathbb{C}^*)^n$$
 acts on Gr; n by Scaling Columns of matrix.
Note: If natrois M is realing by matrix A then
Natrois polytop P(H) = moment map image of closure of torus orbit of A.
(Kodama-W)
Ex: If $R = [n]$, the flag pos. polytops are Briebed interval polytops
There have form
 $P_{u,v} := conv \left\{ (x(n), ..., x(n)) \right\} = u \le v^2 - R^{\gamma}$
 $u \le v$ in Si
 $u \le v$ in Si
Ex: If $R = \{r\}$, the flag pos. polytops are politops
 $u \le v$ in Si
 $u \le v$ in Si
 $Convection to noncrosting parkitons (Ardla - Rimon - co)$
 $Eg hypersplet \rightarrow$
 $Q:$ when a how can we subdivide
Nations polytope into smaller natrois polytops z analogues --
 Sq
(Kapanov, Loffaque, Speyer --
(Kapanov, Loffaque, Speyer --
 $ratrois Subdivise to the polytop Grassmannian)$

Thus (Lukowski-Paris: -10, Speyer-W, Artan-Haud-Lam-Spadler)
Let
$$M = (M_{\pm} : I \in {\binom{n}{2}}) \in \mathbb{R}^{\binom{n}{2}}$$
. TFAE:
· M lies in post top. Grasswannian Tr $Gr_{n,n}^{20}$ over Priseur series)
· M closure of coord-wise valuation of $Gr_{n,n}^{20}$ over Priseur series)
· M obsets the post top. 3-term Placker relation:
for $i \in j < k < 2$ and S disjoint from them, $|S| = r-2$,
 $M_{Sik} + M_{Si} = min(M_{Sij} + M_{Ske}, M_{Sik} + M_{Sjk})$
· Every free in cohered (regular) subdur of hyperioplex $\Delta r_{n,n} = \lim \left(e_{\pm}\right)_{\pm} \in \binom{m}{2}$
induced by M is a position polyppe.
Coherent subliv obtained by lift ' each vertex e_{\pm} of Δr_{n} to " $M + M_{\pm}$:
 $M = 4, r=2$. Consider $(M_{\pm} : I \in \binom{r_{1}}{2})$ s.t. $M_{12} + M_{23} = M_{23} + M_{13} = M_{12} + M_{32}$.
Thus got this subliv $M_{12} = I \in \binom{r_{12}}{2}$

The (Boretsky - Eun - W): Let R by seg of consec integers
$$(q, a+1, ..., b)$$
.
Let $\mathcal{M} = (\mathcal{M}^{n}, ..., \mathcal{M}^{b}) \in \bigoplus_{i=a}^{b} \mathbb{P}(\mathbb{T}^{\binom{m}{i}})^{u} = \operatorname{T}^{b}(\mathbb{R} \cup \mathcal{I}^{a})^{\binom{m}{i}}$. TFAE
• \mathcal{M} lies in nonneg trop. of Flr;n (= closure of coord-win val of $\operatorname{Fl}^{z^{*}}_{R;n}(\mathbb{R})$)
• \mathcal{M} satisfies all poss trop 3-term Plucher a incident Pluckon rel
• Every face in cohorent subdur of flag notitiend polytope $\mathbb{P}(\mathcal{M}^{*}) + ... + \mathbb{P}(\mathcal{M}^{b})$
is a flag position polytope.

Applications Cor(BEW): For flag matrix $M = (M_a, M_{a+1}, M_b)$ of consec ranks a, a+1..., b, its flag matrix polytope P(M) is a flag par. polytope iff all its (=2) - dim'l faces are. This (Trukenman-W) = Every faces of a Brubit interval polytopic (BIP) is a BIP. Cor (BEW): A complete flag matrow poly is BIP iff all 2-dim't fair and Q: When doer seguerer ef positioneds of deff ranks have a realizate by one matrix? Positioned of deff ranks have a Cor (BEW): Suppose (Ma, Mari ..., Mb) is sequence of portroids of consec ranks. Then, when considered as sequence of por oriented mathematics, (Ma,..., Mb) is a flag positroid iff it's an onented flag matroid.

 $\frac{\mathcal{E}_{Xample}}{\mathcal{E}_{Xample}} = \frac{\mathcal{E}_{Xample}}{\mathcal{E}_{Xample}} = \frac{\mathcal{$

Bassinger computed Grobner fair structure - 14 max'l coner, 9 rays, dual to 3D association Note: Flq is clust variety of finite type Az-

Secondary fan structure. Got same fan.

POLYHEDRAL AND TROPICAL GEOMETRY OF FLAG POSITROIDS

TOEMEDANE MAD TROTAL	AL GEOMETRI OF FLAG I OSTROLOS	57		
Height function $(P_1, P_2, P_3, P_4; P_{12}, P_{13}, P_{13})$	Bruhat interval polytopes	f marken		
$P_{14}, P_{23}, P_{24}, P_{34}; P_{123}, P_{124}, P_{134}, P_{234})$	in subdivision	<i>f</i> -vector		
(15, -1, -7, -7; 4, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2	$P_{3214,4321}, P_{3124,4231}, P_{2314,3421},$			\square
-2, -2, 4; -7, -7, -1, 15)	$P_{2134,3241}, P_{1324,2431}, P_{1234,2341}$		\rightarrow	
(15, 3, -9, -9; 4, -8, -8,	$P_{2413,4321}, P_{3124,4231}, P_{2314,4231},$		/	
-4, -4, 20; -1, -1, -1, 3)	$P_{2134,3241}, P_{1324,2431}, P_{1234,2341}$			
(15, -7, -1, -7; -2, 4, -2,	$P_{3142,4321}, P_{3124,4312}, P_{2143,3421},$	1		
-2, 4, -2; -7, -1, -7, 15)	$P_{2134,3412}, P_{1243,2431}, P_{1234,2413}$			
(-1, -1, -1, 3; 4, -8, -4,	$P_{2413,4321}, P_{1423,4231}, P_{1342,4231},$			
-8, -4, 20; 15, 3, -9, -9)	$P_{1324,4213}, P_{1243,4132}, P_{1234,4123}$			
(-7, -7, -1, 15; 4, -2, -2,	$P_{1432,4321}, P_{1423,4312}, P_{1342,4231},$	1		
-2, -2, 4; 15, -1, , -7, -7)	$P_{1324,4213}, P_{1243,4132}, P_{1234,4123}$			
(-1, -7, -7, 15; -2, -2, 4,	$P_{3142,4321}, P_{2143,4312}, P_{2134,4213},$	1		12
4, -2, -2; 15, -7, -7, -1)	$P_{1342,3421}, P_{1243,3412}, P_{1234,2413}$	(04, 46, 00, 6)		
(-9, -9, 3, 15; 20, -4, -8,	$P_{1432,4321}, P_{1423,4312}, P_{1342,4231},$	(24, 46, 29, 6)		
-4, -8, 4; 3, -1, -1, -1)	$P_{1324,4213}, P_{1324,4132}, P_{1234,3142}$			
(11, -7, -7, 3; -6, -6, 4,	$P_{3142,4321}, P_{2143,4312}, P_{2134,4213},$			
4, 2, 2; 11, -7, -7, 3)	$P_{2143,3421}, P_{1243,2431}, P_{1234,2413}$			
(3, 3, -3, -3; 20, -10, -10,	$P_{2413,4321}, P_{3124,4231}, P_{2314,4231},$			
-10, -10, 20; -3, -3, 3, 3)	$P_{1324,2431}, P_{1324,3241}, P_{1234,3142}$			
(3, -1, -1, -1; 20, -4, -4,	$P_{3214,4321}, P_{3124,4231}, P_{2314,3421},$]		
-8, -8, 4; -9, -9, 3, 15)	$P_{1324,3241}, P_{1324,2431}, P_{1234,3142}$			
(-3, -3, 3, 3; 20, -10, -10,	$P_{2413,4321}, P_{1423,4231}, P_{1342,4231},$			
-10, -10, 20; 3, 3, -3, -3)	$P_{1324,4132}, P_{1324,4213}, P_{1234,3142}$			
(3, -7, -7, 11; 2, 2, 4,	$P_{3142,4321}, P_{3124,4312}, P_{1342,3421},$			
4, -6, -6; 3, -7, -7, 11)	$P_{2134,3412}, P_{1243,3412}, P_{1234,2413}$			
(11, -1, -7, -3; -2, -8, -4,	$P_{2413,4321}, P_{2143,4231}, P_{2134,4213},$			
-4, 0, 18; 11, -1, -7, -3)	$P_{1243,2431}, P_{1234,2413}$	(24, 45, 27, 5)		
(-3, -7, -1, 11; 18, 0, -4,	$P_{3142,4321}, P_{3124,4312}, P_{1342,3421}$			
-4, -8, -2; -3, -7, -1, 11)	$P_{1324,3412}, P_{1234,3142}$			
TABLE 1. Table documenting the 14	finest coherent subdivisions of Per	m ₄ into		

TABLE 1. Table documenting the 14 finest coherent subdivisions of $Perm_4$ into Bruhat interval polytopes. There are two possible *f*-vectors, each of which can be realized in multiple ways.

37

(w/ Jon Boretsky & Chris Em) Polyhedral & trop geom of positruide anXiv: 2208.09131

