Mutations, dilogarithm, and pentagon relation

Tomoki Nakanishi

Nagoya University

Bases for Cluster Algebras, The Casa Matemática Oaxaca (CMO), September 25-30, 2022 to celebrate 60th birthday of Bernard Leclerc

This talk is mainly based on the review article:
[N21] T. Nakanishi, Cluster algebras and scattering diagrams, Part III. Cluster scattering diagrams, preliminary draft for a monograph, arXiv:2111.00800, v4, 108 pp.

This slide will be put on my website soon.

1. Introduction2. Mutations and dilogarithm3. Structure group4. Scattering diagrams5. Cluster scattering diagrams

Cluster algebra vs cluster scattering diagram

Cluster scattering diagrams (CSDs) were introduced by [GHKK18]. [GHKK18] M. Gross, P. Hacking, S. Keel, M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497-608, arXiv:1411.1394 [math.AG]

The following work is also fundamental for more general scattering diagrams.
[KS14] M. Kontsevich, Y. Soibelman, Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry, in Homological mirror symmetry and tropical geometry, Lect. Notes Unione Ital., vol. 15, Springer, 2014, pp. 197-308; arXiv:1303.3253 [math.AG]

	cluster algebra / cluster pattern	CSD
initial data	$B: r \times r$ skew-symmetrizable integer matrix	B : the same as left
(+ auxiliary data)	$\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right): r$-tuple of variables $\mathbf{y}=\left(y_{1}, \ldots, y_{r}\right): r$-tuple of variables	$N:$ lattice of rank r $e_{1}, \ldots, e_{r}:$ basis of N
principle of construction	mutation	consistency
structure behind	-	structure group G

The most basic result in [GHKK18]

- The G-fan for a cluster pattern is embedded in the corresponding CSD.

Thus, the CSD knows everything about the cluster pattern.

- In addition, the CSD contains a highly complex structure outside the G-fan (the Badlands).

Example: G-fan vs CSD

Example: Initial data

$$
r=2, \quad B=\left(\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right)
$$

G-fan $=$ the geometrical presentation of G-matrices $=$ tropicalization of a cluster pattern (detropicalization: The cluster pattern can be reconstructed from it.)

$$
\operatorname{deg} \leq 1
$$

$\operatorname{deg} \leq 2$

$\operatorname{deg} \leq 3$

$\operatorname{deg} \leq 4$

[Davison - Mandel]

The force is balanced between "the Light side" and "the Dark side".
So, it is natural to regard the cluster pattern and the CSD as "one inseparable object".

Badlands (the Dark side)

Badlands National Park, South Dakota, USA

Goal of Talk

Goal

I explain the roles of the dilogarithm (dilogarithm elements) and the pentagon relation in cluster algebras and CSDs.

The conclusion is very simple.

Summary (Message)

- The dilogarithm interpolates the two principles, mutation and consistency.
- The dilogarithm elements and the pentagon relation are everything for CSDs.

This point of view was implicit in [GHKK18] and clarified explicitly in [N21].

1. Introduction
(2) 2. Mutations and dilogarithm3. Structure group4. Scattering diagrams5. Cluster scattering diagrams

Fock-Goncharov decomposition

(B, \mathbf{y}): a given initial Y-seed
Consider a sequence of mutations

$$
(B, \mathbf{y})=(B(0), \mathbf{y}(0)) \xrightarrow{\mu_{k_{0}}}(B(1), \mathbf{y}(1)) \xrightarrow{\mu_{k_{1}}} \cdots \xrightarrow{\mu_{k_{P}-1}}(B(P), \mathbf{y}(P)) .
$$

We regard each mutation $\mu_{k_{s}}$ as a field isomorphism

$$
\begin{array}{rll}
\mu(s): \mathbb{Q}(\mathbf{y}(s+1)) & \longrightarrow & \mathbb{Q}(\mathbf{y}(s)) \\
y_{i}(s+1) & \mapsto & \begin{array}{ll}
y_{k_{s}}^{-1}(s) & i=k_{s} \\
y_{i}(s) y_{k_{s}}(s)^{\left[\varepsilon b_{k_{s} i}(s)\right]}+\left(1+y_{k_{s}}(s)^{\varepsilon}\right)^{-b_{k_{s} i}(s)} & i \neq k_{s}
\end{array}
\end{array}
$$

Here, the RHS is independent of $\varepsilon \in\{1,-1\}$.
For ε, we especially choose the sign (tropical sign) ε_{s} of the corresponding c-vector $\mathbf{c}_{k_{s}}(s)$.
Then, we consider the decomposition

$$
\begin{aligned}
& \mu(s)=\rho(s) \circ \tau(s), \\
& \tau(s): \mathbb{Q}(\mathbf{y}(s+1)) \quad \longrightarrow \quad \mathbb{Q}(\mathbf{y}(s)) \\
& y_{i}(s+1) \quad \mapsto \quad \begin{cases}y_{k_{s}}^{-1}(s) & i=k_{s}, \\
y_{i}(s) y_{k_{s}}(s)^{\left[\varepsilon_{s} b_{k_{s} i}(s)\right]}+ & i \neq k_{s},\end{cases} \\
& \rho(s): \mathbb{Q}(\mathbf{y}(s)) \quad \longrightarrow \quad \mathbb{Q}(\mathbf{y}(s)) \\
& y_{i}(s) \quad \mapsto \quad y_{i}(s)\left(1+y_{k_{s}}(s)^{\varepsilon_{s}}\right)^{-b_{k_{s} i}(s)} .
\end{aligned}
$$

We call it the Fock-Goncharov decomposition.
The map $\tau(s)$ is the tropical part, while the map $\rho(s)$ is the automorphism part of $\mu(s)$.

Composition of the Fock-Goncharov decompositions

Next, we introduce compositions of the tropical parts $(s=0, \ldots, P-1)$

$$
\tau(s ; 0):=\tau(0) \circ \tau(1) \circ \cdots \circ \tau(s): \mathbb{Q}(\mathbf{y}(s+1)) \longrightarrow \mathbb{Q}(\mathbf{y})
$$

Thanks to the choice of the sign ε_{s}, the following formula holds:

$$
\tau(s ; 0)\left(y_{i}(s+1)\right)=y^{\mathbf{c}_{i}(s+1)} \quad\left(\mathbf{c}_{i}(s+1): c \text {-vector }\right)
$$

We have a commutative diagram

$$
\mathbb{Q}(\mathbf{y}(2)) \xrightarrow{\tau(1)} \mathbb{Q}(\mathbf{y}(1)) \xrightarrow{\tau(0)} \mathbb{Q}(\mathbf{y})
$$

By the commutativity, we have the formula

$$
\mathfrak{q}(s)\left(y^{\mathbf{c}_{i}(s)}\right)=y^{\mathbf{c}_{i}(s)}\left(1+y^{\mathbf{c}_{k_{s}}^{+}(s)}\right)^{-b_{k_{s} i}(s)}, \quad \mathbf{c}_{k_{s}}^{+}(s):=\varepsilon_{s} \mathbf{c}_{k_{s}}(s)
$$

$$
\begin{aligned}
& \mathbb{Q}(\mathbf{y}(P)) \xrightarrow{\tau(P-1)} \rightarrow \mathbb{Q}(\mathbf{y}(P-1)) \xrightarrow{\tau(P-2 ; 0)} \mathbb{Q}(\mathbf{y})
\end{aligned}
$$

Poisson bracket and dilogarithm

Following [Fock-Goncharov09, Gekhtman-N-Rupel16], we reformulate the above automorphism

$$
\mathfrak{q}(s)\left(y^{\mathbf{c}_{i}(s)}\right)=y^{\mathbf{c}_{i}(s)}\left(1+y^{\mathbf{c}_{k_{s}}^{+}(s)}\right)^{-b_{k_{s} i}(s)}
$$

by the dilogarithm.

Vainditein

- Following [Gekhtamn-Shapiro-Wine2], consider a Poisson bracket on $\mathbb{Q}(\mathbf{y})$ as

$$
\left\{y_{i}, y_{i}\right\}=d_{i} b_{i j} y_{i} y_{i}
$$

where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right)$ is any rational skew-symmetrizer of B.

- Recall the Euler dilogarithm:

$$
\operatorname{Li}_{2}(x):=\sum_{j=1}^{\infty} \frac{1}{j^{2}} x^{j}, \quad x \frac{d}{d x}\left(-\operatorname{Li}_{2}(-x)\right)=\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} x^{j}=\log (1+x)
$$

- Also recall the following fact [Nakanishi-Zelevinsky12]:

$$
D B(s)=C(s)^{T}(D B) C(s)
$$

- Using the above formulas, one can derive

$$
\left\{\varepsilon_{s} d_{k_{s}}^{-1} \operatorname{Li}_{2}\left(-y^{\mathbf{c}_{k_{s}}^{+}(s)}\right), y^{\mathbf{c}_{i}(s)}\right\}=y^{\mathbf{c}_{i}(s)} \log \left(1+y^{\mathbf{c}_{k_{s}}^{+}(s)}\right)^{-b_{k_{s} i}(s)}
$$

Thus, the automorphism $\mathfrak{q}(s)$ is described as the time-one flow by the Hamiltonian

$$
\mathcal{H}(s):=\frac{\varepsilon_{s}}{d_{k_{s}}} \operatorname{Li}_{2}\left(-y^{\mathbf{c}_{k_{s}}^{+}(s)}\right)
$$

This gives an intrinsic connection between mutations and dilogarithm.
([FG09] used this observation to quantize mutations with the quantum dilogarithm.)

1. Introduction2. Mutations and dilogarithm
(3)
2. Structure group4. Scattering diagrams5. Cluster scattering diagrams

Lie algebra \mathfrak{g}_{Ω}

Temporally, forget about the initial skew-symmetrizable matrix B.

- initial data
$\Omega=\left(\omega_{i j}\right)$: skew-symmetric $r \times r$ rational matrix
$N \simeq \mathbb{Z}^{r}$: lattice of rank r
e_{1}, \ldots, e_{r} : basis of N
The data determines the followings:
- (a). skew-symmetric bilinear form $\{\cdot, \cdot\}: N \times N \rightarrow \mathbb{Q}$:

$$
\left\{e_{i}, e_{j}\right\}:=\omega_{i j}
$$

- (b). semi-group of positive elements

$$
N^{+}:=\left\{n=\sum_{i=1}^{r} a_{i} e_{i} \mid a_{i} \in \mathbb{Z}_{\geq 0}, n \neq 0\right\}
$$

- Lie algebra \mathfrak{g}_{Ω}

Define an N^{+}-graded Lie algebra \mathfrak{g}_{Ω} associated with the above data as follows:

- basis (generator): $X_{n}\left(n \in N^{+}\right)$

$$
\mathfrak{g}_{\Omega}=\bigoplus_{n \in N^{+}} \mathbb{Q} X_{n}
$$

- Lie bracket

$$
\left[X_{n}, X_{n^{\prime}}\right]=\left\{n, n^{\prime}\right\} X_{n+n^{\prime}}
$$

It is easy to check the Jacobi identity.

Structure group G_{Ω}

- completion $\widehat{\mathfrak{g}}_{\Omega}$

For $n=\sum_{i} a_{i} e_{i} \in N^{+}$, define $\operatorname{deg}(n)$ as

$$
\operatorname{deg}(n)=\sum_{i=1}^{r} a_{i}
$$

Then, we have the completion $\widehat{\mathfrak{g}}_{\Omega}$ of \mathfrak{g} with respect to deg. An element of $\widehat{\mathfrak{g}}_{\Omega}$ has the form

$$
\sum_{n \in N^{+}} c_{n} X_{n} \quad \text { (possibly infinite sum) }
$$

- Group G_{Ω}

We define a group G_{Ω} as follows:

$$
G_{\Omega}=\left\{\exp (X) \mid X \in \widehat{\mathfrak{g}}_{\Omega}\right\}
$$

where

$$
\exp : \widehat{\mathfrak{g}} \rightarrow G_{\Omega}
$$

is a formal bijection, and the product is defined by the Baker-Campbell-Hausdorff (BCH) formula

$$
\begin{aligned}
& \exp (X) \exp (Y) \\
= & \exp \left(X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}[X,[X, Y]]-\frac{1}{12}[Y,[X, Y]]+\cdots\right)
\end{aligned}
$$

- This is the relation of the formal sum $\exp x=\sum_{k=1}^{\infty} x^{k} / k$! of an element x of a Lie algebra.
- Since $\widehat{\mathfrak{g}}$ is N^{+}-graded, the infinite sum of the RHS is well-defined.

This construction of G_{Ω} is due to [Kontsevich-Soibelman14]. There is no specific name of G_{Ω}. We call it the structure group of the forthcoming scattering diagrams.

Normal subgroup $G^{>\ell}$ and quotient $G^{\leq \ell}$

We write G_{Ω} as G, when there is no confusion.

- Normal subgroup $G^{>\ell}$

For any positive integer ℓ, we define

$$
\left(N^{+}\right)^{>\ell}:=\left\{n \in N^{+} \mid \operatorname{deg}(n)>\ell\right\}
$$

Let $G^{>\ell}$ be the set of all elements of G having the form

$$
\exp \left(\sum_{n \in\left(N^{+}\right)>\ell} c_{n} X_{n}\right) \quad \text { (possibly infinite sum). }
$$

Then, $G^{>\ell}$ is a normal subgroup of G.

- Quotient group $G \leq \ell$

For the above $G^{>\ell}$, we define

$$
G^{\leq \ell}:=G / G^{>\ell}
$$

By the construction, we have

$$
G=\lim _{\leftarrow-} G^{\leq \ell}
$$

Infinite product in G

The infinite product in G is given by the limit of the finite product in $G^{\leq \ell}$ compatible with the canonical projections $\pi_{\ell}: G \rightarrow G_{\ell}$.

Dilogarithm elements (Algebraic formulation of dilogarithm)

- Recall the Euler dilogarithm

$$
\mathrm{Li}_{2}(x):=\sum_{j=1}^{\infty} \frac{1}{j^{2}} x^{j}, \quad x \frac{d}{d x}\left(-\operatorname{Li}_{2}(-x)\right)=\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} x^{j}=\log (1+x)
$$

- Dilogarithm element: For each $n \in N^{+}$, we define the dilogarithm element for n

$$
\Psi[n]:=\exp \left(\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j^{2}} X_{j n}\right) \in G
$$

- y-representation of G : We define the action of X_{n} on the formal power series ring $\mathbb{Q}[[\mathbf{y}]]$ of variables $\mathbf{y}=\left(y_{1}, \ldots, y_{r}\right)$ as

$$
\tilde{X}_{n}\left(y^{n^{\prime}}\right):=\left\{n, n^{\prime}\right\} y^{n+n^{\prime}}
$$

This is a derivation, and it induces the group homomorphism

$$
\rho_{y}: G \mapsto \operatorname{Aut}(\mathbb{Q}[[\mathbf{y}]]), \quad \exp (X) \mapsto \sum_{k=0}^{\infty} \tilde{X}^{k} / k!
$$

We call it the y-representation of G. Under this action, we have

$$
\Psi[n]\left(y^{n^{\prime}}\right)=y^{n^{\prime}}\left(1+y^{n}\right)^{\left\{n, n^{\prime}\right\}}
$$

In particular, we recover the automorphism part $\mathfrak{q}(s)$ of the Fock-Goncharov decomposition as

$$
\Psi\left[\mathbf{c}_{k_{s}}^{+}(s)\right]^{-\varepsilon_{s} / d_{k_{s}}}\left(y^{\mathbf{c}_{i}(s)}\right)=y^{\mathbf{c}_{i}(s)}\left(1+y^{\mathbf{c}_{k_{s}}^{+}(s)}\right)^{-b_{k_{s}}(s)}=\mathfrak{q}(s)\left(y^{\mathbf{c}_{i}(s)}\right)
$$

- A dilogarithm element $\Psi[n]^{-1}$ corresponds to (the time-one flow of) the Hamiltonian $\mathrm{Li}_{2}\left(-y^{n}\right)$.
- The Poisson bracket is replaced with the group G and its action.

Pentagon relation (Algebraic formulation of pentagon identity)

Advantages of working with the group G

- We can study the relations among $\Psi[n]$'s in G.
- Infinite products are available in the group G.
- All relevant representations (y-rep, x-rep, principal x-rep, etc) and their mutations are treated in a unified and more intrinsic way.

The dilogarithm elements $\Psi[n]\left(n \in N^{+}\right)$satisfy a remarkable relation in G.

Theorem [GHKK18, N21]

For any $n^{\prime}, n \in N^{+}$and $c, c^{\prime} \in \mathbb{Q}$, the following relations hold:
(a). If $\left\{n^{\prime}, n\right\}=0$,

$$
\text { (commutative relation) } \Psi\left[n^{\prime}\right]^{c^{\prime}} \Psi[n]^{c}=\Psi[n]^{c} \Psi\left[n^{\prime}\right]^{c^{\prime}} .
$$

(b). If $\left\{n^{\prime}, n\right\}=c(\neq 0)$,
(pentagon relation) $\Psi\left[n^{\prime}\right]^{1 / c} \Psi[n]^{1 / c}=\Psi[n]^{1 / c} \Psi\left[n+n^{\prime}\right]^{1 / c} \Psi\left[n^{\prime}\right]^{1 / c}$.
Proof. (a) $\left[X_{n}, X_{n^{\prime}}\right]=\left\{n, n^{\prime}\right\} X_{n+n^{\prime}}=0$. (b) Use y-representation.
This is an algebraic formulation of the pentagon identity (Abel's identity) for the Euler dilogarithm

$$
\begin{aligned}
& \operatorname{Li}_{2}(x)+\operatorname{Li}_{2}(y)+\operatorname{Li}_{2}\left(\frac{1-x}{1-x y}\right)+\mathrm{Li}_{2}(1-x y)+\mathrm{Li}_{2}\left(\frac{1-y}{1-x y}\right) \\
= & \frac{\pi^{2}}{2}-\log x \log (1-x)-\log y \log (1-y)-\log \left(\frac{1-x}{1-x y}\right) \log \left(\frac{1-y}{1-x y}\right) .
\end{aligned}
$$

1. Introduction2. Mutations and dilogarithm3. Structure group4. Scattering diagrams5. Cluster scattering diagrams

Walls

We continue to use the initial data:
$\Omega=\left(\omega_{i j}\right)$: skew-symmetric $r \times r$ rational matrix,
$N \simeq \mathbb{Z}^{r}$: lattice of rank $r ; e_{1}, \ldots, e_{r}$: basis of N,
$G=G_{\Omega}$: the group determined by the above data

- Additional definitions
- $M:=\operatorname{Hom}(N, \mathbb{Z}) \simeq \mathbb{Z}^{r}, M_{\mathbb{R}}:=M \otimes_{\mathbb{Z}} \mathbb{R} \simeq \mathbb{R}^{r}$
(A scattering diagram is defined in the space $M_{\mathbb{R}}$.)
- $\langle\cdot, \cdot\rangle: N \times M_{\mathbb{R}} \rightarrow \mathbb{R}$: the canonical paring and its linear extension.
- For $n \in N^{+}$, we define the hypersurface n^{\perp} in $M_{\mathbb{R}}$ as

$$
n^{\perp}:=\left\{z \in M_{\mathbb{R}} \mid\langle n, z\rangle=0\right\} .
$$

- For $n \in N^{+}$, we say it is primitive if it is not divisible by $t \in \mathbb{Z}_{>1}$ in N^{+}.

Let N_{pr}^{+}denote the set of all primitive elements in N^{+}.

- For $n \in N_{\mathrm{pr}}^{+}$, let $G_{n}^{\|}$be the abelian subgroup of G consisting of all elements $\exp \left(\sum_{j=1}^{\infty} c_{j} X_{j n}\right)$ (possibly infinite sum). We call it the parallel subgroup for n.
- Wall

We call a triplet $\mathbf{w}=(\mathfrak{d}, g)_{n}$ a wall, where

- normal vector: $n \in N_{\mathrm{pr}}^{+}$

- support: $\mathfrak{d} \subset n^{\perp}$, a cone in $M_{\mathbb{R}}$ of dimension $r-1$ (not necessarily strongly convex)
- wall element: $g \in G_{n}^{\|}$

Ex: For $n \in N_{\mathrm{pr}}^{+}, \mathbf{w}=\left(n^{\perp}, \Psi[n]\right)_{n}$ is a wall.

Scattering diagrams

- Scattering diagram
- A collection of walls $\mathfrak{D}=\left\{\mathbf{w}_{\lambda}=\left(\mathfrak{d}_{\lambda}, g_{\lambda}\right)_{n_{\lambda}}\right\}_{\lambda \in \Lambda}$ is a scattering diagram if it satisfies the following finiteness condition:
For any positive integer ℓ, there are only finitely many \mathbf{w}_{λ} such that $\pi_{\ell}\left(g_{\lambda}\right) \neq \mathrm{id}$. (Here, $\pi_{\ell}: G \rightarrow G^{\leq \ell}$ is the canonical projection.)
- For each positive integer ℓ, the following (finite) subset \mathfrak{D}_{ℓ} of \mathfrak{D} is called the reduction of \mathfrak{D} at degree ℓ :

$$
\mathfrak{D}_{\ell}=\left\{\mathbf{w}_{\lambda} \in \mathfrak{D} \mid \pi_{\ell}\left(g_{\lambda}\right) \neq \mathrm{id}\right\}
$$

- The union of the supports of walls $\operatorname{Supp}(\mathfrak{D}):=\bigcup_{\lambda \in \Lambda} \mathfrak{d}_{\lambda}$ is called the support of \mathfrak{D}.
- Path-ordered product

For a scattering diagram \mathfrak{D} and a smooth curve γ in $M_{\mathbb{R}}$ satisfying a certain generic condition (an admissible curve), the path-ordered product $\mathfrak{p}_{\mathfrak{D}, \gamma} \in G$ is defined as follows:
For each positive integer ℓ, when γ crosses the walls $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$ of \mathfrak{D}_{ℓ} in this order, we set

$$
\begin{aligned}
\mathfrak{p}_{\mathfrak{D}_{\ell}, \gamma} & =g_{k}^{\varepsilon_{k}} \cdots g_{1}^{\varepsilon_{1}}, \\
\mathfrak{p}_{\mathfrak{D}, \gamma} & =\lim _{\ell \rightarrow \infty} \mathfrak{p}_{\mathfrak{D}_{\ell}, \gamma} \quad \text { (well-defined thanks to the finiteness condition.) }
\end{aligned}
$$

Here, the intersection $\operatorname{sign} \varepsilon_{i}$ is defined as below.

Consistent scattering diagrams

- equivalence

Scattering diagrams \mathfrak{D} and \mathfrak{D}^{\prime} are equivalent.
$\stackrel{\text { def }}{\Longleftrightarrow}$ For any admissible curve $\gamma, \mathfrak{p}_{\mathfrak{D}, \gamma}=\mathfrak{p}_{\mathfrak{D}^{\prime}, \gamma}$ holds.
For a given scattering diagram \mathfrak{D}, we have infinitely many equivalent scattering diagrams by splitting and unifying the supports of walls and wall elements.

- consistency
 \rightarrow

A scattering diagram \mathfrak{D} is consistent if , for any admissible closed curve $\gamma, \mathfrak{p}_{\mathfrak{D}, \gamma}=\mathrm{id}$ holds.

- Existence theorem

$$
\begin{aligned}
\mathcal{C}^{+} & :=\left\{z \in M_{\mathbb{R}} \mid\left\langle e_{i}, z\right\rangle \geq 0 \quad(i=1, \ldots, r)\right\} \\
\mathcal{C}^{-} & :=\left\{z \in M_{\mathbb{R}} \mid\left\langle e_{i}, z\right\rangle \leq 0 \quad(i=1, \ldots, r)\right\}
\end{aligned}
$$

Let γ_{+-}be any admissible curve starting in $\operatorname{Int}\left(\mathcal{C}^{+}\right)$and ending in $\operatorname{Int}\left(\mathcal{C}^{-}\right)$.

For any consistent scattering diagram \mathfrak{D}, any wall of \mathfrak{D} does not intersect $\operatorname{Int}\left(\mathcal{C}^{ \pm}\right)$. So, an element $g(\mathfrak{D}):=\mathfrak{p}_{\mathfrak{D}, \gamma_{+-}} \in G$ is uniquely determined, and it only depends on the equivalence class of \mathfrak{D}.

Theorem ([KS14, GHKK18])

The following map is bijective:

$$
\begin{array}{rlc}
\text { \{equivalence classes of consistent scattering diagrams \}} & \longrightarrow & G \\
{[\mathfrak{D}]} & \mapsto & g(\mathfrak{D}) .
\end{array}
$$

The proof depends on some (abstract) decompositions of G.

Rank 2 example: CSD of type A_{2}

consistent scattering diagsoms

Q. How can we construct ESES more explicitly?

Some (special) consistent scattering diagrams can be constructed only from dilogarithm elements and the pentagon relation.

Throughout all examples below, let

$$
\Omega=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad\left\{e_{2}, e_{1}\right\}=1
$$

Example 1. We have the pentagon relation

$$
\Psi\left[e_{2}\right] \Psi\left[e_{1}\right]=\Psi\left[e_{1}\right] \Psi\left[e_{1}+e_{2}\right] \Psi\left[e_{2}\right]
$$

This is interpreted as a (unique) consistent relation

$$
\mathfrak{p}_{\mathfrak{D}, \gamma_{1}}=\mathfrak{p}_{\mathfrak{D}, \gamma_{2}}
$$

for the consistent scattering diagram \mathfrak{D} with walls

$$
\mathbf{w}_{1}=\left(e_{1}^{\perp}, \Psi\left[e_{1}\right]\right)_{e_{1}}, \quad \mathbf{w}_{2}=\left(e_{2}^{\perp}, \Psi\left[e_{2}\right]\right)_{e_{2}}, \quad \mathbf{w}_{3}=\left(\mathbb{R}_{\geq 0}\left(e_{1}^{*}-e_{2}^{*}\right), \Psi\left[e_{1}+e_{2}\right]\right)_{e_{1}+e_{2}}
$$

This is indeed a CSD of type A_{2}. (The definition of a CSD will be given later.)
The support of \mathfrak{D} also coincides with the G-fan of type A_{2}.

Rank 2 example: CSD of type B_{2}

Example 2. Below, for $n=n_{1} e_{1}+n_{2} e_{2}$, we write $\Psi[n]$ as $\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right]$.
Applying the pentagon relation repeatedly, we have

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{2} .
\end{aligned}
$$

The LHS is anti-ordered, while the RHS is ordered. This gives a (unique) consistent relation for the following consistent scattering diagram \mathfrak{D} :

Here, the identification $M_{\mathbb{R}} \simeq \mathbb{R}^{2}$ is given by $e_{1}^{*} \mapsto \mathbf{e}_{1}, e_{2}^{*} / 2 \mapsto \mathbf{e}_{2}$.
This is a CSD of type B_{2}. The support of \mathfrak{D} also coincides with the G-fan of type B_{2}.

Rank 2 example: CSD of type G_{2}

Example 3. Applying the pentagon relation repeatedly, we have

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{2}\right) \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{1}{ }^{2}\left[\begin{array}{l}
1 \\
3
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{3} \\
& \left.=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{3}\left[\begin{array}{l}
2 \\
3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]^{3}\left[\begin{array}{l}
1 \\
3
\end{array}\right]^{0}\right]^{3} .
\end{aligned}
$$

The LHS is anti-ordered, while the RHS is ordered. This gives a (unique) consistent relation for the following consistent scattering diagram \mathfrak{D} :

Here, the identification $M_{\mathbb{R}} \simeq \mathbb{R}^{2}$ is given by $e_{1}^{*} \mapsto \mathbf{e}_{1}, e_{2}^{*} / 3 \mapsto \mathbf{e}_{2}$.
This is a CSD of type G_{2}. The support of \mathfrak{D} also coincides with the G-fan of type G_{2}.2. Mutations and dilogarithm3. Structure group4. Scattering diagrams5. Cluster scattering diagrams

Initial data for CSD

- initial data for CSD:
skew-symmetrizable $r \times r$ integer matrix B decomposition

$$
B=\Delta \Omega
$$

Δ : positive integer diagonal matrix, Ω : skew-symmetric rational matrix.
Thus, Δ^{-1} is a skew-symmetrizer of B.
(Such a decomposition is not unique, but we do not care at this moment.)

- As we did so far,
$\Omega=\left(\omega_{i j}\right)$: the above skew-symmetric rational matrix
$N \simeq \mathbb{Z}^{r}$: lattice of rank $r ; \quad e_{1}, \ldots, e_{r}$: basis of N
$\left\{e_{i}, e_{j}\right\}=\omega_{i j}$: skew-symmetric form on N
G_{Ω} : the group defined by the above data
- Meanwhile, from $\Delta=\operatorname{diag}\left(\delta_{1}, \ldots, \delta_{r}\right)$, we have
$N^{\circ}:=\bigoplus_{i=1}^{r} \mathbb{Z} \delta_{i} e_{i}$: sublattice of N
$M^{\circ}:=\operatorname{Hom}\left(N^{\circ}, \mathbb{Z}\right)=\bigoplus_{i=1}^{r} \mathbb{Z} e_{i}^{*} / \delta_{i}: M \subset M^{\circ} \subset M_{\mathbb{R}}$
Also, for $n \in N^{+}$, let $\delta(n)$ be the smallest positive rational number such that $\delta(n) n \in N^{\circ}$. We call it the normalization factor of n (e.g., $\delta\left(e_{i}\right)=\delta_{i}$).
- We have a homomorphism of abelian groups

$$
p^{*}: N \rightarrow M^{\circ} \subset M_{\mathbb{R}}, \quad n \mapsto\{\cdot, n\} .
$$

The representation matrix of p^{*} with respect to the above bases is B.

Cluster Scattering Diagrams (CSDs)

- incoming and outgoing walls

A wall $\mathbf{w}=(\mathfrak{d}, g)_{n}$ of a scattering diagram \mathfrak{D} with the structure group G_{Ω} is incoming (resp. outgoing) if $p^{*}(n) \in \mathfrak{d}$ (reps. otherwise).

Since $\left\langle n, p^{*}(n)\right\rangle=\{n, n\}=0$, we have $p^{*}(n) \in n^{\perp}$.

incoming wall

outgoing wall

- Cluster scattering diagrams

We are ready to define cluster scattering diagrams.

Theorem-Definition [GHKK18]

For any skew-symmetrizable $r \times r$ integer matrix B and its decomposition $B=\Delta \Omega$, there is a unique (up to equivalence) consistent scattering diagram \mathfrak{D} with the structure group G_{Ω} satisfying the following condition:

The set of all incoming walls in \mathfrak{D} is given by $\left\{\mathbf{w}_{e_{i}}:=\left(e_{i}^{\perp}, \Psi\left[e_{i}\right]^{\delta}\right)_{e_{i}} \mid i=1, \ldots, r\right\}$.
A consistent scattering diagram satisfying the above condition is called a cluster scattering diagram (CSD) associated with B and denoted by $\mathfrak{D}(B)$.

For another decomposition $B=\Delta^{\prime} \Omega^{\prime}$, one can identify the corresponding CSD through the isomorphism of the structure groups $G_{\Omega} \simeq G_{\Omega^{\prime}}$.

Ordering Lemma

Let us temporarily concentrate on the rank 2 case.
We say that a (possibly infinite) product of $\Psi[n]^{c}(c \in \mathbb{Q})$ is ordered (resp. anti-ordered) if, for any adjacent factors $\Psi\left[n^{\prime}\right]^{c^{\prime}} \Psi[n]^{c},\left\{n^{\prime}, n\right\} \geq 0$ (resp. $\left\{n^{\prime}, n\right\} \leq 0$) holds.

Ordering Lemma [N21]

Any finite anti-ordered product of $\Psi[n]^{\delta(n)}$ is rewritten as a (possibly infinite) ordered product of $\Psi[n]^{\delta(n)}$ by applying the pentagon relation (possibly infinitely many times).

Proof. One can given an explicit algorithm. Also, there is a program for SageMath [N21].
Examples: Let

$$
B=\left(\begin{array}{cc}
0 & -\delta_{1} \\
\delta_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
\delta_{1} & 0 \\
0 & \delta_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad\left(\delta_{1}, \delta_{2} \in \mathbb{Z}_{>0}\right)
$$

(1). type $A_{1}^{(1)}:\left(\delta_{1}, \delta_{2}\right)=(2,2)$. ([Reineke11], [Matsushita21] by the pentagon relation)

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]^{2}\left[\begin{array}{l}
3 \\
2
\end{array}\right]^{2} \cdots \prod_{j=0}^{\infty}\left[\begin{array}{l}
2^{j} \\
2^{j}
\end{array}\right]^{2^{2-j}} \cdots\left[\begin{array}{l}
2 \\
3
\end{array}\right]^{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]^{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{2}
$$

(2). non-affine type: $\left(\delta_{1}, \delta_{2}\right)=(3,3)$. Use my program! © the Badands

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{3} \equiv\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{3}\left[\begin{array}{l}
3 \\
1
\end{array}\right]^{3}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]^{9}\left[\begin{array}{l}
3 \\
2
\end{array}\right]^{39}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{9}\left[\begin{array}{l}
2 \\
2
\end{array}\right]^{18}\left[\begin{array}{l}
2 \\
3
\end{array}\right]^{39}\left[\begin{array}{l}
1 \\
2
\end{array}\right]^{9}\right)\left[\begin{array}{l}
1 \\
3
\end{array}\right]^{3}\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{3} \bmod G^{>5} .} \\
\operatorname{deg} \leq 1 \\
\operatorname{deg} \leq 2 \quad \rightarrow \quad \mid
\end{gathered}
$$

Theorems on CSDs

Theorem A. (Positive realization [GHKK18])

For any skew-symmetrizable matrix B, there is a CSD $\mathfrak{D}(B)$ such that any wall element have the form $\Psi[n]^{\delta(n)}$.

To prove it, an alternative construction of a CSD was introduced in [GHKK18].

Theorem B. ([GHKK18])

For a CSD $\mathfrak{D}(B)$ with minimal support, the corresponding G-fan is embedded in $\operatorname{Supp}(\mathfrak{D}(B))$ under the identification $M_{\mathbb{R}} \simeq \mathbb{R}^{r}$ with $e_{i}^{*} \mapsto \delta_{i} \mathbf{e}_{i}$.
the construction in Theorem $\mathrm{A} \Longrightarrow$ the mutation invariance of $\mathfrak{D}(B) \Longrightarrow$ Theorem B .
Theorem $\mathrm{B} \Longrightarrow$ the sign-coherence of C-matrices.
Theorems A \& B \Longrightarrow the Laurent positivity.
Modifying the construction for Theorem A with Ordering Lemma, we obtain the following result.

Theorem C. ([N21])

Every consistency relation of a CSD $\mathfrak{D}(B)$ reduces to a trivial one $g=g$ by applying the commutative relation and the pentagon relation (possibly infinitely many times).

Summary (Message)

- The dilogarithm interporates the two principles (mutation and the consistency).
- The dilogarithm elements and the pentagon relation are everything for CSDs.

Example: the Badlands in a rank 3 CSD

$$
B=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -2 \\
0 & 2 & 0
\end{array}\right), \quad \Delta=I, \quad \Omega=B
$$

the stereo graphic projection of the support: (The right figure is the magnified one of the shaded region in the left figure.)

See
[N21] T. Nakanishi, Cluster algebras and scattering diagrams, Part III. Cluster scattering diagrams, preliminary draft for a monograph, arXiv:2111.00800, 106 pp.

