
1. Introduction 2. Mutations and dilogarithm 3. Structure group 4. Scattering diagrams 5. Cluster scattering diagrams

Mutations, dilogarithm, and pentagon relation

Tomoki Nakanishi

Nagoya University

Bases for Cluster Algebras, The Casa Matemática Oaxaca (CMO), September 25–30, 2022
to celebrate 60th birthday of Bernard Leclerc

This talk is mainly based on the review article:

[N21] T. Nakanishi, Cluster algebras and scattering diagrams, Part III. Cluster scattering diagrams,
preliminary draft for a monograph, arXiv:2111.00800, v4, 108 pp.

This slide will be put on my website soon.
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Cluster algebra vs cluster scattering diagram

Cluster scattering diagrams (CSDs) were introduced by [GHKK18].
[GHKK18] M. Gross, P. Hacking, S. Keel, M. Kontsevich, Canonical bases for cluster algebras,
J. Amer. Math. Soc. 31 (2018), 497–608, arXiv:1411.1394 [math.AG]

The following work is also fundamental for more general scattering diagrams.
[KS14] M. Kontsevich, Y. Soibelman, Wall-crossing structures in Donaldson-Thomas invariants,
integrable systems and mirror symmetry,
in Homological mirror symmetry and tropical geometry, Lect. Notes Unione Ital., vol. 15, Springer,
2014, pp. 197–308; arXiv:1303.3253 [math.AG]

cluster algebra / cluster pattern CSD

initial data B: r × r skew-symmetrizable integer matrix B: the same as left

(+ auxiliary data) x = (x1, . . . , xr): r-tuple of variables N : lattice of rank r
y = (y1, . . . , yr): r-tuple of variables e1, . . . , er : basis of N

principle of construction mutation consistency

structure behind – structure group G

The most basic result in [GHKK18]

The G-fan for a cluster pattern is embedded in the corresponding CSD.
Thus, the CSD knows everything about the cluster pattern.

In addition, the CSD contains a highly complex structure outside the G-fan (the Badlands).
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Example: G-fan vs CSD

Example: Initial data

r = 2, B =

(
0 −3
3 0

)

G-fan = the geometrical presentation of G-matrices = tropicalization of a cluster pattern
(detropicalization: The cluster pattern can be reconstructed from it.)

CSD (only the support is presented): constructed inductively on the degree with consistency

deg ≤ 1 deg ≤ 2 deg ≤ 3 deg ≤ 4

The force is balanced between “the Light side” and “the Dark side”.
So, it is natural to regard the cluster pattern and the CSD as “one inseparable object”.
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Badlands (the Dark side)

Badlands National Park, South Dakota, USA
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Goal of Talk

Goal

I explain the roles of the dilogarithm (dilogarithm elements) and the pentagon relation in cluster
algebras and CSDs.

The conclusion is very simple.

Summary (Message)

The dilogarithm interpolates the two principles, mutation and consistency.

The dilogarithm elements and the pentagon relation are everything for CSDs.

This point of view was implicit in [GHKK18] and clarified explicitly in [N21].
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Fock-Goncharov decomposition

(B,y): a given initial Y -seed
Consider a sequence of mutations

(B,y) = (B(0),y(0))
µk0−→ (B(1),y(1))

µk1−→ · · ·
µkP−1−→ (B(P ),y(P )).

We regard each mutation µks as a field isomorphism

µ(s) : Q(y(s + 1)) −→ Q(y(s))

yi(s + 1) %→
{
y−1
ks

(s) i = ks,

yi(s)yks (s)
[εbksi(s)]+ (1 + yks (s)

ε)−bksi(s) i &= ks.

Here, the RHS is independent of ε ∈ {1,−1}.
For ε, we especially choose the sign (tropical sign) εs of the corresponding c-vector cks (s).
Then, we consider the decomposition

µ(s) = ρ(s) ◦ τ(s),

τ(s) : Q(y(s + 1)) −→ Q(y(s))

yi(s + 1) %→
{
y−1
ks

(s) i = ks,

yi(s)yks (s)
[εsbksi(s)]+ i &= ks,

ρ(s) : Q(y(s)) −→ Q(y(s))

yi(s) %→ yi(s)(1 + yks (s)
εs )−bksi(s).

We call it the Fock-Goncharov decomposition.
The map τ(s) is the tropical part, while the map ρ(s) is the automorphism part of µ(s).
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Composition of the Fock-Goncharov decompositions

Next, we introduce compositions of the tropical parts (s = 0, . . . , P − 1)

τ(s; 0) := τ(0) ◦ τ(1) ◦ · · · ◦ τ(s) : Q(y(s + 1)) −→ Q(y).

Thanks to the choice of the sign εs, the following formula holds:

τ(s; 0)(yi(s + 1)) = yci(s+1) (ci(s + 1): c-vector)

We have a commutative diagram

Q(y(P )) Q(y(P − 1))

Q(y(P − 1)) Q(y(P − 2))

Q(y(2)) Q(y(1))

Q(y(1))

Q(y)

Q(y)

Q(y)

Q(y)

Q(y)

τ(P − 1) τ(P − 2; 0)

τ(P − 3; 0)τ(P − 2)

τ(1) τ(0)

τ(0)

µ(P − 1)

µ(1)

µ(0)

ρ(P − 1)

ρ(1)

q(P − 1)

q(1)

q(0)

...
...

. . .

!!

""##

!!

!! !!

!!

##

""

""

!!

""
!!

""##

By the commutativity, we have the formula

q(s)(yci(s)) = yci(s)(1 + y
c+
ks

(s)
)−bksi(s), c+

ks
(s) := εscks (s).
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Poisson bracket and dilogarithm

Following [Fock-Goncharov09, Gekhtman-N-Rupel16], we reformulate the above automorphism

q(s)(yci(s)) = yci(s)(1 + y
c+
ks

(s)
)−bksi(s).

by the dilogarithm.
• Following [Gekhtamn-Shapiro-Weinstein02], consider a Poisson bracket on Q(y) as

{yi, yi} = dibijyiyi,

where D = diag(d1, . . . , dr) is any rational skew-symmetrizer of B.
• Recall the Euler dilogarithm:

Li2(x) :=
∞∑

j=1

1

j2
xj , x

d

dx
(−Li2(−x)) =

∞∑

j=1

(−1)j+1

j
xj = log(1 + x).

• Also recall the following fact [Nakanishi-Zelevinsky12]:

DB(s) = C(s)T (DB)C(s).

• Using the above formulas, one can derive

{εsd−1
ks

Li2(−y
c+
ks

(s)
), yci(s)} = yci(s) log(1 + y

c+
ks

(s)
)−bksi(s).

Thus, the automorphism q(s) is described as the time-one flow by the Hamiltonian

H(s) :=
εs

dks

Li2(−y
c+
ks

(s)
).

This gives an intrinsic connection between mutations and dilogarithm.
([FG09] used this observation to quantize mutations with the quantum dilogarithm.)
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Lie algebra gΩ

Temporally, forget about the initial skew-symmetrizable matrix B.

• initial data
Ω = (ωij): skew-symmetric r × r rational matrix
N ) Zr : lattice of rank r

e1, . . . , er : basis of N
The data determines the followings:

(a). skew-symmetric bilinear form {·, ·} : N × N → Q:

{ei, ej} := ωij .

(b). semi-group of positive elements

N+ :=

{
n =

r∑

i=1

aiei | ai ∈ Z≥0, n &= 0

}
.

• Lie algebra gΩ

Define an N+-graded Lie algebra gΩ associated with the above data as follows:

basis (generator): Xn (n ∈ N+)

gΩ =
⊕

n∈N+

QXn.

Lie bracket

[Xn, Xn′ ] = {n, n′}Xn+n′ .

It is easy to check the Jacobi identity.
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Structure group GΩ

• completion ĝΩ

For n =
∑

i aiei ∈ N+, define deg(n) as

deg(n) =
r∑

i=1

ai.

Then, we have the completion ĝΩ of g with respect to deg. An element of ĝΩ has the form
∑

n∈N+

cnXn (possibly infinite sum)

• Group GΩ

We define a group GΩ as follows:

GΩ = {exp(X) | X ∈ ĝΩ},

where
exp : ĝ → GΩ

is a formal bijection, and the product is defined by the Baker-Campbell-Hausdorff (BCH) formula

exp(X) exp(Y )

= exp

(
X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]] −

1

12
[Y, [X,Y ]] + · · ·

)
.

This is the relation of the formal sum exp x =
∑∞

k=1 xk/k! of an element x of a Lie algebra.

Since ĝ is N+-graded, the infinite sum of the RHS is well-defined.

This construction of GΩ is due to [Kontsevich-Soibelman14]. There is no specific name of GΩ.
We call it the structure group of the forthcoming scattering diagrams.
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Normal subgroup G>! and quotient G≤!

We write GΩ as G, when there is no confusion.

• Normal subgroup G>"

For any positive integer %, we define

(N+)>" := {n ∈ N+ | deg(n) > %}.

Let G>" be the set of all elements of G having the form

exp

( ∑

n∈(N+)>"

cnXn

)
(possibly infinite sum).

Then, G>" is a normal subgroup of G.

• Quotient group G≤"

For the above G>", we define
G≤" := G/G>".

By the construction, we have
G = lim

←−
G≤".

Infinite product in G

The infinite product in G is given by the limit of the finite product in G≤" compatible with the
canonical projections π" : G → G".
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Dilogarithm elements (Algebraic formulation of dilogarithm)

• Recall the Euler dilogarithm

Li2(x) :=
∞∑

j=1

1

j2
xj , x

d

dx
(−Li2(−x)) =

∞∑

j=1

(−1)j+1

j
xj = log(1 + x).

• Dilogarithm element: For each n ∈ N+, we define the dilogarithm element for n

Ψ[n] := exp

( ∞∑

j=1

(−1)j+1

j2
Xjn

)
∈ G.

• y-representation of G: We define the action of Xn on the formal power series ring Q[[y]] of
variables y = (y1, . . . , yr) as

X̃n(y
n′ ) := {n, n′}yn+n′ .

This is a derivation, and it induces the group homomorphism

ρy : G %→ Aut(Q[[y]]), exp(X) %→
∞∑

k=0

X̃k/k!

We call it the y-representation of G. Under this action, we have

Ψ[n](yn′ ) = yn′ (1 + yn){n,n′}.

In particular, we recover the automorphism part q(s) of the Fock-Goncharov decomposition as

Ψ[c+
ks

(s)]−εs/dks (yci(s)) = yci(s)(1 + y
c+
ks

(s)
)−bksi(s) = q(s)(yci(s))

A dilogarithm element Ψ[n]−1 corresponds to (the time-one flow of) the Hamiltonian
Li2(−yn).

The Poisson bracket is replaced with the group G and its action.
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Pentagon relation (Algebraic formulation of pentagon identity)

Advantages of working with the group G

We can study the relations among Ψ[n]’s in G.

Infinite products are available in the group G.

All relevant representations (y-rep, x-rep, principal x-rep, etc) and their mutations are treated
in a unified and more intrinsic way.

The dilogarithm elements Ψ[n] (n ∈ N+) satisfy a remarkable relation in G.

Theorem [GHKK18, N21]

For any n′, n ∈ N+ and c, c′ ∈ Q, the following relations hold:
(a). If {n′, n} = 0,

(commutative relation) Ψ[n′]c
′
Ψ[n]c = Ψ[n]cΨ[n′]c

′
.

(b). If {n′, n} = c ( &= 0),

(pentagon relation) Ψ[n′]1/cΨ[n]1/c = Ψ[n]1/cΨ[n + n′]1/cΨ[n′]1/c.

Proof. (a) [Xn, Xn′ ] = {n, n′}Xn+n′ = 0. (b) Use y-representation. !
This is an algebraic formulation of the pentagon identity (Abel’s identity) for the Euler dilogarithm

Li2(x) + Li2(y) + Li2

(
1 − x

1 − xy

)
+ Li2(1 − xy) + Li2

(
1 − y

1 − xy

)

=
π2

2
− log x log(1 − x) − log y log(1 − y) − log

(
1 − x

1 − xy

)
log

(
1 − y

1 − xy

)
.
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Walls

We continue to use the initial data:
Ω = (ωij): skew-symmetric r × r rational matrix,
N ) Zr : lattice of rank r; e1, . . . , er : basis of N ,
G = GΩ: the group determined by the above data
• Additional definitions

M := Hom(N,Z) ) Zr , MR := M ⊗Z R ) Rr

(A scattering diagram is defined in the space MR.)

〈·, ·〉 : N × MR → R: the canonical paring and its linear extension.

For n ∈ N+, we define the hypersurface n⊥ in MR as

n⊥ := {z ∈ MR | 〈n, z〉 = 0}.

For n ∈ N+, we say it is primitive if it is not divisible by t ∈ Z>1 in N+.
Let N+

pr denote the set of all primitive elements in N+.

For n ∈ N+
pr, let G‖n be the abelian subgroup of G consisting of all elements

exp(
∑∞

j=1 cjXjn) (possibly infinite sum). We call it the parallel subgroup for n.
• Wall
We call a triplet w = (d, g)n a wall, where

normal vector: n ∈ N+
pr

support: d ⊂ n⊥，a cone in MR of dimension r − 1 (not necessarily strongly convex)

wall element: g ∈ G‖n

Ex: For n ∈ N+
pr, w = (n⊥,Ψ[n])n is a wall.
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Scattering diagrams

• Scattering diagram

A collection of walls D = {wλ = (dλ, gλ)nλ
}λ∈Λ is a scattering diagram if it satisfies the

following finiteness condition:
For any positive integer %, there are only finitely many wλ such that π"(gλ) &= id.
(Here, π" : G → G≤" is the canonical projection.)
For each positive integer %, the following (finite) subset D" of D is called the reduction of D at
degree %:

D" = {wλ ∈ D | π"(gλ) &= id}.
The union of the supports of walls Supp(D) :=

⋃
λ∈Λ dλ is called the support of D.

• Path-ordered product
For a scattering diagram D and a smooth curve γ in MR satisfying a certain generic condition (an
admissible curve), the path-ordered product pD,γ ∈ G is defined as follows:
For each positive integer %, when γ crosses the walls w1, . . . , wk of D" in this order, we set

pD",γ
= g

εk
k · · · gε1

1 ,

pD,γ = lim
"→∞

pD",γ
(well-defined thanks to the finiteness condition.)

Here, the intersection sign εi is defined as below.

•

••
•

ε1 = 1

ε2 = 1

ε3 = −1

ε4 = 1

γ
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Consistent scattering diagrams

• equivalence
Scattering diagrams D and D′ are equivalent.

def⇐⇒ For any admissible curve γ，pD,γ = pD′,γ holds.

For a given scattering diagram D, we have infinitely many equivalent scattering diagrams by
splitting and unifying the supports of walls and wall elements.

• consistency
A scattering diagram D is consistent if, for any admissible closed curve γ, pD,γ = id holds.

• Existence theorem

C+ := {z ∈ MR | 〈ei, z〉 ≥ 0 (i = 1, . . . , r)},

C− := {z ∈ MR | 〈ei, z〉 ≤ 0 (i = 1, . . . , r)}.

Let γ+− be any admissible curve starting in Int(C+) and ending in Int(C−).
For any consistent scattering diagram D, any wall of D does not intersect Int(C±). So, an element
g(D) := pD,γ+− ∈ G is uniquely determined, and it only depends on the equivalence class of D.

Theorem ([KS14, GHKK18])

The following map is bijective:

{equivalence classes of consistent scattering diagrams} −→ G
[D] %→ g(D).

The proof depends on some (abstract) decompositions of G.
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Rank 2 example: CSD of type A2

Q. How can we construct CSDs more explicitly?

Some (special) consistent scattering diagrams can be constructed only from dilogarithm elements
and the pentagon relation.

Throughout all examples below, let

Ω =

(
0 −1
1 0

)
, {e2, e1} = 1.

Example 1. We have the pentagon relation

Ψ[e2]Ψ[e1] = Ψ[e1]Ψ[e1 + e2]Ψ[e2].

This is interpreted as a (unique) consistent relation

pD,γ1 = pD,γ2

for the consistent scattering diagram D with walls

w1 = (e⊥1 ,Ψ[e1])e1 , w2 = (e⊥2 ,Ψ[e2])e2 , w3 = (R≥0(e
∗
1 − e∗2),Ψ[e1 + e2])e1+e2 .

γ1

γ2

•

•$$ %%

w1

w2

w3

!!

&&

''

This is indeed a CSD of type A2. (The definition of a CSD will be given later.)
The support of D also coincides with the G-fan of type A2.
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Rank 2 example: CSD of type B2

Example 2. Below, for n = n1e1 + n2e2, we write Ψ[n] as
[
n1

n2

]
.

Applying the pentagon relation repeatedly, we have
[
0
1

]2 [1
0

]
=

[
0
1

]([
1
0

] [
1
1

] [
0
1

])
=

[
1
0

] [
1
1

] [
0
1

] [
1
1

] [
0
1

]

=

[
1
0

] [
1
1

]2 [1
2

] [
0
1

]2
.

The LHS is anti-ordered, while the RHS is ordered. This gives a (unique) consistent relation for the
following consistent scattering diagram D:

[
1
0

]

[
0
1

]2

[
1
1

]2 [
1
2

]

Here, the identification MR ) R2 is given by e∗1 %→ e1, e∗2/2 %→ e2.
This is a CSD of type B2. The support of D also coincides with the G-fan of type B2.
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Rank 2 example: CSD of type G2

Example 3. Applying the pentagon relation repeatedly, we have
[
0
1

]3 [1
0

]
=

[
0
1

]([
1
0

] [
1
1

]2 [1
2

] [
0
1

]2)

=

[
1
0

] [
1
1

]2 [1
2

] [
1
1

] [
1
2

]2 [1
3

] [
0
1

]3

=

[
1
0

] [
1
1

]3 [2
3

] [
1
2

]3 [1
3

] [
0
1

]3
.

The LHS is anti-ordered, while the RHS is ordered. This gives a (unique) consistent relation for the
following consistent scattering diagram D:

[
1
0

]

[
0
1

]3

[
1
1

]3[
2
3

][
1
2

]3[1
3

]

Here, the identification MR ) R2 is given by e∗1 %→ e1, e∗2/3 %→ e2.
This is a CSD of type G2. The support of D also coincides with the G-fan of type G2.
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Initial data for CSD

• initial data for CSD:
skew-symmetrizable r × r integer matrix B

decomposition

B = ∆Ω

∆: positive integer diagonal matrix, Ω: skew-symmetric rational matrix.

Thus, ∆−1 is a skew-symmetrizer of B.
(Such a decomposition is not unique, but we do not care at this moment.)

• As we did so far,
Ω = (ωij): the above skew-symmetric rational matrix
N ) Zr : lattice of rank r; e1, . . . , er : basis of N
{ei, ej} = ωij : skew-symmetric form on N

GΩ: the group defined by the above data

• Meanwhile, from ∆ = diag(δ1, . . . , δr), we have
N◦ :=

⊕r
i=1 Zδiei: sublattice of N

M◦ := Hom(N◦,Z) =
⊕r

i=1 Ze∗i /δi: M ⊂ M◦ ⊂ MR
Also, for n ∈ N+, let δ(n) be the smallest positive rational number such that δ(n)n ∈ N◦. We
call it the normalization factor of n (e.g., δ(ei) = δi).

• We have a homomorphism of abelian groups

p∗ : N → M◦ ⊂ MR, n %→ {·, n}.

The representation matrix of p∗ with respect to the above bases is B.
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Cluster Scattering Diagrams (CSDs)

• incoming and outgoing walls
A wall w = (d, g)n of a scattering diagram D with the structure group GΩ is incoming (resp.
outgoing) if p∗(n) ∈ d (reps. otherwise).

Since 〈n, p∗(n)〉 = {n, n} = 0, we have p∗(n) ∈ n⊥.

•
0

•
p∗(n)

n⊥

••

incoming wall

••

outgoing wall

• Cluster scattering diagrams
We are ready to define cluster scattering diagrams.

Theorem-Definition [GHKK18]

For any skew-symmetrizable r × r integer matrix B and its decomposition B = ∆Ω, there is a
unique (up to equivalence) consistent scattering diagram D with the structure group GΩ satisfying
the following condition:

The set of all incoming walls in D is given by {wei := (e⊥i ,Ψ[ei]
δi )ei | i = 1, . . . , r}.

A consistent scattering diagram satisfying the above condition is called a cluster scattering diagram
(CSD) associated with B and denoted by D(B).

For another decomposition B = ∆′Ω′, one can identify the corresponding CSD through the
isomorphism of the structure groups GΩ ) GΩ′ .
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Ordering Lemma

Let us temporarily concentrate on the rank 2 case.
We say that a (possibly infinite) product of Ψ[n]c (c ∈ Q) is ordered (resp. anti-ordered) if, for any
adjacent factors Ψ[n′]c

′
Ψ[n]c, {n′, n} ≥ 0 (resp. {n′, n} ≤ 0) holds.

Ordering Lemma [N21]

Any finite anti-ordered product of Ψ[n]δ(n) is rewritten as a (possibly infinite) ordered product of
Ψ[n]δ(n) by applying the pentagon relation (possibly infinitely many times).

Proof. One can given an explicit algorithm. Also, there is a program for SageMath [N21].
Examples: Let

B =

(
0 −δ1
δ2 0

)
=

(
δ1 0
0 δ2

)(
0 −1
1 0

)
(δ1, δ2 ∈ Z>0).

(1). type A(1)
1 : (δ1, δ2) = (2, 2). ([Reineke11], [Matsushita21] by the pentagon relation)

[
0
1

]2 [1
0

]2
=

[
1
0

]2 [2
1

]2 [3
2

]2
· · ·

∞∏

j=0

[
2j

2j

]22−j

· · ·
[
2
3

]2 [1
2

]2 [0
1

]2
.

(2). non-affine type: (δ1, δ2) = (3, 3). Use my program!
[
0
1

]3 [1
0

]3
≡
[
1
0

]3 [3
1

]3 ([2
1

]9 [3
2

]39 [1
1

]9 [2
2

]18 [2
3

]39 [1
2

]9)[1
3

]3 [0
1

]3
mod G>5.

deg ≤ 1 deg ≤ 2 deg ≤ 3 deg ≤ 4
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Theorems on CSDs

Theorem A. (Positive realization [GHKK18])

For any skew-symmetrizable matrix B, there is a CSD D(B) such that any wall element have the
form Ψ[n]δ(n).

To prove it, an alternative construction of a CSD was introduced in [GHKK18].

Theorem B. ([GHKK18])

For a CSD D(B) with minimal support, the corresponding G-fan is embedded in Supp(D(B))
under the identification MR ) Rr with e∗i %→ δiei.

the construction in Theorem A =⇒ the mutation invariance of D(B) =⇒ Theorem B.
Theorem B =⇒ the sign-coherence of C-matrices.
Theorems A & B =⇒ the Laurent positivity.

Modifying the construction for Theorem A with Ordering Lemma, we obtain the following result.

Theorem C. ([N21])

Every consistency relation of a CSD D(B) reduces to a trivial one g = g by applying the
commutative relation and the pentagon relation (possibly infinitely many times).

Summary (Message)

The dilogarithm interporates the two principles (mutation and the consistency).

The dilogarithm elements and the pentagon relation are everything for CSDs.

28 / 29



1. Introduction 2. Mutations and dilogarithm 3. Structure group 4. Scattering diagrams 5. Cluster scattering diagrams

Example: the Badlands in a rank 3 CSD

B =




0 −1 0
1 0 −2
0 2 0



 , ∆ = I, Ω = B.

the stereo graphic projection of the support: (The right figure is the magnified one of the shaded
region in the left figure.)

j1

j1

j2

j2

j′1

e⊥1

e⊥2 e⊥3

C+
s

2
2

2

1

See
[N21] T. Nakanishi, Cluster algebras and scattering diagrams, Part III. Cluster scattering diagrams,
preliminary draft for a monograph, arXiv:2111.00800, 106 pp.

29 / 29


